Breathable and Self-Healing Photothermal Superhydrophobic Coating Featuring Exceptional Liquid Impalement Resistance and Anti-/Deicing Capabilities for Concrete Materials

Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Addition...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 17; no. 12; pp. 18852 - 18868
Main Authors Wu, Yuanlong, Dong, Lei, Shu, Xin, Zhang, Youfa, Ran, Qianping
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (W e = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (−15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications.
AbstractList Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts ( = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (-15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications.
Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (We = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (-15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications.Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (We = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (-15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications.
Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (W e = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (−15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications.
Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (W ₑ = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (−15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications.
Author Ran, Qianping
Zhang, Youfa
Dong, Lei
Shu, Xin
Wu, Yuanlong
AuthorAffiliation State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering
State Key Laboratory of High-Performance Civil Engineering Materials
Jiangsu Sobute New Materials Co., Ltd
AuthorAffiliation_xml – name: State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering
– name: State Key Laboratory of High-Performance Civil Engineering Materials
– name: Jiangsu Sobute New Materials Co., Ltd
Author_xml – sequence: 1
  givenname: Yuanlong
  surname: Wu
  fullname: Wu, Yuanlong
  organization: State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering
– sequence: 2
  givenname: Lei
  orcidid: 0000-0001-7371-6681
  surname: Dong
  fullname: Dong, Lei
  email: leidong@seu.edu.cn
  organization: State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering
– sequence: 3
  givenname: Xin
  surname: Shu
  fullname: Shu, Xin
  organization: Jiangsu Sobute New Materials Co., Ltd
– sequence: 4
  givenname: Youfa
  orcidid: 0000-0003-3225-5502
  surname: Zhang
  fullname: Zhang, Youfa
  organization: State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering
– sequence: 5
  givenname: Qianping
  orcidid: 0000-0002-7074-7076
  surname: Ran
  fullname: Ran, Qianping
  email: qpran@cnjsjk.cn
  organization: Jiangsu Sobute New Materials Co., Ltd
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40088142$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1URP_AlSPyESFlaztO7B7LtqWVFoEonCPbmRBXjp3ajkS_Ep8Sr7L0hjjNaPR7b6T3TtGRDx4QekvJhhJGz5VJarIbbhhrKX2BTugF55VkDTt63jk_RqcpPRDS1ow0r9AxJ0RKytkJ-v0xgsqj0g6w8j2-BzdUt6Cc9T_x1zHkkEeIk3L4fpkhjk99DPMYtDV4G1TeUzfFYIn77fqXgTnb4Au-s4-L7fHdNCsHE_iMv0GyKStv1k-XPtvq_Aqs2Uu3albaOpstJDyEWNy9iZABf1YZolUuvUYvhzLgzWGeoR8319-3t9Xuy6e77eWuUozLXDEz0L6ttZaipaKWQpjGcKlbXQsysJ5TIXkjCBAtFaFSkgshqOiFaQUnuq_P0PvVd47hcYGUu8kmA84pD2FJXcmQMElb2vwfpUK0jBMmCvrugC56gr6bo51UfOr-VlGAzQqYGFKKMDwjlHT7rru16-7QdRF8WAXl3j2EJZbY07_gPxVKrJA
Cites_doi 10.1021/acssuschemeng.4c01475
10.1016/j.msec.2018.10.010
10.1016/j.cej.2022.137461
10.1016/j.compscitech.2019.107696
10.1016/j.pmatsci.2019.03.004
10.1038/s41563-018-0044-2
10.1016/j.cis.2023.103057
10.1016/j.cis.2023.102919
10.1016/j.cej.2022.137268
10.1038/s41467-022-28036-x
10.1021/acsami.4c01561
10.1021/acsami.4c02431
10.1016/j.jcis.2020.02.107
10.1016/j.porgcoat.2023.107478
10.1021/acs.jpclett.2c02655
10.1016/j.porgcoat.2019.04.020
10.1002/adfm.202404760
10.1016/j.cej.2022.137077
10.1016/j.cej.2020.124066
10.1002/adfm.202206014
10.1016/j.jhazmat.2021.127204
10.1021/acsami.4c07193
10.1016/j.jmst.2023.10.059
10.1021/acs.langmuir.1c00244
10.1021/nl4037092
10.1002/adfm.202213398
10.1073/pnas.2001972117
10.1021/acsami.2c06447
10.1021/acsami.2c15075
10.1016/j.apsusc.2023.159193
10.1002/adma.202305322
10.1002/smll.202311435
10.1016/j.compositesb.2022.109867
10.1016/j.cej.2021.128725
10.1016/j.apsusc.2021.150717
10.1016/j.cej.2023.143924
10.1016/j.cej.2021.133103
10.1002/adma.202402897
10.1021/acsami.2c04790
10.1016/j.cej.2021.130922
10.1016/j.cej.2020.125230
10.1016/j.porgcoat.2024.108267
10.1002/adma.202310177
10.1016/j.cej.2023.145540
10.1016/j.cej.2017.06.058
10.1016/j.compositesb.2020.108031
10.1016/j.nanoen.2024.109561
10.1021/am501539b
10.1016/j.cej.2022.138328
10.1016/j.cej.2018.11.220
10.1016/j.cej.2024.151338
10.1039/C9TA02745A
10.1021/acs.nanolett.3c03676
10.1038/s41467-024-54058-8
10.1038/s41586-020-2331-8
10.1016/j.seppur.2024.128283
10.1039/C6TA06493K
10.1016/j.apsusc.2021.152069
10.1016/j.cej.2018.04.195
10.1016/j.porgcoat.2023.107675
10.1021/acsmaterialslett.4c00313
10.1021/acsami.9b06865
10.1002/adma.202403853
10.1016/j.cej.2020.126456
10.1016/j.cej.2023.142444
10.1002/smll.202312083
10.1016/j.apsusc.2023.158318
10.1021/acsnano.3c07385
10.1021/acsnano.4c02051
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acsami.4c22611
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 18868
ExternalDocumentID 40088142
10_1021_acsami_4c22611
a35422349
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a248t-2cf1d63bb876173877c5c48b6b370f2d41784570e0b8a0188097717d7c6740bd3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Wed Jul 02 04:53:38 EDT 2025
Thu Jul 10 16:54:58 EDT 2025
Fri Mar 28 01:32:19 EDT 2025
Sun Jul 06 05:02:37 EDT 2025
Thu Mar 27 04:26:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords anti/deicing
photothermal conversion
breathability
liquid impalement resistance
superhydrophobic
self-healing
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a248t-2cf1d63bb876173877c5c48b6b370f2d41784570e0b8a0188097717d7c6740bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3225-5502
0000-0002-7074-7076
0000-0001-7371-6681
PMID 40088142
PQID 3177624027
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_3200281615
proquest_miscellaneous_3177624027
pubmed_primary_40088142
crossref_primary_10_1021_acsami_4c22611
acs_journals_10_1021_acsami_4c22611
PublicationCentury 2000
PublicationDate 2025-Mar-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-Mar-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref22/cit22
  doi: 10.1021/acssuschemeng.4c01475
– ident: ref28/cit28
  doi: 10.1016/j.msec.2018.10.010
– ident: ref15/cit15
  doi: 10.1016/j.cej.2022.137461
– ident: ref67/cit67
  doi: 10.1016/j.compscitech.2019.107696
– ident: ref4/cit4
  doi: 10.1016/j.pmatsci.2019.03.004
– ident: ref50/cit50
  doi: 10.1038/s41563-018-0044-2
– ident: ref3/cit3
  doi: 10.1016/j.cis.2023.103057
– ident: ref49/cit49
  doi: 10.1016/j.cis.2023.102919
– ident: ref32/cit32
  doi: 10.1016/j.cej.2022.137268
– ident: ref68/cit68
  doi: 10.1038/s41467-022-28036-x
– ident: ref17/cit17
  doi: 10.1021/acsami.4c01561
– ident: ref24/cit24
  doi: 10.1021/acsami.4c02431
– ident: ref26/cit26
  doi: 10.1016/j.jcis.2020.02.107
– ident: ref42/cit42
  doi: 10.1016/j.porgcoat.2023.107478
– ident: ref62/cit62
  doi: 10.1021/acs.jpclett.2c02655
– ident: ref41/cit41
  doi: 10.1016/j.porgcoat.2019.04.020
– ident: ref18/cit18
  doi: 10.1002/adfm.202404760
– ident: ref27/cit27
  doi: 10.1016/j.cej.2022.137077
– ident: ref39/cit39
  doi: 10.1016/j.cej.2020.124066
– ident: ref69/cit69
  doi: 10.1002/adfm.202206014
– ident: ref30/cit30
  doi: 10.1016/j.jhazmat.2021.127204
– ident: ref13/cit13
  doi: 10.1021/acsami.4c07193
– ident: ref54/cit54
  doi: 10.1016/j.jmst.2023.10.059
– ident: ref46/cit46
  doi: 10.1021/acs.langmuir.1c00244
– ident: ref55/cit55
  doi: 10.1021/nl4037092
– ident: ref66/cit66
  doi: 10.1002/adfm.202213398
– ident: ref14/cit14
  doi: 10.1073/pnas.2001972117
– ident: ref45/cit45
  doi: 10.1021/acsami.2c06447
– ident: ref63/cit63
  doi: 10.1021/acsami.2c15075
– ident: ref5/cit5
  doi: 10.1016/j.apsusc.2023.159193
– ident: ref57/cit57
  doi: 10.1002/adma.202305322
– ident: ref61/cit61
  doi: 10.1002/smll.202311435
– ident: ref9/cit9
  doi: 10.1016/j.compositesb.2022.109867
– ident: ref10/cit10
  doi: 10.1016/j.cej.2021.128725
– ident: ref56/cit56
  doi: 10.1016/j.apsusc.2021.150717
– ident: ref11/cit11
  doi: 10.1016/j.cej.2023.143924
– ident: ref25/cit25
  doi: 10.1016/j.cej.2021.133103
– ident: ref1/cit1
  doi: 10.1002/adma.202402897
– ident: ref33/cit33
  doi: 10.1021/acsami.2c04790
– ident: ref38/cit38
  doi: 10.1016/j.cej.2021.130922
– ident: ref35/cit35
  doi: 10.1016/j.cej.2020.125230
– ident: ref47/cit47
  doi: 10.1016/j.porgcoat.2024.108267
– ident: ref48/cit48
  doi: 10.1002/adma.202310177
– ident: ref58/cit58
  doi: 10.1016/j.cej.2023.145540
– ident: ref36/cit36
  doi: 10.1016/j.cej.2017.06.058
– ident: ref31/cit31
  doi: 10.1016/j.compositesb.2020.108031
– ident: ref34/cit34
  doi: 10.1016/j.nanoen.2024.109561
– ident: ref40/cit40
  doi: 10.1021/am501539b
– ident: ref60/cit60
  doi: 10.1016/j.cej.2022.138328
– ident: ref43/cit43
  doi: 10.1016/j.cej.2018.11.220
– ident: ref64/cit64
  doi: 10.1016/j.cej.2024.151338
– ident: ref23/cit23
  doi: 10.1039/C9TA02745A
– ident: ref51/cit51
  doi: 10.1021/acs.nanolett.3c03676
– ident: ref19/cit19
  doi: 10.1038/s41467-024-54058-8
– ident: ref20/cit20
  doi: 10.1038/s41586-020-2331-8
– ident: ref29/cit29
  doi: 10.1016/j.seppur.2024.128283
– ident: ref52/cit52
  doi: 10.1039/C6TA06493K
– ident: ref65/cit65
  doi: 10.1016/j.apsusc.2021.152069
– ident: ref44/cit44
  doi: 10.1016/j.cej.2018.04.195
– ident: ref16/cit16
  doi: 10.1016/j.porgcoat.2023.107675
– ident: ref8/cit8
  doi: 10.1021/acsmaterialslett.4c00313
– ident: ref37/cit37
  doi: 10.1021/acsami.9b06865
– ident: ref21/cit21
  doi: 10.1002/adma.202403853
– ident: ref53/cit53
  doi: 10.1016/j.cej.2020.126456
– ident: ref6/cit6
  doi: 10.1016/j.cej.2023.142444
– ident: ref12/cit12
  doi: 10.1002/smll.202312083
– ident: ref59/cit59
  doi: 10.1016/j.apsusc.2023.158318
– ident: ref2/cit2
  doi: 10.1021/acsnano.3c07385
– ident: ref7/cit7
  doi: 10.1021/acsnano.4c02051
SSID ssj0063205
Score 2.4750965
Snippet Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 18852
SubjectTerms adhesion
ambient temperature
Applications of Polymer, Composite, and Coating Materials
chemical degradation
durability
humidity
hydrogen
hydrophobicity
ice
liquids
longevity
nanoparticles
rain
solar radiation
Title Breathable and Self-Healing Photothermal Superhydrophobic Coating Featuring Exceptional Liquid Impalement Resistance and Anti-/Deicing Capabilities for Concrete Materials
URI http://dx.doi.org/10.1021/acsami.4c22611
https://www.ncbi.nlm.nih.gov/pubmed/40088142
https://www.proquest.com/docview/3177624027
https://www.proquest.com/docview/3200281615
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Jb9QwFIAt1F7gQNkZNhmBxMltvCT2HMvQqiCKEEOl3iJvw4ygyTBJpLY_iV_Je06GrSpwjmNH9nt-n_MWE_J8nOdOSuVYMVaeAd8KZqXkTOSRZ146kBv06B6-Kw6O1Jvj_Pjn_44_PfiC71jf4FU4ygMoYBLvpihAgxGCJtP1nltIkYIV4USumAGLtS7PeOF9NEK--d0IXUKWycLsb_XljppUmBADSz5vd63b9ucXyzb-8-NvkOsDZtLdXi5ukiuxukWu_VJ88Db59hJ5cY6pU9RWgU7jlxnDrCR4St_P6zblZp1AL9NuGVfzs7Cql_PaLTyd1BajpSnyY0pzpHunQ3gMNH-7-NotAn0NG00fm04_xAYxFeQrjbRbtQu28yqiU_8TnYC5ThG6cGangNDQewUo20Z6aNteP-6Qo_29j5MDNtzcwKxQpmXCz3gopHOwUlxLo7XPvTKucFJnMxEU10blOouZMzbDknCAoVwH7QutMhfkXbJR1VW8T6gIJmKFGKflTNnMu7EQbswBkwBFY4gj8gwmuRw0rymTU13wsp_5cpj5EXmxXvBy2ZfxuLTl07U8lKBp6D6xVay7pgTSAssB5239lzYY82KQokfkXi9MP8aD3dIYrsSD__rih-SqwKuGM8lE8YhstKsuPgb-ad2TJPrfAfKBAFI
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFICtaTwAD9wZ3bgYgcST1_iS2H0sZVMH7TTRTdpbFF9KK7akaxJp8JP4lRw7ybhpCF4Tx3Gcc3w-61yM0OtBHGvOhSbJQBgCfMtIxjklLHY0MlyD3HiP7vQwGZ-I96fx6Qbqd7kwMIgSeiqDE_9HdQHah2v-RBxhgBd8Lu8NIBHmRXo4mnVLb8JZiFmEjbkgCgxXV6Xxj-e9LTLlr7boGsAMhmb_Ljq6GmKIL_m8W1d613z9rXrjf3zDPXSnhU48bKTkPtpw-QN0-6dShA_Rt7eeHhc-kQpnucUzdzYnPkcJ7uKjRVGFTK1z6GVWr9x68cWui9Wi0EuDR0XmY6exp8mQ9Ij3LttgGWg-WV7US4sPYNlpItXxR1d6aAVpC28a5tWS9N857-L_hEdgvEO8LuzgMQA19J4D2FYOT7Oq0ZZH6GR_73g0Ju05DiRjQlWEmTm1CdcaVl4quZLSxEYonWguozmzgkolYhm5SKss8gXiAEqptNIkUkTa8sdoMy9y9wRhZpXz9WK05HORRUYPGNMDCtAE4uCs66FXMMlpq4dlGlzsjKbNzKftzPfQm-6_p6umqMe1LV92YpGC3nlnSpa7oi5T4C6wI7D7ln9p4yNglGfqHtpqZOrqfbB2KkUF2_6nEb9AN8fH00k6OTj8sINuMX8IccQJS56izWpdu2dARpV-HrThO-TnCLM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZQkRA8cB_LaQQST27jI7H3cdl21UJbVWwr9S2Kj7CrlmTZZCXgJ_ErmXGyFYeK4DVxfGWOz5qZz4S8HqaplVJZlg2VY4BvBSuk5EykgSdOWpAbjOgeHGa7J-rdaXra13FjLQxMooGemhjER61e-LJnGOBb8BxvxVEOMAPW817FmB2K9Wg8XZvfTIqYtwiHc8UMOK81U-Mf36M_cs2v_ugSkBmdzeQWOb6YZswxOdtctXbTffuNwfE_13Gb3OzBJx110nKHXAnVXXLjJ0rCe-T7W0SRMyyookXl6TSclwxrleAtPZrVbazY-gS9TFeLsJx99ct6Mavt3NFxXWAONUVUGYsf6c6XPmkGmu_PP6_mnu6B-eky1umH0CB4BamLI42qds62tgOG-j_SMTjxmLcLJ3kKwBp6rwDgtoEeFG2nNffJyWTneLzL-vscWCGUaZlwJfeZtBYsMNfSaO1Sp4zNrNRJKbzi2qhUJyGxpkiQKA7AKddeu0yrxHr5gGxUdRUeESq8CcgbY7UsVZE4OxTCDjmAJxCJ4MOAvIJNznt9bPIYahc873Y-73d-QN6s_32-6Mg9Lm35ci0aOegfBlWKKtSrJgf8Bf4ETuH6L20wE8Ygth6Qh51cXYwHNtQYrsTjf5rxC3LtaHuS7-8dvn9Crgu8iziRTGRPyUa7XIVnAJBa-zwqxA9qfws2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breathable+and+Self-Healing+Photothermal+Superhydrophobic+Coating+Featuring+Exceptional+Liquid+Impalement+Resistance+and+Anti-%2FDeicing+Capabilities+for+Concrete+Materials&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wu%2C+Yuanlong&rft.au=Dong%2C+Lei&rft.au=Shu%2C+Xin&rft.au=Zhang%2C+Youfa&rft.date=2025-03-26&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=17&rft.issue=12&rft.spage=18852&rft.epage=18868&rft_id=info:doi/10.1021%2Facsami.4c22611&rft.externalDocID=a35422349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon