Evaluation of Move Method Refactorings Recommendation Algorithms: Are We Doing It Right?

Previous studies introduced various techniques for detecting Move Method refactoring opportunities. However, different authors have different evaluations, which leads to the fact that results reported by different papers do not correlate with each other and it is almost impossible to understand whic...

Full description

Saved in:
Bibliographic Details
Published in2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR) pp. 23 - 26
Main Authors Novozhilov, Evgenii, Veselov, Ivan, Pravilov, Mikhail, Bryksin, Timofey
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2019
Subjects
Online AccessGet full text
DOI10.1109/IWoR.2019.00012

Cover

Abstract Previous studies introduced various techniques for detecting Move Method refactoring opportunities. However, different authors have different evaluations, which leads to the fact that results reported by different papers do not correlate with each other and it is almost impossible to understand which algorithm works better in practice. In this paper, we provide an overview of existing evaluation approaches for Move Method refactoring recommendation algorithms, as well as discuss their advantages and disadvantages. We propose a tool that can be used for generating large synthetic datasets suitable for both algorithms evaluation and building complex machine learning models for Move Method refactoring recommendation.
AbstractList Previous studies introduced various techniques for detecting Move Method refactoring opportunities. However, different authors have different evaluations, which leads to the fact that results reported by different papers do not correlate with each other and it is almost impossible to understand which algorithm works better in practice. In this paper, we provide an overview of existing evaluation approaches for Move Method refactoring recommendation algorithms, as well as discuss their advantages and disadvantages. We propose a tool that can be used for generating large synthetic datasets suitable for both algorithms evaluation and building complex machine learning models for Move Method refactoring recommendation.
Author Novozhilov, Evgenii
Pravilov, Mikhail
Veselov, Ivan
Bryksin, Timofey
Author_xml – sequence: 1
  givenname: Evgenii
  surname: Novozhilov
  fullname: Novozhilov, Evgenii
  organization: Saint Petersburg State University
– sequence: 2
  givenname: Ivan
  surname: Veselov
  fullname: Veselov, Ivan
  organization: JetBrains Research & Higher School of Economics
– sequence: 3
  givenname: Mikhail
  surname: Pravilov
  fullname: Pravilov, Mikhail
  organization: JetBrains Research & Higher School of Economics
– sequence: 4
  givenname: Timofey
  surname: Bryksin
  fullname: Bryksin, Timofey
  organization: JetBrains Research & Saint Petersburg State University
BookMark eNotjMtKw0AYRkfQhdauXbiZF0icW-biRkKtGmgRglJ3ZZL5JwkkGUnGgm9voK4-Dufw3aDLMYyA0B0lKaXEPBSHUKaMUJMSQii7QGujNFVMU8YUIdfoa3uy_Y-NXRhx8HgfToD3ENvgcAne1jFM3djMC9RhGGB05zTvm0XEdpgfcT4BPgB-DkuIi4jLrmnj0y268rafYf2_K_T5sv3YvCW799dik-8Sy4SKSQ0uc1Y5AtKbmnvnpK24rrOKWWkFl0x4JriRCqRwTC8eeOXAOGoNJRVfofvzbwcAx--pG-z0e9RaCMEy_gfDWU9z
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/IWoR.2019.00012
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781728122700
1728122708
EndPage 26
ExternalDocumentID 8844425
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-a247t-ced5da7d0e6f9c3fdd6ab38c5b2a6a43624f243967e64d28dd6e3bde9d1a910b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:45:05 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-ced5da7d0e6f9c3fdd6ab38c5b2a6a43624f243967e64d28dd6e3bde9d1a910b3
PageCount 4
ParticipantIDs ieee_primary_8844425
PublicationCentury 2000
PublicationDate 2019-May
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-May
PublicationDecade 2010
PublicationTitle 2019 IEEE/ACM 3rd International Workshop on Refactoring (IWoR)
PublicationTitleAbbrev IWoR
PublicationYear 2019
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7044907
Snippet Previous studies introduced various techniques for detecting Move Method refactoring opportunities. However, different authors have different evaluations,...
SourceID ieee
SourceType Publisher
StartPage 23
SubjectTerms algorithms evaluation
automatic refactoring recommendation
code smells
dataset generation
feature envy
move method refactoring
Title Evaluation of Move Method Refactorings Recommendation Algorithms: Are We Doing It Right?
URI https://ieeexplore.ieee.org/document/8844425
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJ09qwPhODx5dHrvd7q4XQxQCJmsMkcCNtJ2pJgpLcPHgr7fdRTTGg7embdpm2ubrY-b7AC5QJ7EF0shDpdDjSklPdnzjSbRgYUxCWBDPp_diMOZ303BagcttLAwRFc5n1HTJ4i8fM712T2WtOObcrrEqVO0yK2O1Nmw9nXbSGk6ykfPVcgSUbacw-UMupUCL_i6kX_2UTiIvzXWumvrjFwXjfweyB43vuDz2sEWcfajQog7T3pawm2WGpdk7sbTQhWYjKuV03Gs4cxfNuW23FFFi3dcnW5A_z9-uWHdFbELsNrMV2TBnI3djv27AuN97vBl4G70ET_o8yj1NGKKMsE3CJDowiEKqINah8qWQ3EIVN749gIiIBEc_tuUUKKQEO9KeGlRwALVFtqBDYHZXC_cpTUYbroikUZorI2MtTaikOIK6s8psWVJizDYGOf47-wR23LyUfoKnUMtXazqzWJ6r82ISPwEeYKS5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPOhJDRi_7cGjg7F13ebFEIWAMmIIBG6kH6-aKMzg8OBfb7shGuPBW9M2bdOP_Nq-934_gAsl48gAaegoIZRDheAOb3ja4cqAhdYxqpx4PumzzojeTYJJCS7XsTCImDufYc0mc1u-SuXSfpXVo4hSs8c2YNPgPg2KaK0VX0_DjevdcTqw3lqWgtK1GpM_BFNyvGjvQPLVU-Em8lxbZqImP36RMP53KLtQ_Y7MIw9rzNmDEs4rMGmtKbtJqkmSviNJcmVoMsBCUMf-hxP71JyZdgsZJdJ8eTQF2dPs7Yo0F0jGSG5TU5F0MzKwb_brKozareFNx1kpJjjco2HmSFSB4qFykelY-lopxoUfyUB4nHFqwIpqz1xBWIiMKi8y5egLhbFqcHNvEP4-lOfpHA-AmHPNrFkatdRUIHItJBWaR5LrQHB2CBU7K9PXghRjupqQo7-zz2GrM0x60163f38M23aNCq_BEyhniyWeGmTPxFm-oJ_qBKgG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2019+IEEE%2FACM+3rd+International+Workshop+on+Refactoring+%28IWoR%29&rft.atitle=Evaluation+of+Move+Method+Refactorings+Recommendation+Algorithms%3A+Are+We+Doing+It+Right%3F&rft.au=Novozhilov%2C+Evgenii&rft.au=Veselov%2C+Ivan&rft.au=Pravilov%2C+Mikhail&rft.au=Bryksin%2C+Timofey&rft.date=2019-05-01&rft.pub=IEEE&rft.spage=23&rft.epage=26&rft_id=info:doi/10.1109%2FIWoR.2019.00012&rft.externalDocID=8844425