In Situ Reactive Assembly of Scalable Core–Shell Sulfur–MnO2 Composite Cathodes

The lithium–sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 10; no. 4; pp. 4192 - 4198
Main Authors Liang, Xiao, Nazar, Linda F
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 26.04.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The lithium–sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur host materials, the high cost and complicated preparation of the related materials present an impediment to their practical application. Here we demonstrate a simple methodology to fabricate an effective nanometric MnO2 shell on sulfur particles, which is realized by an in situ redox reaction between sulfur and KMnO4 under ambient conditions. The bifunctional MnO2 shell provides physical confinement and chemical interaction and shows excellent efficiency for trapping the polysulfides. MnO2 sheets crystallized onto nanosized sulfur particles result in cathodes with a very low fading rate of 0.039% per cycle over 1700 cycles in Li–S cells. Moreover, directly crystallizing nanometric shells of MnO2 on micrometer-sized sublimed sulfur delivers stable Li–S cycling performance over 800 cycles. Since both sulfur and KMnO4 are inexpensive and widely used, the production of MnO2-coated sulfur composites can be easily scaled-up for practical applications of Li–S batteries in light of the very simple reaction processes involved.
AbstractList The lithium-sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur host materials, the high cost and complicated preparation of the related materials present an impediment to their practical application. Here we demonstrate a simple methodology to fabricate an effective nanometric MnO2 shell on sulfur particles, which is realized by an in situ redox reaction between sulfur and KMnO4 under ambient conditions. The bifunctional MnO2 shell provides physical confinement and chemical interaction and shows excellent efficiency for trapping the polysulfides. MnO2 sheets crystallized onto nanosized sulfur particles result in cathodes with a very low fading rate of 0.039% per cycle over 1700 cycles in Li-S cells. Moreover, directly crystallizing nanometric shells of MnO2 on micrometer-sized sublimed sulfur delivers stable Li-S cycling performance over 800 cycles. Since both sulfur and KMnO4 are inexpensive and widely used, the production of MnO2-coated sulfur composites can be easily scaled-up for practical applications of Li-S batteries in light of the very simple reaction processes involved.
The lithium-sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur host materials, the high cost and complicated preparation of the related materials present an impediment to their practical application. Here we demonstrate a simple methodology to fabricate an effective nanometric MnO2 shell on sulfur particles, which is realized by an in situ redox reaction between sulfur and KMnO4 under ambient conditions. The bifunctional MnO2 shell provides physical confinement and chemical interaction and shows excellent efficiency for trapping the polysulfides. MnO2 sheets crystallized onto nanosized sulfur particles result in cathodes with a very low fading rate of 0.039% per cycle over 1700 cycles in Li-S cells. Moreover, directly crystallizing nanometric shells of MnO2 on micrometer-sized sublimed sulfur delivers stable Li-S cycling performance over 800 cycles. Since both sulfur and KMnO4 are inexpensive and widely used, the production of MnO2-coated sulfur composites can be easily scaled-up for practical applications of Li-S batteries in light of the very simple reaction processes involved.The lithium-sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur host materials, the high cost and complicated preparation of the related materials present an impediment to their practical application. Here we demonstrate a simple methodology to fabricate an effective nanometric MnO2 shell on sulfur particles, which is realized by an in situ redox reaction between sulfur and KMnO4 under ambient conditions. The bifunctional MnO2 shell provides physical confinement and chemical interaction and shows excellent efficiency for trapping the polysulfides. MnO2 sheets crystallized onto nanosized sulfur particles result in cathodes with a very low fading rate of 0.039% per cycle over 1700 cycles in Li-S cells. Moreover, directly crystallizing nanometric shells of MnO2 on micrometer-sized sublimed sulfur delivers stable Li-S cycling performance over 800 cycles. Since both sulfur and KMnO4 are inexpensive and widely used, the production of MnO2-coated sulfur composites can be easily scaled-up for practical applications of Li-S batteries in light of the very simple reaction processes involved.
Author Nazar, Linda F
Liang, Xiao
AuthorAffiliation Department of Chemistry
University of Waterloo
AuthorAffiliation_xml – name: Department of Chemistry
– name: University of Waterloo
Author_xml – sequence: 1
  givenname: Xiao
  surname: Liang
  fullname: Liang, Xiao
– sequence: 2
  givenname: Linda F
  surname: Nazar
  fullname: Nazar, Linda F
  email: lfnazar@uwaterloo.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26910648$$D View this record in MEDLINE/PubMed
BookMark eNo9kE1LAzEQhoNU7IeevckeBdmaZLNJeizFj0Kl4Cp4C2l2lm7ZTepmV-jN_-A_9JcY6eppZphnhpdnjAbWWUDokuApwZTcauOttm6abrBgqTxBIzJLeIwlfxv89ykZorH3O4xTIQU_Q0PKZwRzJkcoW9ooK9suegZt2vIDorn3UG-qQ-SKKDO60psKooVr4PvzK9tCVUVZVxVdE8Ynu6ZhVe-dL9sA6XbrcvDn6LTQlYeLvk7Q6_3dy-IxXq0flov5KtaUiTY2IqEGZJomYLiQ6QyzHAwxhiSaMCoZNYUsUsExIyYvRJIXBMIc7nLJc5ZM0PXx775x7x34VtWlNyGhtuA6r4iQTDDGqQjoVY92mxpytW_KWjcH9SciADdHIBhVO9c1NiRXBKtfzarXrHrNyQ9flHIo
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
DBID NPM
7X8
DOI 10.1021/acsnano.5b07458
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 4198
ExternalDocumentID 26910648
a337332248
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
23M
53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
4.4
5VS
6J9
AAHBH
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
NPM
7X8
ID FETCH-LOGICAL-a247t-c732ce8553ec6785904dec1cc13a142842cf8f576041cdf73df1ef57c73d86d43
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Fri Jul 11 07:38:53 EDT 2025
Mon Jul 21 06:02:17 EDT 2025
Thu Aug 27 13:43:02 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords lithium−sulfur battery
MnO2
scalable
core−shell
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a247t-c732ce8553ec6785904dec1cc13a142842cf8f576041cdf73df1ef57c73d86d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26910648
PQID 1784744627
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1784744627
pubmed_primary_26910648
acs_journals_10_1021_acsnano_5b07458
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2016-04-26
PublicationDateYYYYMMDD 2016-04-26
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0057876
Score 2.6293626
Snippet The lithium–sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate...
The lithium-sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate...
SourceID proquest
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 4192
Title In Situ Reactive Assembly of Scalable Core–Shell Sulfur–MnO2 Composite Cathodes
URI http://dx.doi.org/10.1021/acsnano.5b07458
https://www.ncbi.nlm.nih.gov/pubmed/26910648
https://www.proquest.com/docview/1784744627
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTg-1FfrNBranaz2aRHKZYqqGAs9BY2-wCxJtIkBz35H_yH_hJnk1TFInpcyCZhZnbmG2b2G4Q6nNJAQmh2FE2MwyjkrAlJpENDQXwTBkqoqkH2mg9H7HLsj7_Ion9W8Ck5FTJPRZp1_QSinR8uoiXK4QhbFNSPZk7X2h2vC8iQIAOK-GTxmXuBDUMy_x1QVoFlsFa3ZOUVH6HtJ3nolkXSlS_zbI1___M6Wm3gJT6r7WEDLeh0E618Ix3cQtFFiqP7osS3WlTODtvC72MyecaZwRHozN6mwv1sqt9f3yLbKIqjcmLKKSyv0huKrQ-xvV7wkLDzp3W-jUaD87v-0GlGKziCsqBwZOBRO7DU97SEcOX3XKa0JFIST1gONkalCQ3kIi4jUpnAU4ZoWMM-FXLFvB3USrNU7yHs-caSwrlKQGZHApWEivckdQ0HZOn3RBt1QBxxczTyuKp6UxI3MoobGbXRyUwhMVi4LVuIVGclbAgggkLWSoM22q01FT_VVBwx5QB3OAv3__eRA7QMgIfbahDlh6hVTEt9BKCiSI4rc_oA7-vH1A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDLVYDsCBfRnWIHHt0KRt2jmiEWjYBQWJW5VmkRDQoml7gBP_wB_yJTidDiAQEhxTNanluPaz7LwA7HDGQomh2VEsNY7PMGdNaSodFgkamChUQtUNsme8d-0f3QQ3I-AOz8KgEAWuVNRF_E92AbqLzzKR5e0gxaAXRKMwjlCEWZve68ZD32vNjw_qyJgnI5j4IPP5sYCNRrL4HVfW8eVgBi4-JKvbSu7aVZm25fM30sb_iD4L0w3YJHsD65iDEZ3Nw9QXCsIFiA8zEt-WFbnUonZ9xJaBH9L7J5IbEuMO2rNVpJv39dvLa2zbRklc3Zuqj8PT7JwR61Fs5xe-JOxt1LpYhOuD_atuz2kuWnAE88PSkaHH7PWlgaclBq-g4_pKSyol9YRlZPOZNJHBzMT1qVQm9JShGsc4T0Vc-d4SjGV5pleAeIGxFHGuEpjn0VClkeIdyVzDEWcGHdGCHVRH0vwoRVLXwBlNGh0ljY5asD3clwTt3RYxRKbzCieEGE8xh2VhC5YHG5Y8Dog5EsYR_HA_Wv3bR7Zgond1epKcHJ4dr8EkQiFu60SMr8NY2a_0BsKNMt2sLewdq7PQNQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB3RIFXlQIG2EAplkXJ1ml3ba-cYpURpgYDqRsrNWu-HhAh2FNsHOPEf-If8ks44ToSokMrRlne9mp3deaM3-xagJ4WINIZmz4jMeYHAnDXjmfZErHjo4sgo0xTIzuR0HlwtwkV7KIzOwuAgSuypbEh8WtUr41qFAX6O73OVF_0ww8AXxnvwkEg78uvRONnuv-SCcsMlY66MgGIn6HOnA4pIuvw3tmxizOQQ5rvRNaUlX_t1lfX1j7-EG_93-E_gcQs62WjjJU_hgc2fwaM_pAiPILnMWfKlqtm1Vc0WyIgO_pYtv7PCsQRnks5YsXGxtr9__kqofJQl9dLVa3z8mH8SjHYWqgDDjxTdSm3LY5hP3t2Mp1574YKnRBBVno58QdeYhr7VGMTC4SAwVnOtua9ImS0Q2sUOLT4IuDYu8o3jFp-xnYmlCfwT6ORFbl8A80NHUnEDozDf45HJYiOHWgycRLwZDlUXemiOtF0wZdpw4YKnrY3S1kZdeLudmxT9nsgMlduixgYRxlXMZUXUheebSUtXG4GOVEgEQTKIX97vJ29g__PFJP1wOXt_CgeIiCTRRUK-gk61ru1rRB1VdtY42S2JoNK4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Reactive+Assembly+of+Scalable+Core-Shell+Sulfur-MnO2+Composite+Cathodes&rft.jtitle=ACS+nano&rft.au=Liang%2C+Xiao&rft.au=Nazar%2C+Linda+F&rft.date=2016-04-26&rft.eissn=1936-086X&rft.volume=10&rft.issue=4&rft.spage=4192&rft_id=info:doi/10.1021%2Facsnano.5b07458&rft_id=info%3Apmid%2F26910648&rft.externalDocID=26910648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon