Breathable and Self-Healing Photothermal Superhydrophobic Coating Featuring Exceptional Liquid Impalement Resistance and Anti-/Deicing Capabilities for Concrete Materials
Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Addition...
Saved in:
Published in | ACS applied materials & interfaces Vol. 17; no. 12; pp. 18852 - 18868 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (W e = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (−15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications. |
---|---|
AbstractList | Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (
= 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (-15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications. Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (We = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (-15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications.Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (We = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (-15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications. Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (W e = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (−15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications. Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic anti-icing coatings often suffer mechanical and chemical degradation, particularly in outdoor settings subject to heavy rain or impact. Additionally, most existing coatings are airtight, leading to humidity accumulation and potential substrate deterioration, especially in cement-based materials. To address these challenges, we developed a nonfluorinated, breathable superhydrophobic coating by spraying a PDMS-IPDI-TFB supramolecular network (PIT) mixed with polydopamine nanoparticles (PDA NPs). The optimized superhydrophobic coating (PSC-40) exhibits high breathability, prevents blistering or cracking, and demonstrates exceptional mechanical and chemical durability. Remarkably, it withstands high-speed water jet impacts (W ₑ = 16,000) and retains superhydrophobicity after mechanical and chemical damage. The coating also possesses self-healing capabilities via hydrogen bonds and dynamic covalent bonds, enabling recovery under sunlight, room temperature, or underwater conditions. Its anti-icing performance is evident from a delayed water freezing time (−15 °C) of 1610 s and significantly reduced ice adhesion strength (32.6 kPa). Under sunlight, the coating rapidly melts ice droplets and layers within 138 and 695 s, respectively. This work introduces a robust, breathable superhydrophobic coating with self-healing and anti/deicing capabilities, offering scalable solutions for outdoor, concrete-based architectural applications. |
Author | Ran, Qianping Zhang, Youfa Dong, Lei Shu, Xin Wu, Yuanlong |
AuthorAffiliation | State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering State Key Laboratory of High-Performance Civil Engineering Materials Jiangsu Sobute New Materials Co., Ltd |
AuthorAffiliation_xml | – name: State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering – name: State Key Laboratory of High-Performance Civil Engineering Materials – name: Jiangsu Sobute New Materials Co., Ltd |
Author_xml | – sequence: 1 givenname: Yuanlong surname: Wu fullname: Wu, Yuanlong organization: State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering – sequence: 2 givenname: Lei orcidid: 0000-0001-7371-6681 surname: Dong fullname: Dong, Lei email: leidong@seu.edu.cn organization: State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering – sequence: 3 givenname: Xin surname: Shu fullname: Shu, Xin organization: Jiangsu Sobute New Materials Co., Ltd – sequence: 4 givenname: Youfa orcidid: 0000-0003-3225-5502 surname: Zhang fullname: Zhang, Youfa organization: State Key Laboratory of Engineering Materials for Major Infrastructure and Jiangsu Key Laboratory of Construction Materials, School of Material Science and Engineering – sequence: 5 givenname: Qianping orcidid: 0000-0002-7074-7076 surname: Ran fullname: Ran, Qianping email: qpran@cnjsjk.cn organization: Jiangsu Sobute New Materials Co., Ltd |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40088142$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1URP_AlSPyESFlaztO7B7LtqWVFoEonCPbmRBXjp3ajkS_Ep8Sr7L0hjjNaPR7b6T3TtGRDx4QekvJhhJGz5VJarIbbhhrKX2BTugF55VkDTt63jk_RqcpPRDS1ow0r9AxJ0RKytkJ-v0xgsqj0g6w8j2-BzdUt6Cc9T_x1zHkkEeIk3L4fpkhjk99DPMYtDV4G1TeUzfFYIn77fqXgTnb4Au-s4-L7fHdNCsHE_iMv0GyKStv1k-XPtvq_Aqs2Uu3albaOpstJDyEWNy9iZABf1YZolUuvUYvhzLgzWGeoR8319-3t9Xuy6e77eWuUozLXDEz0L6ttZaipaKWQpjGcKlbXQsysJ5TIXkjCBAtFaFSkgshqOiFaQUnuq_P0PvVd47hcYGUu8kmA84pD2FJXcmQMElb2vwfpUK0jBMmCvrugC56gr6bo51UfOr-VlGAzQqYGFKKMDwjlHT7rru16-7QdRF8WAXl3j2EJZbY07_gPxVKrJA |
Cites_doi | 10.1021/acssuschemeng.4c01475 10.1016/j.msec.2018.10.010 10.1016/j.cej.2022.137461 10.1016/j.compscitech.2019.107696 10.1016/j.pmatsci.2019.03.004 10.1038/s41563-018-0044-2 10.1016/j.cis.2023.103057 10.1016/j.cis.2023.102919 10.1016/j.cej.2022.137268 10.1038/s41467-022-28036-x 10.1021/acsami.4c01561 10.1021/acsami.4c02431 10.1016/j.jcis.2020.02.107 10.1016/j.porgcoat.2023.107478 10.1021/acs.jpclett.2c02655 10.1016/j.porgcoat.2019.04.020 10.1002/adfm.202404760 10.1016/j.cej.2022.137077 10.1016/j.cej.2020.124066 10.1002/adfm.202206014 10.1016/j.jhazmat.2021.127204 10.1021/acsami.4c07193 10.1016/j.jmst.2023.10.059 10.1021/acs.langmuir.1c00244 10.1021/nl4037092 10.1002/adfm.202213398 10.1073/pnas.2001972117 10.1021/acsami.2c06447 10.1021/acsami.2c15075 10.1016/j.apsusc.2023.159193 10.1002/adma.202305322 10.1002/smll.202311435 10.1016/j.compositesb.2022.109867 10.1016/j.cej.2021.128725 10.1016/j.apsusc.2021.150717 10.1016/j.cej.2023.143924 10.1016/j.cej.2021.133103 10.1002/adma.202402897 10.1021/acsami.2c04790 10.1016/j.cej.2021.130922 10.1016/j.cej.2020.125230 10.1016/j.porgcoat.2024.108267 10.1002/adma.202310177 10.1016/j.cej.2023.145540 10.1016/j.cej.2017.06.058 10.1016/j.compositesb.2020.108031 10.1016/j.nanoen.2024.109561 10.1021/am501539b 10.1016/j.cej.2022.138328 10.1016/j.cej.2018.11.220 10.1016/j.cej.2024.151338 10.1039/C9TA02745A 10.1021/acs.nanolett.3c03676 10.1038/s41467-024-54058-8 10.1038/s41586-020-2331-8 10.1016/j.seppur.2024.128283 10.1039/C6TA06493K 10.1016/j.apsusc.2021.152069 10.1016/j.cej.2018.04.195 10.1016/j.porgcoat.2023.107675 10.1021/acsmaterialslett.4c00313 10.1021/acsami.9b06865 10.1002/adma.202403853 10.1016/j.cej.2020.126456 10.1016/j.cej.2023.142444 10.1002/smll.202312083 10.1016/j.apsusc.2023.158318 10.1021/acsnano.3c07385 10.1021/acsnano.4c02051 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acsami.4c22611 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 18868 |
ExternalDocumentID | 40088142 10_1021_acsami_4c22611 a35422349 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ AAYXX ABBLG ABLBI CITATION NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a248t-2cf1d63bb876173877c5c48b6b370f2d41784570e0b8a0188097717d7c6740bd3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 1944-8252 |
IngestDate | Wed Jul 02 04:53:38 EDT 2025 Thu Jul 10 16:54:58 EDT 2025 Fri Mar 28 01:32:19 EDT 2025 Sun Jul 06 05:02:37 EDT 2025 Thu Mar 27 04:26:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | anti/deicing photothermal conversion breathability liquid impalement resistance superhydrophobic self-healing |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a248t-2cf1d63bb876173877c5c48b6b370f2d41784570e0b8a0188097717d7c6740bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3225-5502 0000-0002-7074-7076 0000-0001-7371-6681 |
PMID | 40088142 |
PQID | 3177624027 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3200281615 proquest_miscellaneous_3177624027 pubmed_primary_40088142 crossref_primary_10_1021_acsami_4c22611 acs_journals_10_1021_acsami_4c22611 |
PublicationCentury | 2000 |
PublicationDate | 2025-Mar-26 |
PublicationDateYYYYMMDD | 2025-03-26 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-Mar-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref22/cit22 doi: 10.1021/acssuschemeng.4c01475 – ident: ref28/cit28 doi: 10.1016/j.msec.2018.10.010 – ident: ref15/cit15 doi: 10.1016/j.cej.2022.137461 – ident: ref67/cit67 doi: 10.1016/j.compscitech.2019.107696 – ident: ref4/cit4 doi: 10.1016/j.pmatsci.2019.03.004 – ident: ref50/cit50 doi: 10.1038/s41563-018-0044-2 – ident: ref3/cit3 doi: 10.1016/j.cis.2023.103057 – ident: ref49/cit49 doi: 10.1016/j.cis.2023.102919 – ident: ref32/cit32 doi: 10.1016/j.cej.2022.137268 – ident: ref68/cit68 doi: 10.1038/s41467-022-28036-x – ident: ref17/cit17 doi: 10.1021/acsami.4c01561 – ident: ref24/cit24 doi: 10.1021/acsami.4c02431 – ident: ref26/cit26 doi: 10.1016/j.jcis.2020.02.107 – ident: ref42/cit42 doi: 10.1016/j.porgcoat.2023.107478 – ident: ref62/cit62 doi: 10.1021/acs.jpclett.2c02655 – ident: ref41/cit41 doi: 10.1016/j.porgcoat.2019.04.020 – ident: ref18/cit18 doi: 10.1002/adfm.202404760 – ident: ref27/cit27 doi: 10.1016/j.cej.2022.137077 – ident: ref39/cit39 doi: 10.1016/j.cej.2020.124066 – ident: ref69/cit69 doi: 10.1002/adfm.202206014 – ident: ref30/cit30 doi: 10.1016/j.jhazmat.2021.127204 – ident: ref13/cit13 doi: 10.1021/acsami.4c07193 – ident: ref54/cit54 doi: 10.1016/j.jmst.2023.10.059 – ident: ref46/cit46 doi: 10.1021/acs.langmuir.1c00244 – ident: ref55/cit55 doi: 10.1021/nl4037092 – ident: ref66/cit66 doi: 10.1002/adfm.202213398 – ident: ref14/cit14 doi: 10.1073/pnas.2001972117 – ident: ref45/cit45 doi: 10.1021/acsami.2c06447 – ident: ref63/cit63 doi: 10.1021/acsami.2c15075 – ident: ref5/cit5 doi: 10.1016/j.apsusc.2023.159193 – ident: ref57/cit57 doi: 10.1002/adma.202305322 – ident: ref61/cit61 doi: 10.1002/smll.202311435 – ident: ref9/cit9 doi: 10.1016/j.compositesb.2022.109867 – ident: ref10/cit10 doi: 10.1016/j.cej.2021.128725 – ident: ref56/cit56 doi: 10.1016/j.apsusc.2021.150717 – ident: ref11/cit11 doi: 10.1016/j.cej.2023.143924 – ident: ref25/cit25 doi: 10.1016/j.cej.2021.133103 – ident: ref1/cit1 doi: 10.1002/adma.202402897 – ident: ref33/cit33 doi: 10.1021/acsami.2c04790 – ident: ref38/cit38 doi: 10.1016/j.cej.2021.130922 – ident: ref35/cit35 doi: 10.1016/j.cej.2020.125230 – ident: ref47/cit47 doi: 10.1016/j.porgcoat.2024.108267 – ident: ref48/cit48 doi: 10.1002/adma.202310177 – ident: ref58/cit58 doi: 10.1016/j.cej.2023.145540 – ident: ref36/cit36 doi: 10.1016/j.cej.2017.06.058 – ident: ref31/cit31 doi: 10.1016/j.compositesb.2020.108031 – ident: ref34/cit34 doi: 10.1016/j.nanoen.2024.109561 – ident: ref40/cit40 doi: 10.1021/am501539b – ident: ref60/cit60 doi: 10.1016/j.cej.2022.138328 – ident: ref43/cit43 doi: 10.1016/j.cej.2018.11.220 – ident: ref64/cit64 doi: 10.1016/j.cej.2024.151338 – ident: ref23/cit23 doi: 10.1039/C9TA02745A – ident: ref51/cit51 doi: 10.1021/acs.nanolett.3c03676 – ident: ref19/cit19 doi: 10.1038/s41467-024-54058-8 – ident: ref20/cit20 doi: 10.1038/s41586-020-2331-8 – ident: ref29/cit29 doi: 10.1016/j.seppur.2024.128283 – ident: ref52/cit52 doi: 10.1039/C6TA06493K – ident: ref65/cit65 doi: 10.1016/j.apsusc.2021.152069 – ident: ref44/cit44 doi: 10.1016/j.cej.2018.04.195 – ident: ref16/cit16 doi: 10.1016/j.porgcoat.2023.107675 – ident: ref8/cit8 doi: 10.1021/acsmaterialslett.4c00313 – ident: ref37/cit37 doi: 10.1021/acsami.9b06865 – ident: ref21/cit21 doi: 10.1002/adma.202403853 – ident: ref53/cit53 doi: 10.1016/j.cej.2020.126456 – ident: ref6/cit6 doi: 10.1016/j.cej.2023.142444 – ident: ref12/cit12 doi: 10.1002/smll.202312083 – ident: ref59/cit59 doi: 10.1016/j.apsusc.2023.158318 – ident: ref2/cit2 doi: 10.1021/acsnano.3c07385 – ident: ref7/cit7 doi: 10.1021/acsnano.4c02051 |
SSID | ssj0063205 |
Score | 2.4750965 |
Snippet | Ice accumulation and moisture condensation pose significant challenges to the longevity and performance of modern architectural materials. Superhydrophobic... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 18852 |
SubjectTerms | adhesion ambient temperature Applications of Polymer, Composite, and Coating Materials chemical degradation durability humidity hydrogen hydrophobicity ice liquids longevity nanoparticles rain solar radiation |
Title | Breathable and Self-Healing Photothermal Superhydrophobic Coating Featuring Exceptional Liquid Impalement Resistance and Anti-/Deicing Capabilities for Concrete Materials |
URI | http://dx.doi.org/10.1021/acsami.4c22611 https://www.ncbi.nlm.nih.gov/pubmed/40088142 https://www.proquest.com/docview/3177624027 https://www.proquest.com/docview/3200281615 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1Jb9QwFIAt1F7gQNkZNhmBxMltvCT2HMvQqiCKEEOl3iJvw4ygyTBJpLY_iV_Je06GrSpwjmNH9nt-n_MWE_J8nOdOSuVYMVaeAd8KZqXkTOSRZ146kBv06B6-Kw6O1Jvj_Pjn_44_PfiC71jf4FU4ygMoYBLvpihAgxGCJtP1nltIkYIV4USumAGLtS7PeOF9NEK--d0IXUKWycLsb_XljppUmBADSz5vd63b9ucXyzb-8-NvkOsDZtLdXi5ukiuxukWu_VJ88Db59hJ5cY6pU9RWgU7jlxnDrCR4St_P6zblZp1AL9NuGVfzs7Cql_PaLTyd1BajpSnyY0pzpHunQ3gMNH-7-NotAn0NG00fm04_xAYxFeQrjbRbtQu28yqiU_8TnYC5ThG6cGangNDQewUo20Z6aNteP-6Qo_29j5MDNtzcwKxQpmXCz3gopHOwUlxLo7XPvTKucFJnMxEU10blOouZMzbDknCAoVwH7QutMhfkXbJR1VW8T6gIJmKFGKflTNnMu7EQbswBkwBFY4gj8gwmuRw0rymTU13wsp_5cpj5EXmxXvBy2ZfxuLTl07U8lKBp6D6xVay7pgTSAssB5239lzYY82KQokfkXi9MP8aD3dIYrsSD__rih-SqwKuGM8lE8YhstKsuPgb-ad2TJPrfAfKBAFI |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFICtaTwAD9wZ3bgYgcST1_iS2H0sZVMH7TTRTdpbFF9KK7akaxJp8JP4lRw7ybhpCF4Tx3Gcc3w-61yM0OtBHGvOhSbJQBgCfMtIxjklLHY0MlyD3HiP7vQwGZ-I96fx6Qbqd7kwMIgSeiqDE_9HdQHah2v-RBxhgBd8Lu8NIBHmRXo4mnVLb8JZiFmEjbkgCgxXV6Xxj-e9LTLlr7boGsAMhmb_Ljq6GmKIL_m8W1d613z9rXrjf3zDPXSnhU48bKTkPtpw-QN0-6dShA_Rt7eeHhc-kQpnucUzdzYnPkcJ7uKjRVGFTK1z6GVWr9x68cWui9Wi0EuDR0XmY6exp8mQ9Ij3LttgGWg-WV7US4sPYNlpItXxR1d6aAVpC28a5tWS9N857-L_hEdgvEO8LuzgMQA19J4D2FYOT7Oq0ZZH6GR_73g0Ju05DiRjQlWEmTm1CdcaVl4quZLSxEYonWguozmzgkolYhm5SKss8gXiAEqptNIkUkTa8sdoMy9y9wRhZpXz9WK05HORRUYPGNMDCtAE4uCs66FXMMlpq4dlGlzsjKbNzKftzPfQm-6_p6umqMe1LV92YpGC3nlnSpa7oi5T4C6wI7D7ln9p4yNglGfqHtpqZOrqfbB2KkUF2_6nEb9AN8fH00k6OTj8sINuMX8IccQJS56izWpdu2dARpV-HrThO-TnCLM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELZQkRA8cB_LaQQST27jI7H3cdl21UJbVWwr9S2Kj7CrlmTZZCXgJ_ErmXGyFYeK4DVxfGWOz5qZz4S8HqaplVJZlg2VY4BvBSuk5EykgSdOWpAbjOgeHGa7J-rdaXra13FjLQxMooGemhjER61e-LJnGOBb8BxvxVEOMAPW817FmB2K9Wg8XZvfTIqYtwiHc8UMOK81U-Mf36M_cs2v_ugSkBmdzeQWOb6YZswxOdtctXbTffuNwfE_13Gb3OzBJx110nKHXAnVXXLjJ0rCe-T7W0SRMyyookXl6TSclwxrleAtPZrVbazY-gS9TFeLsJx99ct6Mavt3NFxXWAONUVUGYsf6c6XPmkGmu_PP6_mnu6B-eky1umH0CB4BamLI42qds62tgOG-j_SMTjxmLcLJ3kKwBp6rwDgtoEeFG2nNffJyWTneLzL-vscWCGUaZlwJfeZtBYsMNfSaO1Sp4zNrNRJKbzi2qhUJyGxpkiQKA7AKddeu0yrxHr5gGxUdRUeESq8CcgbY7UsVZE4OxTCDjmAJxCJ4MOAvIJNznt9bPIYahc873Y-73d-QN6s_32-6Mg9Lm35ci0aOegfBlWKKtSrJgf8Bf4ETuH6L20wE8Ygth6Qh51cXYwHNtQYrsTjf5rxC3LtaHuS7-8dvn9Crgu8iziRTGRPyUa7XIVnAJBa-zwqxA9qfws2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breathable+and+Self-Healing+Photothermal+Superhydrophobic+Coating+Featuring+Exceptional+Liquid+Impalement+Resistance+and+Anti-%2FDeicing+Capabilities+for+Concrete+Materials&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Wu%2C+Yuanlong&rft.au=Dong%2C+Lei&rft.au=Shu%2C+Xin&rft.au=Zhang%2C+Youfa&rft.date=2025-03-26&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=17&rft.issue=12&rft.spage=18852&rft.epage=18868&rft_id=info:doi/10.1021%2Facsami.4c22611&rft.externalDocID=a35422349 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |