A procedure for 3D simulation of seismic wave propagation considering source‐path‐site effects: Theory, verification and application
This paper aims at obtaining a semi‐analytical and semi‐numerical 3D model of source‐to‐site seismic wave propagation due to kinematic finite‐fault sources. To this end, a two‐step procedure integrating the frequency‐wavenumber (FK) approach with the spectral element method (SEM) is proposed based o...
Saved in:
Published in | Earthquake engineering & structural dynamics Vol. 51; no. 12; pp. 2925 - 2955 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper aims at obtaining a semi‐analytical and semi‐numerical 3D model of source‐to‐site seismic wave propagation due to kinematic finite‐fault sources. To this end, a two‐step procedure integrating the frequency‐wavenumber (FK) approach with the spectral element method (SEM) is proposed based on the concept of domain reduction. First, the broadband responses of a stratified crust are accurately calculated by using a novel FK approach and are converted into effective seismic inputs around the region of interest. After that, the seismic wavefields at local and regional scales arising from complex geological and topographical conditions are finely simulated using the SEM, and a perfectly matched layer absorbing boundary condition is simultaneously applied to realize the absorption of outgoing waves. In this procedure, a hybrid source modelling scheme that combines the low‐wavenumber deterministic and high‐wavenumber stochastic components on the fault plane is introduced, effectively addressing the high‐frequency motion radiated from the source rupture process. Subsequently, the proposed FK‐SEM procedure is verified step‐by‐step using the point source and finite‐fault source models. To illustrate the feasibility of the procedure, 3D physics‐based numerical simulations (PBSs) of two seismic events, including a historical Sanhe‐Pinggu earthquake and a well‐recorded Yangbi earthquake, are performed. The case studies validate that the proposed FK‐SEM procedure allows a significant reduction in computational effort and a substantial improvement in modelling resolution and can be applied to the source‐to‐site broadband synthetics of earthquake scenarios with limited resources. In addition, this coupled geophysics‐engineering simulation meets the requirements of time‐history analysis for engineering structures, which facilitates the study of soil‐structure interactions and regional‐scale building damage assessment. |
---|---|
AbstractList | This paper aims at obtaining a semi‐analytical and semi‐numerical 3D model of source‐to‐site seismic wave propagation due to kinematic finite‐fault sources. To this end, a two‐step procedure integrating the frequency‐wavenumber (FK) approach with the spectral element method (SEM) is proposed based on the concept of domain reduction. First, the broadband responses of a stratified crust are accurately calculated by using a novel FK approach and are converted into effective seismic inputs around the region of interest. After that, the seismic wavefields at local and regional scales arising from complex geological and topographical conditions are finely simulated using the SEM, and a perfectly matched layer absorbing boundary condition is simultaneously applied to realize the absorption of outgoing waves. In this procedure, a hybrid source modelling scheme that combines the low‐wavenumber deterministic and high‐wavenumber stochastic components on the fault plane is introduced, effectively addressing the high‐frequency motion radiated from the source rupture process. Subsequently, the proposed FK‐SEM procedure is verified step‐by‐step using the point source and finite‐fault source models. To illustrate the feasibility of the procedure, 3D physics‐based numerical simulations (PBSs) of two seismic events, including a historical Sanhe‐Pinggu earthquake and a well‐recorded Yangbi earthquake, are performed. The case studies validate that the proposed FK‐SEM procedure allows a significant reduction in computational effort and a substantial improvement in modelling resolution and can be applied to the source‐to‐site broadband synthetics of earthquake scenarios with limited resources. In addition, this coupled geophysics‐engineering simulation meets the requirements of time‐history analysis for engineering structures, which facilitates the study of soil‐structure interactions and regional‐scale building damage assessment. |
Author | Ba, Zhenning Liang, Jianwen Wu, Mengtao |
Author_xml | – sequence: 1 givenname: Mengtao orcidid: 0000-0002-1321-8629 surname: Wu fullname: Wu, Mengtao organization: Tianjin University – sequence: 2 givenname: Zhenning orcidid: 0000-0002-2506-9771 surname: Ba fullname: Ba, Zhenning email: bazhenning_001@163.com organization: Tianjin University – sequence: 3 givenname: Jianwen orcidid: 0000-0001-6251-0602 surname: Liang fullname: Liang, Jianwen organization: Tianjin University |
BookMark | eNp1kM9OGzEQxq0KJEJA4hEs9dJDNx3b-8-9IUihUiSEBOeVY4-D0Wa92BtQbhw59hn7JHWynFA5jUbz-2a--Y7JQec7JOSMwYwB8B_4hDNRQf2FTBjIMpN1XhyQCYCss7rOqyNyHOMjAIgSqgl5O6d98BrNJiC1PlBxSaNbb1o1ON9Rb2lEF9dO0xf1jDu2V6txpn0XncHguhWNfhM0_n3906vhIZXoBqRoLeoh_qR3D-jD9jt9TrB1epSrzlDV9-17f0IOrWojnr7XKbn_Nb-7uM4WN1e_L84XmeJ5WWcMmeSsKItSSVQCwChhSpUzziUTzAiw-bIwS55uS-CFkIYVWiqruCnlkosp-TruTa88bTAOzWPy3qWTDa9AyhzyiiVqNlI6-BgD2ka7Ye9zCMq1DYNml3aT0m52aSfBtw-CPri1Ctv_odmIvrgWt59yzfx2vuf_AX8vlCU |
CitedBy_id | crossref_primary_10_3390_buildings13082045 crossref_primary_10_1016_j_engstruct_2024_119198 crossref_primary_10_1021_acsomega_3c09457 crossref_primary_10_1177_10775463231194266 crossref_primary_10_1016_j_cscm_2024_e02890 crossref_primary_10_1016_j_istruc_2024_106608 crossref_primary_10_3390_app13053215 crossref_primary_10_1142_S1793431123500410 crossref_primary_10_1016_j_soildyn_2022_107738 crossref_primary_10_1080_13632469_2024_2417708 crossref_primary_10_1016_j_scs_2024_105192 crossref_primary_10_1016_j_soildyn_2024_109007 crossref_primary_10_17491_jgsi_2024_174002 crossref_primary_10_1016_j_soildyn_2024_108790 crossref_primary_10_1016_j_asr_2023_09_057 crossref_primary_10_1016_j_jcsr_2023_108253 crossref_primary_10_1080_15376494_2023_2262989 crossref_primary_10_1002_pc_27611 crossref_primary_10_3390_atmos14030601 crossref_primary_10_15446_esrj_v27n2_105917 crossref_primary_10_3390_math11214530 crossref_primary_10_1007_s42417_023_01154_6 crossref_primary_10_1016_j_apm_2024_04_032 crossref_primary_10_1016_j_soildyn_2023_108347 crossref_primary_10_1007_s42417_023_01216_9 crossref_primary_10_3390_app13074201 crossref_primary_10_1016_j_soildyn_2023_108063 crossref_primary_10_1007_s11600_024_01335_1 crossref_primary_10_1016_j_gexplo_2024_107393 crossref_primary_10_2113_RGG20234590 crossref_primary_10_3390_rs16020222 crossref_primary_10_1007_s11356_023_28133_4 crossref_primary_10_3390_jmse12020282 crossref_primary_10_1109_JSEN_2025_3526997 crossref_primary_10_3390_ma16114200 crossref_primary_10_1016_j_compstruc_2024_107583 crossref_primary_10_1016_j_ast_2023_108724 crossref_primary_10_1016_j_engstruct_2025_119976 crossref_primary_10_1007_s42452_024_05695_7 crossref_primary_10_1080_13632469_2024_2407097 crossref_primary_10_3390_buildings13112720 crossref_primary_10_1007_s11069_023_06262_w crossref_primary_10_1007_s10668_024_05119_x crossref_primary_10_3390_atmos14081236 crossref_primary_10_3390_w15213726 crossref_primary_10_1016_j_geoen_2023_212420 crossref_primary_10_1080_27669645_2023_2293282 crossref_primary_10_1080_15376494_2023_2227413 crossref_primary_10_1016_j_engstruct_2024_118480 crossref_primary_10_1016_j_fuel_2023_130161 crossref_primary_10_1142_S0219455424502225 crossref_primary_10_1142_S0218488523500307 crossref_primary_10_2166_wcc_2024_636 crossref_primary_10_1142_S1758825124500091 crossref_primary_10_1016_j_soildyn_2024_109108 crossref_primary_10_1016_j_soildyn_2023_108047 crossref_primary_10_1007_s10950_024_10247_y crossref_primary_10_1016_j_conbuildmat_2023_132295 crossref_primary_10_1016_j_envres_2024_118171 crossref_primary_10_1016_j_soildyn_2023_107797 crossref_primary_10_1080_15376494_2023_2242849 crossref_primary_10_1016_j_ecoleng_2024_107214 crossref_primary_10_1177_01445987241266084 crossref_primary_10_1016_j_cscm_2023_e02356 crossref_primary_10_1016_j_jappgeo_2024_105581 crossref_primary_10_1038_s41598_023_47330_2 crossref_primary_10_1080_15376494_2023_2243931 |
Cites_doi | 10.1007/s10518-017-0089-7 10.1785/0120160127 10.1785/0120120212 10.1785/0220120079 10.1785/0220140101 10.1093/gji/ggv405 10.1016/j.soildyn.2016.09.023 10.1016/j.pepi.2008.06.005 10.1016/S0031-9201(03)00014-1 10.1785/gssrl.82.6.767 10.1785/0120080194 10.1785/0120180294 10.1093/gji/ggu219 10.1785/0120200147 10.1002/eqe.3108 10.1785/0120020006 10.1016/j.soildyn.2004.05.001 10.1002/eqe.3540 10.1002/eqe.3360 10.1785/0120010251 10.1016/j.soildyn.2019.105931 10.1007/978-3-319-75741-4_8 10.1785/0120010252 10.1111/j.1365-246X.1969.tb03567.x 10.1785/0120100057 10.1785/gssrl.70.1.59 10.1785/0120090271 10.1007/s00024-003-2498-6 10.1007/s10518-016-9977-5 10.1007/s11589-007-0319-1 10.1785/BSSA07206A1969 10.1029/JB084iB07p03609 10.1002/eqe.3377 10.1007/978-3-319-07118-3_10 10.1785/0220140103 10.1785/0120080274 10.1093/gji/ggx312 10.1785/0120190235 10.1785/0120140063 10.1785/0220180261 10.1785/0120160291 10.1111/j.1365-246X.2011.05183.x 10.1002/eqe.3365 10.4294/jpe1952.25.43 10.1023/A:1009758820546 10.2991/aebmr.k.210409.019 10.1007/s11589-014-0099-3 10.1785/BSSA0710061743 10.1093/gji/ggab248 10.1193/080717EQS155M 10.1111/j.1365-246X.1984.tb01942.x 10.1007/s11589-007-0532-y 10.1785/0120140228 10.1016/j.apm.2019.11.014 10.1111/j.1365-246X.2011.05210.x 10.1016/j.soildyn.2017.08.023 10.1046/j.1365-246x.1999.00967.x 10.1002/nme.4532 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
DOI | 10.1002/eqe.3708 |
DatabaseName | CrossRef Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1096-9845 |
EndPage | 2955 |
ExternalDocumentID | 10_1002_eqe_3708 EQE3708 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Tianjin Municipality funderid: 20JCYBJC01090 – fundername: National Natural Science Foundation of China funderid: 52178495; 51778413 |
GroupedDBID | -~X .3N .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AABCJ AAESR AAEVG AAHQN AAIKC AAMMB AAMNL AAMNW AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT .Y3 31~ 8WZ A6W AAHHS AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACCFJ ACKIV ACRPL ACSCC ACYXJ ADNMO ADZOD AEEZP AEQDE AGQPQ AI. AIWBW AJBDE ASPBG AVWKF AZFZN CITATION CKXBT EJD FEDTE HF~ HVGLF LW6 M58 PALCI RIWAO RJQFR RNS SAMSI VH1 ZY4 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
ID | FETCH-LOGICAL-a2468-1e19215656a9ea300da3d6a41229131d30f4b5db2ffe902539d15c9afa2d69b23 |
IEDL.DBID | DR2 |
ISSN | 0098-8847 |
IngestDate | Sun Jul 13 05:09:12 EDT 2025 Tue Jul 01 02:21:59 EDT 2025 Thu Apr 24 23:07:42 EDT 2025 Sun Jul 06 04:45:04 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a2468-1e19215656a9ea300da3d6a41229131d30f4b5db2ffe902539d15c9afa2d69b23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6251-0602 0000-0002-1321-8629 0000-0002-2506-9771 |
PQID | 2709940471 |
PQPubID | 866380 |
PageCount | 31 |
ParticipantIDs | proquest_journals_2709940471 crossref_citationtrail_10_1002_eqe_3708 crossref_primary_10_1002_eqe_3708 wiley_primary_10_1002_eqe_3708_EQE3708 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Earthquake engineering & structural dynamics |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2019; 90 2015; 105 1977; 25 2004; 161 2014; 27 2010; 100 2020; 129 1997; 1 2003; 93 2013; 8 1992; 12 2018; 47 2009; 99 2001 2006; 24 2013; 95 2015; 86 1985 1983 1999; 139 2007; 20 1981; 71 2012; 83 2015; 203 1982; 72 2019; 35 2011; 82 2021; 227 2018; 104 2020; 80 2013; 103 2006 2019; 109 1969; 18 2006; 1 2016; 91 2002 2008; 168 2021; 50 2003; 137 2014; 198 2017; 211 2002; 26 2017; 15 2020; 110 1984; 77 2018 2017 2014 1999; 70 2025; 86 1985; 75 2011; 101 2014; 104 2011; 187 1979; 84 2017; 107 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 Graves R (e_1_2_9_11_1) 2025; 86 e_1_2_9_10_1 e_1_2_9_56_1 Huo JR (e_1_2_9_70_1) 1992; 12 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 Yu YX (e_1_2_9_69_1) 2013; 8 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_24_1 e_1_2_9_66_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_4_1 e_1_2_9_60_1 e_1_2_9_2_1 Wolf JP (e_1_2_9_36_1) 1985 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_34_1 Spudich P (e_1_2_9_55_1) 2002; 26 e_1_2_9_57_1 Kennett BLN (e_1_2_9_37_1) 1983 e_1_2_9_13_1 e_1_2_9_32_1 Herrmann RB (e_1_2_9_53_1) 1985; 75 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_59_1 e_1_2_9_19_1 Chandra R (e_1_2_9_43_1) 2001 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 Yu YX (e_1_2_9_71_1) 2006; 1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_3_1 Aki K (e_1_2_9_35_1) 2002 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 Jiang W (e_1_2_9_67_1) 2017; 6 e_1_2_9_29_1 |
References_xml | – year: 1985 – volume: 20 start-page: 319 issue: 3 year: 2007 end-page: 331 article-title: Strong motion simulation by the composite source modeling: a case study of 1679 M8.0 Sanhe‐Pinggu earthquake publication-title: Acta Seismol Sin – volume: 27 start-page: 607 issue: 6 year: 2014 end-page: 614 article-title: Fault plane parameters of Sanhe‐Pinggu M8 earthquake in 1679 determined using present‐day small earthquakes publication-title: Earthq Sci – volume: 83 start-page: 1047 issue: 6 year: 2012 end-page: 1060 article-title: Earthquake ground‐motion simulation including nonlinear soil effects under idealized conditions with application to two case studies publication-title: Seismol Res Lett – volume: 110 start-page: 2862 issue: 6 year: 2020 end-page: 2881 article-title: Regional‐scale 3D ground‐motion simulations of M w 7 earthquakes on the Hayward Fault, Northern California resolving frequencies 0–10 Hz and including site‐response corrections publication-title: Bull Seismol Soc Am – volume: 211 start-page: 400 issue: 1 year: 2017 end-page: 417 article-title: Simulation of broad‐band strong ground motion for a hypothetical M w 7.1 earthquake on the Enriquillo Fault in Haiti publication-title: Geophys J Int – volume: 35 start-page: 1329 issue: 3 year: 2019 end-page: 1349 article-title: Geophysical study and 3‐D modeling of site effects in Viña del Mar, Chile publication-title: Earthq Spectra – volume: 47 start-page: 2708 issue: 13 year: 2018 end-page: 2725 article-title: A numerical coupling scheme for nonlinear time history analysis of buildings on a regional scale considering site‐city interaction effects publication-title: Earthq Eng Struct Dyn – year: 2001 – volume: 50 start-page: 177 issue: 1 year: 2021 end-page: 196 article-title: A computational workflow for rupture‐to‐structural‐response simulation and its application to Istanbul publication-title: Earthq Eng Struct Dyn – volume: 1 start-page: 237 issue: 3 year: 1997 end-page: 251 article-title: 2D and 3D elastic wave propagation by a pseudo‐spectral domain decomposition method publication-title: J Seismolog – volume: 100 start-page: 2124 issue: 5A year: 2010 end-page: 2142 article-title: Hybrid broadband ground‐motion simulations: combining long‐period deterministic synthetics with high‐frequency multiple S‐to‐S backscattering publication-title: Bull Seismol Soc Am – volume: 72 start-page: 1969 issue: 6A year: 1982 end-page: 2001 article-title: Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake publication-title: Bull Seismol Soc Am – volume: 15 start-page: 787 issue: 3 year: 2017 end-page: 812 article-title: Evaluation of earthquake ground motion and site effects in the Thessaloniki urban area by 3D finite‐fault numerical simulations publication-title: Bull Earthq Eng – volume: 71 start-page: 1743 issue: 6 year: 1981 end-page: 1761 article-title: Stiffness matrices for layered soils publication-title: Bull Seismol Soc Am – volume: 50 start-page: 3939 issue: 15 year: 2021 end-page: 3961 article-title: Engineering evaluation of the EQSIM simulated ground‐motion database: the San Francisco Bay Area region publication-title: Earthq Eng Struct Dyn – volume: 84 start-page: 3609 issue: B7 year: 1979 end-page: 3614 article-title: Discrete wave number representation of elastic wave fields in three‐space dimensions publication-title: J Geophys Res: Solid Earth – volume: 168 start-page: 134 issue: 3‐4 year: 2008 end-page: 146 article-title: Seismic images under the Beijing region inferred from P and PmP data publication-title: Phys Earth Planet Inter – start-page: 331 year: 2014 end-page: 359 – volume: 99 start-page: 286 issue: 1 year: 2009 end-page: 301 article-title: Near‐fault earthquake ground‐motion simulation in the Grenoble valley by a high‐performance spectral element code publication-title: Bull Seismol Soc Am – volume: 20 start-page: 532 issue: 5 year: 2007 end-page: 543 article-title: Seismic motion attenuation relations in Sichuan and adjacent areas publication-title: Acta Seismol Sin – volume: 15 start-page: 2645 issue: 7 year: 2017 end-page: 2671 article-title: Physics‐based seismic input for engineering applications: a case study in the Aterno river valley, Central Italy publication-title: Bull Earthq Eng – volume: 161 start-page: 1093 issue: 5‐6 year: 2004 end-page: 1106 article-title: Realistic modeling of seismic wave ground motion in Beijing city publication-title: Pure Appl Geophys – volume: 139 start-page: 806 issue: 3 year: 1999 end-page: 822 article-title: Introduction to the spectral element method for three‐dimensional seismic wave propagation publication-title: Geophys J Int – volume: 103 start-page: 2557 issue: 5 year: 2013 end-page: 2576 article-title: Finite‐fault simulation of broadband strong ground motion from the 2010 M w 7.0 Haiti earthquake publication-title: Bull Seismol Soc Am – volume: 110 start-page: 2559 issue: 5 year: 2020 end-page: 2576 article-title: 3D physics‐based numerical simulations of ground motion in Istanbul from earthquakes along the Marmara segment of the North Anatolian fault publication-title: Bull Seismol Soc Am – volume: 187 start-page: 1516 issue: 3 year: 2011 end-page: 1536 article-title: Numerically stable computation of complete synthetic seismograms including the static displacement in plane layered media publication-title: Geophys J Int – volume: 86 issue: 1 year: 2015 article-title: Evaluation of SCEC broadband platform phase 1 PSA ground motion simulation results publication-title: Seismol Res Lett – volume: 203 start-page: 2001 year: 2015 end-page: 2020 article-title: Anatomy of strong ground motion: near‐source records and three‐dimensional physics‐based numerical simulations of the MW 6.0 2012 May 29 Po Plain earthquake, Italy publication-title: Geophys J Int – volume: 80 start-page: 859 year: 2020 end-page: 878 article-title: 3D dynamic responses of a multi‐layered transversely isotropic saturated half‐space under concentrated forces and pore pressure publication-title: Appl Math Model – volume: 107 start-page: 1213 issue: 3 year: 2017 end-page: 1226 article-title: Correlation of spectral accelerations for earthquakes in China publication-title: Bull Seismol Soc Am – volume: 1 start-page: 206 issue: 3 year: 2006 end-page: 217 article-title: Attenuation relations for horizontal peak ground acceleration and response spectrum in eastern and western China publication-title: Technol Earthq Disaster Prevention – volume: 109 start-page: 1738 issue: 5 year: 2019 end-page: 1757 article-title: Kinematic source modeling for the synthesis of broadband ground motion using the f‐k approach publication-title: Bull Seismol Soc Am – volume: 75 start-page: 41 issue: 1 year: 1985 end-page: 56 article-title: A comparison of synthetic seismograms publication-title: Bull Seismol Soc Am – volume: 12 start-page: 1 issue: 2 year: 1992 end-page: 11 article-title: Study on attenuation laws of ground motion parameters publication-title: Earthq Eng Eng Vib – volume: 104 start-page: 156 year: 2018 end-page: 173 article-title: Revisiting the 1995 MW 6.4 Aigion, Greece, earthquake: simulation of broadband strong ground motion and site response analysis publication-title: Soil Dyn Earthq Eng – volume: 86 issue: LLNL‐JRNL‐741227 year: 2025 article-title: Refinements to the Graves and Pitarka (2010) broadband ground‐motion simulation method publication-title: Seismol Res Lett – volume: 104 start-page: 2683 issue: 6 year: 2014 end-page: 2697 article-title: Broadband ground‐motion simulation using energy‐constrained rise‐time scaling publication-title: Bull Seismol Soc Am – volume: 50 start-page: 43 issue: 1 year: 2021 end-page: 59 article-title: Deterministic ground motion simulations with shallow crust nonlinearity at Garner Valley in Southern California publication-title: Earthq Eng Struct Dyn – volume: 91 start-page: 39 year: 2016 end-page: 52 article-title: The 3D numerical simulation of near‐source ground motion during the Marsica earthquake, central Italy, 100 years later publication-title: Soil Dyn Earthq Eng – year: 2017 article-title: PSHAe (Probabilistic Seismic Hazard Assessment Enhanced): the case of Istanbul – volume: 107 start-page: 372 issue: 1 year: 2017 end-page: 386 article-title: Modeling strong‐motion recordings of the 2010 M w 8.8 Maule, Chile, earthquake with high stress‐drop subevents and background slip publication-title: Bull Seismol Soc Am – volume: 50 start-page: 99 issue: 1 year: 2021 end-page: 115 article-title: Physics‐based probabilistic seismic hazard and loss assessment in large urban areas: a simplified application to Istanbul publication-title: Earthq Eng Struct Dyn – volume: 100 start-page: 2095 issue: 5A year: 2010 end-page: 2123 article-title: Broadband ground‐motion simulation using a hybrid approach publication-title: Bull Seismol Soc Am – volume: 105 start-page: 1398 issue: 3 year: 2015 end-page: 1418 article-title: Earthquake ground motion in the Mygdonian basin, Greece: the E2VP verification and validation of 3D numerical simulation up to 4 Hz publication-title: Bull Seismol Soc Am – volume: 198 start-page: 1714 issue: 3 year: 2014 end-page: 1747 article-title: Improved forward wave propagation and adjoint‐based sensitivity kernel calculations using a numerically stable finite‐element PML publication-title: Geophys J Int – volume: 187 start-page: 929 issue: 2 year: 2011 end-page: 945 article-title: Modeling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code publication-title: Geophys J Int – year: 1983 – volume: 93 start-page: 817 issue: 2 year: 2003 end-page: 824 article-title: Domain reduction method for three‐dimensional earthquake modeling in localized regions, part I: theory publication-title: Bull Seismol Soc Am – volume: 25 start-page: 43 year: 1977 end-page: 68 article-title: Long‐period surface velocities and accelerations due to a dislocation source model in a medium with superficial multi‐layers publication-title: J Phys Earth – volume: 90 start-page: 1268 issue: 3 year: 2019 end-page: 1284 article-title: Broadband (0–5 Hz) fully deterministic 3D ground‐motion simulations of a magnitude 7.0 Hayward fault earthquake: comparison with empirical ground‐motion models and 3D path and site effects from source normalized intensities publication-title: Seismol Res Lett – volume: 137 start-page: 183 issue: 1‐4 year: 2003 end-page: 199 article-title: A hybrid method for calculating near‐source, broadband seismograms: application to strong motion prediction publication-title: Phys Earth Planet Inter – volume: 129 year: 2020 article-title: Nonlinear broadband simulation of the Mw 6.0 May 29, 2012 Emilia earthquake in Northern Italy publication-title: Soil Dyn Earthq Eng – volume: 26 start-page: 64 year: 2002 article-title: Documentation of software package Compsyn sxv3. 11: programs for earthquake ground motion calculation using complete 1‐d green's functions publication-title: Int Handbook Earthq Eng Seismol – volume: 24 start-page: 815 issue: 11 year: 2006 end-page: 828 article-title: Characterization of forward‐directivity ground motions in the near‐fault region publication-title: Soil Dyn Earthq Eng – volume: 101 start-page: 202 issue: 1 year: 2011 end-page: 221 article-title: Near‐field across‐fault seismic ground motions publication-title: Bull Seismol Soc Am – volume: 70 start-page: 59 issue: 1 year: 1999 end-page: 80 article-title: Characterizing crustal earthquake slip models for the prediction of strong ground motion publication-title: Seismol Res Lett – start-page: 1 year: 2018 end-page: 12 article-title: The role of near‐field ground motion on seismic risk assessment in large urban areas – start-page: 203 year: 2018 end-page: 223 article-title: 3D physics‐based numerical simulations: Advantages and current limitations of a new frontier to earthquake ground motion prediction. The Istanbul case study – volume: 82 start-page: 767 issue: 6 year: 2011 end-page: 782 article-title: Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 Mw 6.2 Christchurch earthquake publication-title: Seismol Res Lett – volume: 93 start-page: 301 issue: 1 year: 2003 end-page: 313 article-title: Strong ground‐motion prediction from stochastic‐dynamic source models publication-title: Bull Seismol Soc Am – volume: 6 start-page: 23 year: 2017 end-page: 30 article-title: Scaling laws of local source parameters of finite fault source model publication-title: Earthq Eng Eng Dyn – volume: 77 start-page: 421 issue: 2 year: 1984 end-page: 460 article-title: The discrete wavenumber/finite element method for synthetic seismograms publication-title: Geophys J Int – year: 2002 – volume: 86 start-page: 61 issue: 1 year: 2015 end-page: 67 article-title: UCSB method for simulation of broadband ground motion from kinematic earthquake sources publication-title: Seismol Res Lett – volume: 18 start-page: 233 issue: 3 year: 1969 end-page: 249 article-title: A quantitative evaluation of seismic signals at teleseismic distances—I radiation from point sources publication-title: Geophys J Int – volume: 8 start-page: 24 issue: 1 year: 2013 end-page: 33 article-title: Development of ground motion attenuation relations for the new seismic hazard map of China publication-title: Technol Earthq Disaster Prevention – start-page: 121 year: 2006 end-page: 126 article-title: Study on the economic and population loss of Beijing area considering the recurrence of the Sanhe‐Pinggu M8 earthquake in 1679 – volume: 93 start-page: 825 issue: 2 year: 2003 end-page: 841 article-title: Domain reduction method for three‐dimensional earthquake modeling in localized regions, part II: verification and applications publication-title: Bull Seismol Soc Am – volume: 95 start-page: 991 issue: 12 year: 2013 end-page: 1010 article-title: SPEED: SPectral Elements in Elastodynamics with Discontinuous Galerkin: a non‐conforming approach for 3D multi‐scale problems publication-title: Int J Numer Methods Eng – volume: 227 start-page: 717 issue: 1 year: 2021 end-page: 734 article-title: The revised direct stiffness matrix method for seismogram synthesis due to dislocations: from crustal to geotechnical scale publication-title: Geophys J Int – ident: e_1_2_9_24_1 doi: 10.1007/s10518-017-0089-7 – volume: 6 start-page: 23 year: 2017 ident: e_1_2_9_67_1 article-title: Scaling laws of local source parameters of finite fault source model publication-title: Earthq Eng Eng Dyn – ident: e_1_2_9_48_1 doi: 10.1785/0120160127 – ident: e_1_2_9_65_1 doi: 10.1785/0120120212 – ident: e_1_2_9_13_1 doi: 10.1785/0220120079 – ident: e_1_2_9_50_1 doi: 10.1785/0220140101 – ident: e_1_2_9_26_1 doi: 10.1093/gji/ggv405 – ident: e_1_2_9_27_1 doi: 10.1016/j.soildyn.2016.09.023 – ident: e_1_2_9_62_1 doi: 10.1016/j.pepi.2008.06.005 – volume: 1 start-page: 206 issue: 3 year: 2006 ident: e_1_2_9_71_1 article-title: Attenuation relations for horizontal peak ground acceleration and response spectrum in eastern and western China publication-title: Technol Earthq Disaster Prevention – ident: e_1_2_9_49_1 doi: 10.1016/S0031-9201(03)00014-1 – ident: e_1_2_9_21_1 doi: 10.1785/gssrl.82.6.767 – ident: e_1_2_9_8_1 doi: 10.1785/0120080194 – volume-title: Parallel Programming in OpenMP year: 2001 ident: e_1_2_9_43_1 – ident: e_1_2_9_44_1 doi: 10.1785/0120180294 – ident: e_1_2_9_52_1 doi: 10.1093/gji/ggu219 – volume-title: Seismic Wave Propagation in Stratified Media year: 1983 ident: e_1_2_9_37_1 – ident: e_1_2_9_31_1 doi: 10.1785/0120200147 – ident: e_1_2_9_22_1 doi: 10.1002/eqe.3108 – ident: e_1_2_9_45_1 doi: 10.1785/0120020006 – ident: e_1_2_9_63_1 doi: 10.1016/j.soildyn.2004.05.001 – ident: e_1_2_9_4_1 doi: 10.1002/eqe.3540 – ident: e_1_2_9_15_1 doi: 10.1002/eqe.3360 – ident: e_1_2_9_32_1 doi: 10.1785/0120010251 – volume: 8 start-page: 24 issue: 1 year: 2013 ident: e_1_2_9_69_1 article-title: Development of ground motion attenuation relations for the new seismic hazard map of China publication-title: Technol Earthq Disaster Prevention – volume: 26 start-page: 64 year: 2002 ident: e_1_2_9_55_1 article-title: Documentation of software package Compsyn sxv3. 11: programs for earthquake ground motion calculation using complete 1‐d green's functions publication-title: Int Handbook Earthq Eng Seismol – volume: 12 start-page: 1 issue: 2 year: 1992 ident: e_1_2_9_70_1 article-title: Study on attenuation laws of ground motion parameters publication-title: Earthq Eng Eng Vib – volume: 86 issue: 741227 year: 2025 ident: e_1_2_9_11_1 article-title: Refinements to the Graves and Pitarka (2010) broadband ground‐motion simulation method publication-title: Seismol Res Lett – ident: e_1_2_9_14_1 doi: 10.1016/j.soildyn.2019.105931 – ident: e_1_2_9_5_1 doi: 10.1007/978-3-319-75741-4_8 – ident: e_1_2_9_33_1 doi: 10.1785/0120010252 – ident: e_1_2_9_38_1 doi: 10.1111/j.1365-246X.1969.tb03567.x – ident: e_1_2_9_10_1 doi: 10.1785/0120100057 – ident: e_1_2_9_51_1 doi: 10.1785/gssrl.70.1.59 – ident: e_1_2_9_30_1 – volume-title: Dynamic Soil‐Structure Interaction year: 1985 ident: e_1_2_9_36_1 – ident: e_1_2_9_64_1 doi: 10.1785/0120090271 – ident: e_1_2_9_61_1 doi: 10.1007/s00024-003-2498-6 – ident: e_1_2_9_28_1 doi: 10.1007/s10518-016-9977-5 – ident: e_1_2_9_58_1 doi: 10.1007/s11589-007-0319-1 – ident: e_1_2_9_34_1 doi: 10.1785/BSSA07206A1969 – ident: e_1_2_9_54_1 doi: 10.1029/JB084iB07p03609 – ident: e_1_2_9_7_1 doi: 10.1002/eqe.3377 – ident: e_1_2_9_19_1 doi: 10.1007/978-3-319-07118-3_10 – ident: e_1_2_9_47_1 doi: 10.1785/0220140103 – ident: e_1_2_9_23_1 doi: 10.1785/0120080274 – ident: e_1_2_9_66_1 doi: 10.1093/gji/ggx312 – ident: e_1_2_9_9_1 doi: 10.1785/0120190235 – ident: e_1_2_9_46_1 doi: 10.1785/0120140063 – ident: e_1_2_9_6_1 doi: 10.1785/0220180261 – ident: e_1_2_9_68_1 doi: 10.1785/0120160291 – ident: e_1_2_9_25_1 doi: 10.1111/j.1365-246X.2011.05183.x – ident: e_1_2_9_3_1 doi: 10.1002/eqe.3365 – ident: e_1_2_9_57_1 doi: 10.4294/jpe1952.25.43 – ident: e_1_2_9_18_1 doi: 10.1023/A:1009758820546 – ident: e_1_2_9_60_1 doi: 10.2991/aebmr.k.210409.019 – ident: e_1_2_9_59_1 doi: 10.1007/s11589-014-0099-3 – ident: e_1_2_9_40_1 doi: 10.1785/BSSA0710061743 – volume-title: Quantitative Seismology year: 2002 ident: e_1_2_9_35_1 – ident: e_1_2_9_42_1 doi: 10.1093/gji/ggab248 – ident: e_1_2_9_20_1 doi: 10.1193/080717EQS155M – ident: e_1_2_9_56_1 doi: 10.1111/j.1365-246X.1984.tb01942.x – ident: e_1_2_9_72_1 doi: 10.1007/s11589-007-0532-y – ident: e_1_2_9_12_1 doi: 10.1785/0120140228 – ident: e_1_2_9_41_1 doi: 10.1016/j.apm.2019.11.014 – ident: e_1_2_9_39_1 doi: 10.1111/j.1365-246X.2011.05210.x – ident: e_1_2_9_2_1 doi: 10.1016/j.soildyn.2017.08.023 – ident: e_1_2_9_16_1 doi: 10.1046/j.1365-246x.1999.00967.x – volume: 75 start-page: 41 issue: 1 year: 1985 ident: e_1_2_9_53_1 article-title: A comparison of synthetic seismograms publication-title: Bull Seismol Soc Am – ident: e_1_2_9_17_1 doi: 10.1002/nme.4532 – ident: e_1_2_9_29_1 |
SSID | ssj0003607 |
Score | 2.6013415 |
Snippet | This paper aims at obtaining a semi‐analytical and semi‐numerical 3D model of source‐to‐site seismic wave propagation due to kinematic finite‐fault sources. To... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2925 |
SubjectTerms | Absorption Boundary conditions Broadband Building damage Computer applications coupled geophysics‐engineering simulation Damage assessment Earthquake damage Earthquakes Engineering frequency‐wavenumber domain Geophysics kinematic finite‐fault source Mathematical models Modelling Numerical simulations P-waves Perfectly matched layers Physics Point sources Procedures Propagation Reduction Seismic activity Seismic propagation Seismic wave propagation Seismic waves Simulation Soil structure source‐path‐site effects Spectral element method Three dimensional models Water pollution Wave propagation Wavelengths |
Title | A procedure for 3D simulation of seismic wave propagation considering source‐path‐site effects: Theory, verification and application |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3708 https://www.proquest.com/docview/2709940471 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Skx58i9UqEUQvbrub7KPrrWhL8SAoFgoelmSThaJttdsqePLo0d_oLzGTZNsqCuJpDzuzjyST-XZn5huEDrOAedz3hMN0mDEIiBMHhDmZcoVc-lEUcZ3lexm2O_5FN-jarEqohTH8ENMfbmAZer8GA2c8r81IQ-WjrNJI1_lCqhbgoesZcxQN3SldZl3twAXvrEtqheJXTzSDl_MgVXuZ1gq6LZ7PJJfcVSdjXk1fvlE3_u8FVtGyBZ-4YVbLGlqQg3W0NEdJuIHeGlj7NDEZSawALabnOO_1bZMvPMxwLnt5v5fiZ_YkQVbtSOZcant_qutgExP4eH2HjsfqADFqbHNHTrEhBDjByowgU8mos4HAc-H0TdRpNW_O2o7t1uAwAuVbngRqNcCHLJaMuq5gVITM9wiJPeoJ6mY-DwQn6l4Q26Sx8II0ZhkjIow5oVuoNBgO5DbCEU2ZUqPQfMb3RR1CvTyjqaiH6usw4mV0XMxckloqc-iocZ8YEmaSqLFNYGzL6GAq-WDoO36QqRSTn1gDzhMSKejsu8p1l9GRnsVf9ZPmVROOO38V3EWLBIoodEpgBZXGo4ncU9BmzPf1Iv4E6Xr4oQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-rBt7g-I4he7NomfWz1JLqyPkFR8CCUpElhUdfH7ip48ujR3-gvMZO0u6soiKccOtM2j8lMMjPfAKxkAfeE70mHGzdjEFAnDih3Mq0KhfKjKBImyvckrF34B5fBZR9sFbkwFh-ic-GGkmH2axRwvJDe6KKGqgdVZhEm-g5gQW9znjrrYkex0O0AZlb0Hlwgz7p0o-D8qou6BmavmWr0zN4oXBV_aMNLrsvtliinL9_AG__ZhTEYye1Psm0XzDj0qcYEDPegEk7C2zYxak22HxXRNi1hu6RZv83rfJG7jDRVvXlbT8kzf1JIqzcl-yzNy3_q9xDrFvh4fceix7pBNzXJw0c2icUEWCdakjBYybLzhiQ9HvUpuNirnu_UnLxgg8MpZnB5CtHV0ETkseLMdSVnMuS-R2nsMU8yN_NFIAXV30L3JoulF6QxzziVYSwom4b-xl1DzQCJWMo1G8P6M74vK-jtFRlLZSXUB8RIlGCtmLokzdHMsajGTWJxmGmixzbBsS3Bcofy3iJ4_EAzX8x-kstwM6GRtp59V2vvEqyaafyVP6meVrGd_SvhEgzWzo-PkqP9k8M5GKKYU2EiBOehv_XYVgva0mmJRbOiPwFe-vy8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgujBt1ituoLoxbTJ7iZpvIlt8YWoKBQ8hN3sBor2YR8Knjx69Df6S9zJJm0VBfGUQ2by2N3Z-ZKZ-QahndjljmCOtHgSZnRdYgUu4VasXaFQzPd9kWT5XnjHt-y07tbTrEqohTH8EMMfbmAZyX4NBt6RcWlEGqoeVZH6UOc7yTy7DCu6cj2ijqKePeTLLOstOCOetUkp0_zqikb4chylJm6mNofusgc02SX3xUFfFKOXb9yN_3uDeTSbok98aJbLAppQrUU0M8ZJuITeDnHi1OSgq7BGtJhWcK_RTLt84XaMe6rRazYi_MyfFMjqLcmci9Lmn_o62AQFPl7foeWxPkCQGqfJIwfYMALsY21HkKpk1HlL4rF4-jK6rVVvjo6ttF2DxQnUbzkKuNUAIPJAcWrbklPpceYQEjjUkdSOmXClIPpeENykgXTcKOAxJ9ILBKErKNdqt9Qqwj6NuFaj0H2GMVmGWK-IaSTLnv489EUe7WUzF0Yplzm01HgIDQszCfXYhjC2ebQ9lOwY_o4fZArZ5IepBfdC4mvszGztu_NoN5nFX_XD6lUVjmt_FdxCU5eVWnh-cnG2jqYJFFQk6YEFlOt3B2pDw5y-2EzW8yeVLvt0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+procedure+for+3D+simulation+of+seismic+wave+propagation+considering+source%E2%80%90path%E2%80%90site+effects%3A+Theory%2C+verification+and+application&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Wu%2C+Mengtao&rft.au=Ba%2C+Zhenning&rft.au=Liang%2C+Jianwen&rft.date=2022-10-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=51&rft.issue=12&rft.spage=2925&rft.epage=2955&rft_id=info:doi/10.1002%2Feqe.3708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_3708 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon |