In Situ Reactive Assembly of Scalable Core–Shell Sulfur–MnO2 Composite Cathodes
The lithium–sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur...
Saved in:
Published in | ACS nano Vol. 10; no. 4; pp. 4192 - 4198 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
26.04.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The lithium–sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur host materials, the high cost and complicated preparation of the related materials present an impediment to their practical application. Here we demonstrate a simple methodology to fabricate an effective nanometric MnO2 shell on sulfur particles, which is realized by an in situ redox reaction between sulfur and KMnO4 under ambient conditions. The bifunctional MnO2 shell provides physical confinement and chemical interaction and shows excellent efficiency for trapping the polysulfides. MnO2 sheets crystallized onto nanosized sulfur particles result in cathodes with a very low fading rate of 0.039% per cycle over 1700 cycles in Li–S cells. Moreover, directly crystallizing nanometric shells of MnO2 on micrometer-sized sublimed sulfur delivers stable Li–S cycling performance over 800 cycles. Since both sulfur and KMnO4 are inexpensive and widely used, the production of MnO2-coated sulfur composites can be easily scaled-up for practical applications of Li–S batteries in light of the very simple reaction processes involved. |
---|---|
AbstractList | The lithium-sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur host materials, the high cost and complicated preparation of the related materials present an impediment to their practical application. Here we demonstrate a simple methodology to fabricate an effective nanometric MnO2 shell on sulfur particles, which is realized by an in situ redox reaction between sulfur and KMnO4 under ambient conditions. The bifunctional MnO2 shell provides physical confinement and chemical interaction and shows excellent efficiency for trapping the polysulfides. MnO2 sheets crystallized onto nanosized sulfur particles result in cathodes with a very low fading rate of 0.039% per cycle over 1700 cycles in Li-S cells. Moreover, directly crystallizing nanometric shells of MnO2 on micrometer-sized sublimed sulfur delivers stable Li-S cycling performance over 800 cycles. Since both sulfur and KMnO4 are inexpensive and widely used, the production of MnO2-coated sulfur composites can be easily scaled-up for practical applications of Li-S batteries in light of the very simple reaction processes involved. The lithium-sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur host materials, the high cost and complicated preparation of the related materials present an impediment to their practical application. Here we demonstrate a simple methodology to fabricate an effective nanometric MnO2 shell on sulfur particles, which is realized by an in situ redox reaction between sulfur and KMnO4 under ambient conditions. The bifunctional MnO2 shell provides physical confinement and chemical interaction and shows excellent efficiency for trapping the polysulfides. MnO2 sheets crystallized onto nanosized sulfur particles result in cathodes with a very low fading rate of 0.039% per cycle over 1700 cycles in Li-S cells. Moreover, directly crystallizing nanometric shells of MnO2 on micrometer-sized sublimed sulfur delivers stable Li-S cycling performance over 800 cycles. Since both sulfur and KMnO4 are inexpensive and widely used, the production of MnO2-coated sulfur composites can be easily scaled-up for practical applications of Li-S batteries in light of the very simple reaction processes involved.The lithium-sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur host materials, the high cost and complicated preparation of the related materials present an impediment to their practical application. Here we demonstrate a simple methodology to fabricate an effective nanometric MnO2 shell on sulfur particles, which is realized by an in situ redox reaction between sulfur and KMnO4 under ambient conditions. The bifunctional MnO2 shell provides physical confinement and chemical interaction and shows excellent efficiency for trapping the polysulfides. MnO2 sheets crystallized onto nanosized sulfur particles result in cathodes with a very low fading rate of 0.039% per cycle over 1700 cycles in Li-S cells. Moreover, directly crystallizing nanometric shells of MnO2 on micrometer-sized sublimed sulfur delivers stable Li-S cycling performance over 800 cycles. Since both sulfur and KMnO4 are inexpensive and widely used, the production of MnO2-coated sulfur composites can be easily scaled-up for practical applications of Li-S batteries in light of the very simple reaction processes involved. |
Author | Nazar, Linda F Liang, Xiao |
AuthorAffiliation | Department of Chemistry University of Waterloo |
AuthorAffiliation_xml | – name: Department of Chemistry – name: University of Waterloo |
Author_xml | – sequence: 1 givenname: Xiao surname: Liang fullname: Liang, Xiao – sequence: 2 givenname: Linda F surname: Nazar fullname: Nazar, Linda F email: lfnazar@uwaterloo.ca |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26910648$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kE1LAzEQhoNU7IeevckeBdmaZLNJeizFj0Kl4Cp4C2l2lm7ZTepmV-jN_-A_9JcY6eppZphnhpdnjAbWWUDokuApwZTcauOttm6abrBgqTxBIzJLeIwlfxv89ykZorH3O4xTIQU_Q0PKZwRzJkcoW9ooK9suegZt2vIDorn3UG-qQ-SKKDO60psKooVr4PvzK9tCVUVZVxVdE8Ynu6ZhVe-dL9sA6XbrcvDn6LTQlYeLvk7Q6_3dy-IxXq0flov5KtaUiTY2IqEGZJomYLiQ6QyzHAwxhiSaMCoZNYUsUsExIyYvRJIXBMIc7nLJc5ZM0PXx775x7x34VtWlNyGhtuA6r4iQTDDGqQjoVY92mxpytW_KWjcH9SciADdHIBhVO9c1NiRXBKtfzarXrHrNyQ9flHIo |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
DBID | NPM 7X8 |
DOI | 10.1021/acsnano.5b07458 |
DatabaseName | PubMed MEDLINE - Academic |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 4198 |
ExternalDocumentID | 26910648 a337332248 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 4.4 5VS 6J9 AAHBH ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ BAANH CUPRZ GGK NPM 7X8 |
ID | FETCH-LOGICAL-a247t-c732ce8553ec6785904dec1cc13a142842cf8f576041cdf73df1ef57c73d86d43 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Fri Jul 11 07:38:53 EDT 2025 Mon Jul 21 06:02:17 EDT 2025 Thu Aug 27 13:43:02 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | lithium−sulfur battery MnO2 scalable core−shell |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a247t-c732ce8553ec6785904dec1cc13a142842cf8f576041cdf73df1ef57c73d86d43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26910648 |
PQID | 1784744627 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1784744627 pubmed_primary_26910648 acs_journals_10_1021_acsnano_5b07458 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 |
PublicationCentury | 2000 |
PublicationDate | 2016-04-26 |
PublicationDateYYYYMMDD | 2016-04-26 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0057876 |
Score | 2.6293626 |
Snippet | The lithium–sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate... The lithium-sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate... |
SourceID | proquest pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4192 |
Title | In Situ Reactive Assembly of Scalable Core–Shell Sulfur–MnO2 Composite Cathodes |
URI | http://dx.doi.org/10.1021/acsnano.5b07458 https://www.ncbi.nlm.nih.gov/pubmed/26910648 https://www.proquest.com/docview/1784744627 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTg-1FfrNBranaz2aRHKZYqqGAs9BY2-wCxJtIkBz35H_yH_hJnk1TFInpcyCZhZnbmG2b2G4Q6nNJAQmh2FE2MwyjkrAlJpENDQXwTBkqoqkH2mg9H7HLsj7_Ion9W8Ck5FTJPRZp1_QSinR8uoiXK4QhbFNSPZk7X2h2vC8iQIAOK-GTxmXuBDUMy_x1QVoFlsFa3ZOUVH6HtJ3nolkXSlS_zbI1___M6Wm3gJT6r7WEDLeh0E618Ix3cQtFFiqP7osS3WlTODtvC72MyecaZwRHozN6mwv1sqt9f3yLbKIqjcmLKKSyv0huKrQ-xvV7wkLDzp3W-jUaD87v-0GlGKziCsqBwZOBRO7DU97SEcOX3XKa0JFIST1gONkalCQ3kIi4jUpnAU4ZoWMM-FXLFvB3USrNU7yHs-caSwrlKQGZHApWEivckdQ0HZOn3RBt1QBxxczTyuKp6UxI3MoobGbXRyUwhMVi4LVuIVGclbAgggkLWSoM22q01FT_VVBwx5QB3OAv3__eRA7QMgIfbahDlh6hVTEt9BKCiSI4rc_oA7-vH1A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDLVYDsCBfRnWIHHt0KRt2jmiEWjYBQWJW5VmkRDQoml7gBP_wB_yJTidDiAQEhxTNanluPaz7LwA7HDGQomh2VEsNY7PMGdNaSodFgkamChUQtUNsme8d-0f3QQ3I-AOz8KgEAWuVNRF_E92AbqLzzKR5e0gxaAXRKMwjlCEWZve68ZD32vNjw_qyJgnI5j4IPP5sYCNRrL4HVfW8eVgBi4-JKvbSu7aVZm25fM30sb_iD4L0w3YJHsD65iDEZ3Nw9QXCsIFiA8zEt-WFbnUonZ9xJaBH9L7J5IbEuMO2rNVpJv39dvLa2zbRklc3Zuqj8PT7JwR61Fs5xe-JOxt1LpYhOuD_atuz2kuWnAE88PSkaHH7PWlgaclBq-g4_pKSyol9YRlZPOZNJHBzMT1qVQm9JShGsc4T0Vc-d4SjGV5pleAeIGxFHGuEpjn0VClkeIdyVzDEWcGHdGCHVRH0vwoRVLXwBlNGh0ljY5asD3clwTt3RYxRKbzCieEGE8xh2VhC5YHG5Y8Dog5EsYR_HA_Wv3bR7Zgond1epKcHJ4dr8EkQiFu60SMr8NY2a_0BsKNMt2sLewdq7PQNQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9NAEB3RIFXlQIG2EAplkXJ1ml3ba-cYpURpgYDqRsrNWu-HhAh2FNsHOPEf-If8ks44ToSokMrRlne9mp3deaM3-xagJ4WINIZmz4jMeYHAnDXjmfZErHjo4sgo0xTIzuR0HlwtwkV7KIzOwuAgSuypbEh8WtUr41qFAX6O73OVF_0ww8AXxnvwkEg78uvRONnuv-SCcsMlY66MgGIn6HOnA4pIuvw3tmxizOQQ5rvRNaUlX_t1lfX1j7-EG_93-E_gcQs62WjjJU_hgc2fwaM_pAiPILnMWfKlqtm1Vc0WyIgO_pYtv7PCsQRnks5YsXGxtr9__kqofJQl9dLVa3z8mH8SjHYWqgDDjxTdSm3LY5hP3t2Mp1574YKnRBBVno58QdeYhr7VGMTC4SAwVnOtua9ImS0Q2sUOLT4IuDYu8o3jFp-xnYmlCfwT6ORFbl8A80NHUnEDozDf45HJYiOHWgycRLwZDlUXemiOtF0wZdpw4YKnrY3S1kZdeLudmxT9nsgMlduixgYRxlXMZUXUheebSUtXG4GOVEgEQTKIX97vJ29g__PFJP1wOXt_CgeIiCTRRUK-gk61ru1rRB1VdtY42S2JoNK4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+Situ+Reactive+Assembly+of+Scalable+Core-Shell+Sulfur-MnO2+Composite+Cathodes&rft.jtitle=ACS+nano&rft.au=Liang%2C+Xiao&rft.au=Nazar%2C+Linda+F&rft.date=2016-04-26&rft.eissn=1936-086X&rft.volume=10&rft.issue=4&rft.spage=4192&rft_id=info:doi/10.1021%2Facsnano.5b07458&rft_id=info%3Apmid%2F26910648&rft.externalDocID=26910648 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |