Evaluation of Move Method Refactorings Recommendation Algorithms: Are We Doing It Right?
Previous studies introduced various techniques for detecting Move Method refactoring opportunities. However, different authors have different evaluations, which leads to the fact that results reported by different papers do not correlate with each other and it is almost impossible to understand whic...
Saved in:
Published in | 2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR) pp. 23 - 26 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2019
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/IWoR.2019.00012 |
Cover
Abstract | Previous studies introduced various techniques for detecting Move Method refactoring opportunities. However, different authors have different evaluations, which leads to the fact that results reported by different papers do not correlate with each other and it is almost impossible to understand which algorithm works better in practice. In this paper, we provide an overview of existing evaluation approaches for Move Method refactoring recommendation algorithms, as well as discuss their advantages and disadvantages. We propose a tool that can be used for generating large synthetic datasets suitable for both algorithms evaluation and building complex machine learning models for Move Method refactoring recommendation. |
---|---|
AbstractList | Previous studies introduced various techniques for detecting Move Method refactoring opportunities. However, different authors have different evaluations, which leads to the fact that results reported by different papers do not correlate with each other and it is almost impossible to understand which algorithm works better in practice. In this paper, we provide an overview of existing evaluation approaches for Move Method refactoring recommendation algorithms, as well as discuss their advantages and disadvantages. We propose a tool that can be used for generating large synthetic datasets suitable for both algorithms evaluation and building complex machine learning models for Move Method refactoring recommendation. |
Author | Novozhilov, Evgenii Pravilov, Mikhail Veselov, Ivan Bryksin, Timofey |
Author_xml | – sequence: 1 givenname: Evgenii surname: Novozhilov fullname: Novozhilov, Evgenii organization: Saint Petersburg State University – sequence: 2 givenname: Ivan surname: Veselov fullname: Veselov, Ivan organization: JetBrains Research & Higher School of Economics – sequence: 3 givenname: Mikhail surname: Pravilov fullname: Pravilov, Mikhail organization: JetBrains Research & Higher School of Economics – sequence: 4 givenname: Timofey surname: Bryksin fullname: Bryksin, Timofey organization: JetBrains Research & Saint Petersburg State University |
BookMark | eNotjMtKw0AYRkfQhdauXbiZF0icW-biRkKtGmgRglJ3ZZL5JwkkGUnGgm9voK4-Dufw3aDLMYyA0B0lKaXEPBSHUKaMUJMSQii7QGujNFVMU8YUIdfoa3uy_Y-NXRhx8HgfToD3ENvgcAne1jFM3djMC9RhGGB05zTvm0XEdpgfcT4BPgB-DkuIi4jLrmnj0y268rafYf2_K_T5sv3YvCW799dik-8Sy4SKSQ0uc1Y5AtKbmnvnpK24rrOKWWkFl0x4JriRCqRwTC8eeOXAOGoNJRVfofvzbwcAx--pG-z0e9RaCMEy_gfDWU9z |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/IWoR.2019.00012 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781728122700 1728122708 |
EndPage | 26 |
ExternalDocumentID | 8844425 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-a247t-ced5da7d0e6f9c3fdd6ab38c5b2a6a43624f243967e64d28dd6e3bde9d1a910b3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:45:05 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a247t-ced5da7d0e6f9c3fdd6ab38c5b2a6a43624f243967e64d28dd6e3bde9d1a910b3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8844425 |
PublicationCentury | 2000 |
PublicationDate | 2019-May |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-May |
PublicationDecade | 2010 |
PublicationTitle | 2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR) |
PublicationTitleAbbrev | IWoR |
PublicationYear | 2019 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7044907 |
Snippet | Previous studies introduced various techniques for detecting Move Method refactoring opportunities. However, different authors have different evaluations,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 23 |
SubjectTerms | algorithms evaluation automatic refactoring recommendation code smells dataset generation feature envy move method refactoring |
Title | Evaluation of Move Method Refactorings Recommendation Algorithms: Are We Doing It Right? |
URI | https://ieeexplore.ieee.org/document/8844425 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ09qwPhODx5dHrvd7q4XQxQCJmsMkcCNtJ2pJgpLcPHgr7fdRTTGg7embdpm2ubrY-b7AC5QJ7EF0shDpdDjSklPdnzjSbRgYUxCWBDPp_diMOZ303BagcttLAwRFc5n1HTJ4i8fM712T2WtOObcrrEqVO0yK2O1Nmw9nXbSGk6ykfPVcgSUbacw-UMupUCL_i6kX_2UTiIvzXWumvrjFwXjfweyB43vuDz2sEWcfajQog7T3pawm2WGpdk7sbTQhWYjKuV03Gs4cxfNuW23FFFi3dcnW5A_z9-uWHdFbELsNrMV2TBnI3djv27AuN97vBl4G70ET_o8yj1NGKKMsE3CJDowiEKqINah8qWQ3EIVN749gIiIBEc_tuUUKKQEO9KeGlRwALVFtqBDYHZXC_cpTUYbroikUZorI2MtTaikOIK6s8psWVJizDYGOf47-wR23LyUfoKnUMtXazqzWJ6r82ISPwEeYKS5 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOhJDRi_7cGjg7F13ebFEIWAMmIIBG6kH6-aKMzg8OBfb7shGuPBW9M2bdOP_Nq-934_gAsl48gAaegoIZRDheAOb3ja4cqAhdYxqpx4PumzzojeTYJJCS7XsTCImDufYc0mc1u-SuXSfpXVo4hSs8c2YNPgPg2KaK0VX0_DjevdcTqw3lqWgtK1GpM_BFNyvGjvQPLVU-Em8lxbZqImP36RMP53KLtQ_Y7MIw9rzNmDEs4rMGmtKbtJqkmSviNJcmVoMsBCUMf-hxP71JyZdgsZJdJ8eTQF2dPs7Yo0F0jGSG5TU5F0MzKwb_brKozareFNx1kpJjjco2HmSFSB4qFykelY-lopxoUfyUB4nHFqwIpqz1xBWIiMKi8y5egLhbFqcHNvEP4-lOfpHA-AmHPNrFkatdRUIHItJBWaR5LrQHB2CBU7K9PXghRjupqQo7-zz2GrM0x60163f38M23aNCq_BEyhniyWeGmTPxFm-oJ_qBKgG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE%2FACM+3rd+International+Workshop+on+Refactoring+%28IWoR%29&rft.atitle=Evaluation+of+Move+Method+Refactorings+Recommendation+Algorithms%3A+Are+We+Doing+It+Right%3F&rft.au=Novozhilov%2C+Evgenii&rft.au=Veselov%2C+Ivan&rft.au=Pravilov%2C+Mikhail&rft.au=Bryksin%2C+Timofey&rft.date=2019-05-01&rft.pub=IEEE&rft.spage=23&rft.epage=26&rft_id=info:doi/10.1109%2FIWoR.2019.00012&rft.externalDocID=8844425 |