A procedure for 3D simulation of seismic wave propagation considering source‐path‐site effects: Theory, verification and application

This paper aims at obtaining a semi‐analytical and semi‐numerical 3D model of source‐to‐site seismic wave propagation due to kinematic finite‐fault sources. To this end, a two‐step procedure integrating the frequency‐wavenumber (FK) approach with the spectral element method (SEM) is proposed based o...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 51; no. 12; pp. 2925 - 2955
Main Authors Wu, Mengtao, Ba, Zhenning, Liang, Jianwen
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper aims at obtaining a semi‐analytical and semi‐numerical 3D model of source‐to‐site seismic wave propagation due to kinematic finite‐fault sources. To this end, a two‐step procedure integrating the frequency‐wavenumber (FK) approach with the spectral element method (SEM) is proposed based on the concept of domain reduction. First, the broadband responses of a stratified crust are accurately calculated by using a novel FK approach and are converted into effective seismic inputs around the region of interest. After that, the seismic wavefields at local and regional scales arising from complex geological and topographical conditions are finely simulated using the SEM, and a perfectly matched layer absorbing boundary condition is simultaneously applied to realize the absorption of outgoing waves. In this procedure, a hybrid source modelling scheme that combines the low‐wavenumber deterministic and high‐wavenumber stochastic components on the fault plane is introduced, effectively addressing the high‐frequency motion radiated from the source rupture process. Subsequently, the proposed FK‐SEM procedure is verified step‐by‐step using the point source and finite‐fault source models. To illustrate the feasibility of the procedure, 3D physics‐based numerical simulations (PBSs) of two seismic events, including a historical Sanhe‐Pinggu earthquake and a well‐recorded Yangbi earthquake, are performed. The case studies validate that the proposed FK‐SEM procedure allows a significant reduction in computational effort and a substantial improvement in modelling resolution and can be applied to the source‐to‐site broadband synthetics of earthquake scenarios with limited resources. In addition, this coupled geophysics‐engineering simulation meets the requirements of time‐history analysis for engineering structures, which facilitates the study of soil‐structure interactions and regional‐scale building damage assessment.
AbstractList This paper aims at obtaining a semi‐analytical and semi‐numerical 3D model of source‐to‐site seismic wave propagation due to kinematic finite‐fault sources. To this end, a two‐step procedure integrating the frequency‐wavenumber (FK) approach with the spectral element method (SEM) is proposed based on the concept of domain reduction. First, the broadband responses of a stratified crust are accurately calculated by using a novel FK approach and are converted into effective seismic inputs around the region of interest. After that, the seismic wavefields at local and regional scales arising from complex geological and topographical conditions are finely simulated using the SEM, and a perfectly matched layer absorbing boundary condition is simultaneously applied to realize the absorption of outgoing waves. In this procedure, a hybrid source modelling scheme that combines the low‐wavenumber deterministic and high‐wavenumber stochastic components on the fault plane is introduced, effectively addressing the high‐frequency motion radiated from the source rupture process. Subsequently, the proposed FK‐SEM procedure is verified step‐by‐step using the point source and finite‐fault source models. To illustrate the feasibility of the procedure, 3D physics‐based numerical simulations (PBSs) of two seismic events, including a historical Sanhe‐Pinggu earthquake and a well‐recorded Yangbi earthquake, are performed. The case studies validate that the proposed FK‐SEM procedure allows a significant reduction in computational effort and a substantial improvement in modelling resolution and can be applied to the source‐to‐site broadband synthetics of earthquake scenarios with limited resources. In addition, this coupled geophysics‐engineering simulation meets the requirements of time‐history analysis for engineering structures, which facilitates the study of soil‐structure interactions and regional‐scale building damage assessment.
Author Ba, Zhenning
Liang, Jianwen
Wu, Mengtao
Author_xml – sequence: 1
  givenname: Mengtao
  orcidid: 0000-0002-1321-8629
  surname: Wu
  fullname: Wu, Mengtao
  organization: Tianjin University
– sequence: 2
  givenname: Zhenning
  orcidid: 0000-0002-2506-9771
  surname: Ba
  fullname: Ba, Zhenning
  email: bazhenning_001@163.com
  organization: Tianjin University
– sequence: 3
  givenname: Jianwen
  orcidid: 0000-0001-6251-0602
  surname: Liang
  fullname: Liang, Jianwen
  organization: Tianjin University
BookMark eNp1kM9OGzEQxq0KJEJA4hEs9dJDNx3b-8-9IUihUiSEBOeVY4-D0Wa92BtQbhw59hn7JHWynFA5jUbz-2a--Y7JQec7JOSMwYwB8B_4hDNRQf2FTBjIMpN1XhyQCYCss7rOqyNyHOMjAIgSqgl5O6d98BrNJiC1PlBxSaNbb1o1ON9Rb2lEF9dO0xf1jDu2V6txpn0XncHguhWNfhM0_n3906vhIZXoBqRoLeoh_qR3D-jD9jt9TrB1epSrzlDV9-17f0IOrWojnr7XKbn_Nb-7uM4WN1e_L84XmeJ5WWcMmeSsKItSSVQCwChhSpUzziUTzAiw-bIwS55uS-CFkIYVWiqruCnlkosp-TruTa88bTAOzWPy3qWTDa9AyhzyiiVqNlI6-BgD2ka7Ye9zCMq1DYNml3aT0m52aSfBtw-CPri1Ctv_odmIvrgWt59yzfx2vuf_AX8vlCU
CitedBy_id crossref_primary_10_3390_buildings13082045
crossref_primary_10_1016_j_engstruct_2024_119198
crossref_primary_10_1021_acsomega_3c09457
crossref_primary_10_1177_10775463231194266
crossref_primary_10_1016_j_cscm_2024_e02890
crossref_primary_10_1016_j_istruc_2024_106608
crossref_primary_10_3390_app13053215
crossref_primary_10_1142_S1793431123500410
crossref_primary_10_1016_j_soildyn_2022_107738
crossref_primary_10_1080_13632469_2024_2417708
crossref_primary_10_1016_j_scs_2024_105192
crossref_primary_10_1016_j_soildyn_2024_109007
crossref_primary_10_17491_jgsi_2024_174002
crossref_primary_10_1016_j_soildyn_2024_108790
crossref_primary_10_1016_j_asr_2023_09_057
crossref_primary_10_1016_j_jcsr_2023_108253
crossref_primary_10_1080_15376494_2023_2262989
crossref_primary_10_1002_pc_27611
crossref_primary_10_3390_atmos14030601
crossref_primary_10_15446_esrj_v27n2_105917
crossref_primary_10_3390_math11214530
crossref_primary_10_1007_s42417_023_01154_6
crossref_primary_10_1016_j_apm_2024_04_032
crossref_primary_10_1016_j_soildyn_2023_108347
crossref_primary_10_1007_s42417_023_01216_9
crossref_primary_10_3390_app13074201
crossref_primary_10_1016_j_soildyn_2023_108063
crossref_primary_10_1007_s11600_024_01335_1
crossref_primary_10_1016_j_gexplo_2024_107393
crossref_primary_10_2113_RGG20234590
crossref_primary_10_3390_rs16020222
crossref_primary_10_1007_s11356_023_28133_4
crossref_primary_10_3390_jmse12020282
crossref_primary_10_1109_JSEN_2025_3526997
crossref_primary_10_3390_ma16114200
crossref_primary_10_1016_j_compstruc_2024_107583
crossref_primary_10_1016_j_ast_2023_108724
crossref_primary_10_1016_j_engstruct_2025_119976
crossref_primary_10_1007_s42452_024_05695_7
crossref_primary_10_1080_13632469_2024_2407097
crossref_primary_10_3390_buildings13112720
crossref_primary_10_1007_s11069_023_06262_w
crossref_primary_10_1007_s10668_024_05119_x
crossref_primary_10_3390_atmos14081236
crossref_primary_10_3390_w15213726
crossref_primary_10_1016_j_geoen_2023_212420
crossref_primary_10_1080_27669645_2023_2293282
crossref_primary_10_1080_15376494_2023_2227413
crossref_primary_10_1016_j_engstruct_2024_118480
crossref_primary_10_1016_j_fuel_2023_130161
crossref_primary_10_1142_S0219455424502225
crossref_primary_10_1142_S0218488523500307
crossref_primary_10_2166_wcc_2024_636
crossref_primary_10_1142_S1758825124500091
crossref_primary_10_1016_j_soildyn_2024_109108
crossref_primary_10_1016_j_soildyn_2023_108047
crossref_primary_10_1007_s10950_024_10247_y
crossref_primary_10_1016_j_conbuildmat_2023_132295
crossref_primary_10_1016_j_envres_2024_118171
crossref_primary_10_1016_j_soildyn_2023_107797
crossref_primary_10_1080_15376494_2023_2242849
crossref_primary_10_1016_j_ecoleng_2024_107214
crossref_primary_10_1177_01445987241266084
crossref_primary_10_1016_j_cscm_2023_e02356
crossref_primary_10_1016_j_jappgeo_2024_105581
crossref_primary_10_1038_s41598_023_47330_2
crossref_primary_10_1080_15376494_2023_2243931
Cites_doi 10.1007/s10518-017-0089-7
10.1785/0120160127
10.1785/0120120212
10.1785/0220120079
10.1785/0220140101
10.1093/gji/ggv405
10.1016/j.soildyn.2016.09.023
10.1016/j.pepi.2008.06.005
10.1016/S0031-9201(03)00014-1
10.1785/gssrl.82.6.767
10.1785/0120080194
10.1785/0120180294
10.1093/gji/ggu219
10.1785/0120200147
10.1002/eqe.3108
10.1785/0120020006
10.1016/j.soildyn.2004.05.001
10.1002/eqe.3540
10.1002/eqe.3360
10.1785/0120010251
10.1016/j.soildyn.2019.105931
10.1007/978-3-319-75741-4_8
10.1785/0120010252
10.1111/j.1365-246X.1969.tb03567.x
10.1785/0120100057
10.1785/gssrl.70.1.59
10.1785/0120090271
10.1007/s00024-003-2498-6
10.1007/s10518-016-9977-5
10.1007/s11589-007-0319-1
10.1785/BSSA07206A1969
10.1029/JB084iB07p03609
10.1002/eqe.3377
10.1007/978-3-319-07118-3_10
10.1785/0220140103
10.1785/0120080274
10.1093/gji/ggx312
10.1785/0120190235
10.1785/0120140063
10.1785/0220180261
10.1785/0120160291
10.1111/j.1365-246X.2011.05183.x
10.1002/eqe.3365
10.4294/jpe1952.25.43
10.1023/A:1009758820546
10.2991/aebmr.k.210409.019
10.1007/s11589-014-0099-3
10.1785/BSSA0710061743
10.1093/gji/ggab248
10.1193/080717EQS155M
10.1111/j.1365-246X.1984.tb01942.x
10.1007/s11589-007-0532-y
10.1785/0120140228
10.1016/j.apm.2019.11.014
10.1111/j.1365-246X.2011.05210.x
10.1016/j.soildyn.2017.08.023
10.1046/j.1365-246x.1999.00967.x
10.1002/nme.4532
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/eqe.3708
DatabaseName CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1096-9845
EndPage 2955
ExternalDocumentID 10_1002_eqe_3708
EQE3708
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Tianjin Municipality
  funderid: 20JCYBJC01090
– fundername: National Natural Science Foundation of China
  funderid: 52178495; 51778413
GroupedDBID -~X
.3N
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
.Y3
31~
8WZ
A6W
AAHHS
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACCFJ
ACKIV
ACRPL
ACSCC
ACYXJ
ADNMO
ADZOD
AEEZP
AEQDE
AGQPQ
AI.
AIWBW
AJBDE
ASPBG
AVWKF
AZFZN
CITATION
CKXBT
EJD
FEDTE
HF~
HVGLF
LW6
M58
PALCI
RIWAO
RJQFR
RNS
SAMSI
VH1
ZY4
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-a2468-1e19215656a9ea300da3d6a41229131d30f4b5db2ffe902539d15c9afa2d69b23
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Sun Jul 13 05:09:12 EDT 2025
Tue Jul 01 02:21:59 EDT 2025
Thu Apr 24 23:07:42 EDT 2025
Sun Jul 06 04:45:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a2468-1e19215656a9ea300da3d6a41229131d30f4b5db2ffe902539d15c9afa2d69b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6251-0602
0000-0002-1321-8629
0000-0002-2506-9771
PQID 2709940471
PQPubID 866380
PageCount 31
ParticipantIDs proquest_journals_2709940471
crossref_citationtrail_10_1002_eqe_3708
crossref_primary_10_1002_eqe_3708
wiley_primary_10_1002_eqe_3708_EQE3708
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 6
2019; 90
2015; 105
1977; 25
2004; 161
2014; 27
2010; 100
2020; 129
1997; 1
2003; 93
2013; 8
1992; 12
2018; 47
2009; 99
2001
2006; 24
2013; 95
2015; 86
1985
1983
1999; 139
2007; 20
1981; 71
2012; 83
2015; 203
1982; 72
2019; 35
2011; 82
2021; 227
2018; 104
2020; 80
2013; 103
2006
2019; 109
1969; 18
2006; 1
2016; 91
2002
2008; 168
2021; 50
2003; 137
2014; 198
2017; 211
2002; 26
2017; 15
2020; 110
1984; 77
2018
2017
2014
1999; 70
2025; 86
1985; 75
2011; 101
2014; 104
2011; 187
1979; 84
2017; 107
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
Graves R (e_1_2_9_11_1) 2025; 86
e_1_2_9_10_1
e_1_2_9_56_1
Huo JR (e_1_2_9_70_1) 1992; 12
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Yu YX (e_1_2_9_69_1) 2013; 8
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
Wolf JP (e_1_2_9_36_1) 1985
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_34_1
Spudich P (e_1_2_9_55_1) 2002; 26
e_1_2_9_57_1
Kennett BLN (e_1_2_9_37_1) 1983
e_1_2_9_13_1
e_1_2_9_32_1
Herrmann RB (e_1_2_9_53_1) 1985; 75
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_59_1
e_1_2_9_19_1
Chandra R (e_1_2_9_43_1) 2001
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
Yu YX (e_1_2_9_71_1) 2006; 1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
Aki K (e_1_2_9_35_1) 2002
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
Jiang W (e_1_2_9_67_1) 2017; 6
e_1_2_9_29_1
References_xml – year: 1985
– volume: 20
  start-page: 319
  issue: 3
  year: 2007
  end-page: 331
  article-title: Strong motion simulation by the composite source modeling: a case study of 1679 M8.0 Sanhe‐Pinggu earthquake
  publication-title: Acta Seismol Sin
– volume: 27
  start-page: 607
  issue: 6
  year: 2014
  end-page: 614
  article-title: Fault plane parameters of Sanhe‐Pinggu M8 earthquake in 1679 determined using present‐day small earthquakes
  publication-title: Earthq Sci
– volume: 83
  start-page: 1047
  issue: 6
  year: 2012
  end-page: 1060
  article-title: Earthquake ground‐motion simulation including nonlinear soil effects under idealized conditions with application to two case studies
  publication-title: Seismol Res Lett
– volume: 110
  start-page: 2862
  issue: 6
  year: 2020
  end-page: 2881
  article-title: Regional‐scale 3D ground‐motion simulations of M w 7 earthquakes on the Hayward Fault, Northern California resolving frequencies 0–10 Hz and including site‐response corrections
  publication-title: Bull Seismol Soc Am
– volume: 211
  start-page: 400
  issue: 1
  year: 2017
  end-page: 417
  article-title: Simulation of broad‐band strong ground motion for a hypothetical M w 7.1 earthquake on the Enriquillo Fault in Haiti
  publication-title: Geophys J Int
– volume: 35
  start-page: 1329
  issue: 3
  year: 2019
  end-page: 1349
  article-title: Geophysical study and 3‐D modeling of site effects in Viña del Mar, Chile
  publication-title: Earthq Spectra
– volume: 47
  start-page: 2708
  issue: 13
  year: 2018
  end-page: 2725
  article-title: A numerical coupling scheme for nonlinear time history analysis of buildings on a regional scale considering site‐city interaction effects
  publication-title: Earthq Eng Struct Dyn
– year: 2001
– volume: 50
  start-page: 177
  issue: 1
  year: 2021
  end-page: 196
  article-title: A computational workflow for rupture‐to‐structural‐response simulation and its application to Istanbul
  publication-title: Earthq Eng Struct Dyn
– volume: 1
  start-page: 237
  issue: 3
  year: 1997
  end-page: 251
  article-title: 2D and 3D elastic wave propagation by a pseudo‐spectral domain decomposition method
  publication-title: J Seismolog
– volume: 100
  start-page: 2124
  issue: 5A
  year: 2010
  end-page: 2142
  article-title: Hybrid broadband ground‐motion simulations: combining long‐period deterministic synthetics with high‐frequency multiple S‐to‐S backscattering
  publication-title: Bull Seismol Soc Am
– volume: 72
  start-page: 1969
  issue: 6A
  year: 1982
  end-page: 2001
  article-title: Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake
  publication-title: Bull Seismol Soc Am
– volume: 15
  start-page: 787
  issue: 3
  year: 2017
  end-page: 812
  article-title: Evaluation of earthquake ground motion and site effects in the Thessaloniki urban area by 3D finite‐fault numerical simulations
  publication-title: Bull Earthq Eng
– volume: 71
  start-page: 1743
  issue: 6
  year: 1981
  end-page: 1761
  article-title: Stiffness matrices for layered soils
  publication-title: Bull Seismol Soc Am
– volume: 50
  start-page: 3939
  issue: 15
  year: 2021
  end-page: 3961
  article-title: Engineering evaluation of the EQSIM simulated ground‐motion database: the San Francisco Bay Area region
  publication-title: Earthq Eng Struct Dyn
– volume: 84
  start-page: 3609
  issue: B7
  year: 1979
  end-page: 3614
  article-title: Discrete wave number representation of elastic wave fields in three‐space dimensions
  publication-title: J Geophys Res: Solid Earth
– volume: 168
  start-page: 134
  issue: 3‐4
  year: 2008
  end-page: 146
  article-title: Seismic images under the Beijing region inferred from P and PmP data
  publication-title: Phys Earth Planet Inter
– start-page: 331
  year: 2014
  end-page: 359
– volume: 99
  start-page: 286
  issue: 1
  year: 2009
  end-page: 301
  article-title: Near‐fault earthquake ground‐motion simulation in the Grenoble valley by a high‐performance spectral element code
  publication-title: Bull Seismol Soc Am
– volume: 20
  start-page: 532
  issue: 5
  year: 2007
  end-page: 543
  article-title: Seismic motion attenuation relations in Sichuan and adjacent areas
  publication-title: Acta Seismol Sin
– volume: 15
  start-page: 2645
  issue: 7
  year: 2017
  end-page: 2671
  article-title: Physics‐based seismic input for engineering applications: a case study in the Aterno river valley, Central Italy
  publication-title: Bull Earthq Eng
– volume: 161
  start-page: 1093
  issue: 5‐6
  year: 2004
  end-page: 1106
  article-title: Realistic modeling of seismic wave ground motion in Beijing city
  publication-title: Pure Appl Geophys
– volume: 139
  start-page: 806
  issue: 3
  year: 1999
  end-page: 822
  article-title: Introduction to the spectral element method for three‐dimensional seismic wave propagation
  publication-title: Geophys J Int
– volume: 103
  start-page: 2557
  issue: 5
  year: 2013
  end-page: 2576
  article-title: Finite‐fault simulation of broadband strong ground motion from the 2010 M w 7.0 Haiti earthquake
  publication-title: Bull Seismol Soc Am
– volume: 110
  start-page: 2559
  issue: 5
  year: 2020
  end-page: 2576
  article-title: 3D physics‐based numerical simulations of ground motion in Istanbul from earthquakes along the Marmara segment of the North Anatolian fault
  publication-title: Bull Seismol Soc Am
– volume: 187
  start-page: 1516
  issue: 3
  year: 2011
  end-page: 1536
  article-title: Numerically stable computation of complete synthetic seismograms including the static displacement in plane layered media
  publication-title: Geophys J Int
– volume: 86
  issue: 1
  year: 2015
  article-title: Evaluation of SCEC broadband platform phase 1 PSA ground motion simulation results
  publication-title: Seismol Res Lett
– volume: 203
  start-page: 2001
  year: 2015
  end-page: 2020
  article-title: Anatomy of strong ground motion: near‐source records and three‐dimensional physics‐based numerical simulations of the MW 6.0 2012 May 29 Po Plain earthquake, Italy
  publication-title: Geophys J Int
– volume: 80
  start-page: 859
  year: 2020
  end-page: 878
  article-title: 3D dynamic responses of a multi‐layered transversely isotropic saturated half‐space under concentrated forces and pore pressure
  publication-title: Appl Math Model
– volume: 107
  start-page: 1213
  issue: 3
  year: 2017
  end-page: 1226
  article-title: Correlation of spectral accelerations for earthquakes in China
  publication-title: Bull Seismol Soc Am
– volume: 1
  start-page: 206
  issue: 3
  year: 2006
  end-page: 217
  article-title: Attenuation relations for horizontal peak ground acceleration and response spectrum in eastern and western China
  publication-title: Technol Earthq Disaster Prevention
– volume: 109
  start-page: 1738
  issue: 5
  year: 2019
  end-page: 1757
  article-title: Kinematic source modeling for the synthesis of broadband ground motion using the f‐k approach
  publication-title: Bull Seismol Soc Am
– volume: 75
  start-page: 41
  issue: 1
  year: 1985
  end-page: 56
  article-title: A comparison of synthetic seismograms
  publication-title: Bull Seismol Soc Am
– volume: 12
  start-page: 1
  issue: 2
  year: 1992
  end-page: 11
  article-title: Study on attenuation laws of ground motion parameters
  publication-title: Earthq Eng Eng Vib
– volume: 104
  start-page: 156
  year: 2018
  end-page: 173
  article-title: Revisiting the 1995 MW 6.4 Aigion, Greece, earthquake: simulation of broadband strong ground motion and site response analysis
  publication-title: Soil Dyn Earthq Eng
– volume: 86
  issue: LLNL‐JRNL‐741227
  year: 2025
  article-title: Refinements to the Graves and Pitarka (2010) broadband ground‐motion simulation method
  publication-title: Seismol Res Lett
– volume: 104
  start-page: 2683
  issue: 6
  year: 2014
  end-page: 2697
  article-title: Broadband ground‐motion simulation using energy‐constrained rise‐time scaling
  publication-title: Bull Seismol Soc Am
– volume: 50
  start-page: 43
  issue: 1
  year: 2021
  end-page: 59
  article-title: Deterministic ground motion simulations with shallow crust nonlinearity at Garner Valley in Southern California
  publication-title: Earthq Eng Struct Dyn
– volume: 91
  start-page: 39
  year: 2016
  end-page: 52
  article-title: The 3D numerical simulation of near‐source ground motion during the Marsica earthquake, central Italy, 100 years later
  publication-title: Soil Dyn Earthq Eng
– year: 2017
  article-title: PSHAe (Probabilistic Seismic Hazard Assessment Enhanced): the case of Istanbul
– volume: 107
  start-page: 372
  issue: 1
  year: 2017
  end-page: 386
  article-title: Modeling strong‐motion recordings of the 2010 M w 8.8 Maule, Chile, earthquake with high stress‐drop subevents and background slip
  publication-title: Bull Seismol Soc Am
– volume: 50
  start-page: 99
  issue: 1
  year: 2021
  end-page: 115
  article-title: Physics‐based probabilistic seismic hazard and loss assessment in large urban areas: a simplified application to Istanbul
  publication-title: Earthq Eng Struct Dyn
– volume: 100
  start-page: 2095
  issue: 5A
  year: 2010
  end-page: 2123
  article-title: Broadband ground‐motion simulation using a hybrid approach
  publication-title: Bull Seismol Soc Am
– volume: 105
  start-page: 1398
  issue: 3
  year: 2015
  end-page: 1418
  article-title: Earthquake ground motion in the Mygdonian basin, Greece: the E2VP verification and validation of 3D numerical simulation up to 4 Hz
  publication-title: Bull Seismol Soc Am
– volume: 198
  start-page: 1714
  issue: 3
  year: 2014
  end-page: 1747
  article-title: Improved forward wave propagation and adjoint‐based sensitivity kernel calculations using a numerically stable finite‐element PML
  publication-title: Geophys J Int
– volume: 187
  start-page: 929
  issue: 2
  year: 2011
  end-page: 945
  article-title: Modeling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code
  publication-title: Geophys J Int
– year: 1983
– volume: 93
  start-page: 817
  issue: 2
  year: 2003
  end-page: 824
  article-title: Domain reduction method for three‐dimensional earthquake modeling in localized regions, part I: theory
  publication-title: Bull Seismol Soc Am
– volume: 25
  start-page: 43
  year: 1977
  end-page: 68
  article-title: Long‐period surface velocities and accelerations due to a dislocation source model in a medium with superficial multi‐layers
  publication-title: J Phys Earth
– volume: 90
  start-page: 1268
  issue: 3
  year: 2019
  end-page: 1284
  article-title: Broadband (0–5 Hz) fully deterministic 3D ground‐motion simulations of a magnitude 7.0 Hayward fault earthquake: comparison with empirical ground‐motion models and 3D path and site effects from source normalized intensities
  publication-title: Seismol Res Lett
– volume: 137
  start-page: 183
  issue: 1‐4
  year: 2003
  end-page: 199
  article-title: A hybrid method for calculating near‐source, broadband seismograms: application to strong motion prediction
  publication-title: Phys Earth Planet Inter
– volume: 129
  year: 2020
  article-title: Nonlinear broadband simulation of the Mw 6.0 May 29, 2012 Emilia earthquake in Northern Italy
  publication-title: Soil Dyn Earthq Eng
– volume: 26
  start-page: 64
  year: 2002
  article-title: Documentation of software package Compsyn sxv3. 11: programs for earthquake ground motion calculation using complete 1‐d green's functions
  publication-title: Int Handbook Earthq Eng Seismol
– volume: 24
  start-page: 815
  issue: 11
  year: 2006
  end-page: 828
  article-title: Characterization of forward‐directivity ground motions in the near‐fault region
  publication-title: Soil Dyn Earthq Eng
– volume: 101
  start-page: 202
  issue: 1
  year: 2011
  end-page: 221
  article-title: Near‐field across‐fault seismic ground motions
  publication-title: Bull Seismol Soc Am
– volume: 70
  start-page: 59
  issue: 1
  year: 1999
  end-page: 80
  article-title: Characterizing crustal earthquake slip models for the prediction of strong ground motion
  publication-title: Seismol Res Lett
– start-page: 1
  year: 2018
  end-page: 12
  article-title: The role of near‐field ground motion on seismic risk assessment in large urban areas
– start-page: 203
  year: 2018
  end-page: 223
  article-title: 3D physics‐based numerical simulations: Advantages and current limitations of a new frontier to earthquake ground motion prediction. The Istanbul case study
– volume: 82
  start-page: 767
  issue: 6
  year: 2011
  end-page: 782
  article-title: Numerical study on the role of basin geometry and kinematic seismic source in 3D ground motion simulation of the 22 February 2011 Mw 6.2 Christchurch earthquake
  publication-title: Seismol Res Lett
– volume: 93
  start-page: 301
  issue: 1
  year: 2003
  end-page: 313
  article-title: Strong ground‐motion prediction from stochastic‐dynamic source models
  publication-title: Bull Seismol Soc Am
– volume: 6
  start-page: 23
  year: 2017
  end-page: 30
  article-title: Scaling laws of local source parameters of finite fault source model
  publication-title: Earthq Eng Eng Dyn
– volume: 77
  start-page: 421
  issue: 2
  year: 1984
  end-page: 460
  article-title: The discrete wavenumber/finite element method for synthetic seismograms
  publication-title: Geophys J Int
– year: 2002
– volume: 86
  start-page: 61
  issue: 1
  year: 2015
  end-page: 67
  article-title: UCSB method for simulation of broadband ground motion from kinematic earthquake sources
  publication-title: Seismol Res Lett
– volume: 18
  start-page: 233
  issue: 3
  year: 1969
  end-page: 249
  article-title: A quantitative evaluation of seismic signals at teleseismic distances—I radiation from point sources
  publication-title: Geophys J Int
– volume: 8
  start-page: 24
  issue: 1
  year: 2013
  end-page: 33
  article-title: Development of ground motion attenuation relations for the new seismic hazard map of China
  publication-title: Technol Earthq Disaster Prevention
– start-page: 121
  year: 2006
  end-page: 126
  article-title: Study on the economic and population loss of Beijing area considering the recurrence of the Sanhe‐Pinggu M8 earthquake in 1679
– volume: 93
  start-page: 825
  issue: 2
  year: 2003
  end-page: 841
  article-title: Domain reduction method for three‐dimensional earthquake modeling in localized regions, part II: verification and applications
  publication-title: Bull Seismol Soc Am
– volume: 95
  start-page: 991
  issue: 12
  year: 2013
  end-page: 1010
  article-title: SPEED: SPectral Elements in Elastodynamics with Discontinuous Galerkin: a non‐conforming approach for 3D multi‐scale problems
  publication-title: Int J Numer Methods Eng
– volume: 227
  start-page: 717
  issue: 1
  year: 2021
  end-page: 734
  article-title: The revised direct stiffness matrix method for seismogram synthesis due to dislocations: from crustal to geotechnical scale
  publication-title: Geophys J Int
– ident: e_1_2_9_24_1
  doi: 10.1007/s10518-017-0089-7
– volume: 6
  start-page: 23
  year: 2017
  ident: e_1_2_9_67_1
  article-title: Scaling laws of local source parameters of finite fault source model
  publication-title: Earthq Eng Eng Dyn
– ident: e_1_2_9_48_1
  doi: 10.1785/0120160127
– ident: e_1_2_9_65_1
  doi: 10.1785/0120120212
– ident: e_1_2_9_13_1
  doi: 10.1785/0220120079
– ident: e_1_2_9_50_1
  doi: 10.1785/0220140101
– ident: e_1_2_9_26_1
  doi: 10.1093/gji/ggv405
– ident: e_1_2_9_27_1
  doi: 10.1016/j.soildyn.2016.09.023
– ident: e_1_2_9_62_1
  doi: 10.1016/j.pepi.2008.06.005
– volume: 1
  start-page: 206
  issue: 3
  year: 2006
  ident: e_1_2_9_71_1
  article-title: Attenuation relations for horizontal peak ground acceleration and response spectrum in eastern and western China
  publication-title: Technol Earthq Disaster Prevention
– ident: e_1_2_9_49_1
  doi: 10.1016/S0031-9201(03)00014-1
– ident: e_1_2_9_21_1
  doi: 10.1785/gssrl.82.6.767
– ident: e_1_2_9_8_1
  doi: 10.1785/0120080194
– volume-title: Parallel Programming in OpenMP
  year: 2001
  ident: e_1_2_9_43_1
– ident: e_1_2_9_44_1
  doi: 10.1785/0120180294
– ident: e_1_2_9_52_1
  doi: 10.1093/gji/ggu219
– volume-title: Seismic Wave Propagation in Stratified Media
  year: 1983
  ident: e_1_2_9_37_1
– ident: e_1_2_9_31_1
  doi: 10.1785/0120200147
– ident: e_1_2_9_22_1
  doi: 10.1002/eqe.3108
– ident: e_1_2_9_45_1
  doi: 10.1785/0120020006
– ident: e_1_2_9_63_1
  doi: 10.1016/j.soildyn.2004.05.001
– ident: e_1_2_9_4_1
  doi: 10.1002/eqe.3540
– ident: e_1_2_9_15_1
  doi: 10.1002/eqe.3360
– ident: e_1_2_9_32_1
  doi: 10.1785/0120010251
– volume: 8
  start-page: 24
  issue: 1
  year: 2013
  ident: e_1_2_9_69_1
  article-title: Development of ground motion attenuation relations for the new seismic hazard map of China
  publication-title: Technol Earthq Disaster Prevention
– volume: 26
  start-page: 64
  year: 2002
  ident: e_1_2_9_55_1
  article-title: Documentation of software package Compsyn sxv3. 11: programs for earthquake ground motion calculation using complete 1‐d green's functions
  publication-title: Int Handbook Earthq Eng Seismol
– volume: 12
  start-page: 1
  issue: 2
  year: 1992
  ident: e_1_2_9_70_1
  article-title: Study on attenuation laws of ground motion parameters
  publication-title: Earthq Eng Eng Vib
– volume: 86
  issue: 741227
  year: 2025
  ident: e_1_2_9_11_1
  article-title: Refinements to the Graves and Pitarka (2010) broadband ground‐motion simulation method
  publication-title: Seismol Res Lett
– ident: e_1_2_9_14_1
  doi: 10.1016/j.soildyn.2019.105931
– ident: e_1_2_9_5_1
  doi: 10.1007/978-3-319-75741-4_8
– ident: e_1_2_9_33_1
  doi: 10.1785/0120010252
– ident: e_1_2_9_38_1
  doi: 10.1111/j.1365-246X.1969.tb03567.x
– ident: e_1_2_9_10_1
  doi: 10.1785/0120100057
– ident: e_1_2_9_51_1
  doi: 10.1785/gssrl.70.1.59
– ident: e_1_2_9_30_1
– volume-title: Dynamic Soil‐Structure Interaction
  year: 1985
  ident: e_1_2_9_36_1
– ident: e_1_2_9_64_1
  doi: 10.1785/0120090271
– ident: e_1_2_9_61_1
  doi: 10.1007/s00024-003-2498-6
– ident: e_1_2_9_28_1
  doi: 10.1007/s10518-016-9977-5
– ident: e_1_2_9_58_1
  doi: 10.1007/s11589-007-0319-1
– ident: e_1_2_9_34_1
  doi: 10.1785/BSSA07206A1969
– ident: e_1_2_9_54_1
  doi: 10.1029/JB084iB07p03609
– ident: e_1_2_9_7_1
  doi: 10.1002/eqe.3377
– ident: e_1_2_9_19_1
  doi: 10.1007/978-3-319-07118-3_10
– ident: e_1_2_9_47_1
  doi: 10.1785/0220140103
– ident: e_1_2_9_23_1
  doi: 10.1785/0120080274
– ident: e_1_2_9_66_1
  doi: 10.1093/gji/ggx312
– ident: e_1_2_9_9_1
  doi: 10.1785/0120190235
– ident: e_1_2_9_46_1
  doi: 10.1785/0120140063
– ident: e_1_2_9_6_1
  doi: 10.1785/0220180261
– ident: e_1_2_9_68_1
  doi: 10.1785/0120160291
– ident: e_1_2_9_25_1
  doi: 10.1111/j.1365-246X.2011.05183.x
– ident: e_1_2_9_3_1
  doi: 10.1002/eqe.3365
– ident: e_1_2_9_57_1
  doi: 10.4294/jpe1952.25.43
– ident: e_1_2_9_18_1
  doi: 10.1023/A:1009758820546
– ident: e_1_2_9_60_1
  doi: 10.2991/aebmr.k.210409.019
– ident: e_1_2_9_59_1
  doi: 10.1007/s11589-014-0099-3
– ident: e_1_2_9_40_1
  doi: 10.1785/BSSA0710061743
– volume-title: Quantitative Seismology
  year: 2002
  ident: e_1_2_9_35_1
– ident: e_1_2_9_42_1
  doi: 10.1093/gji/ggab248
– ident: e_1_2_9_20_1
  doi: 10.1193/080717EQS155M
– ident: e_1_2_9_56_1
  doi: 10.1111/j.1365-246X.1984.tb01942.x
– ident: e_1_2_9_72_1
  doi: 10.1007/s11589-007-0532-y
– ident: e_1_2_9_12_1
  doi: 10.1785/0120140228
– ident: e_1_2_9_41_1
  doi: 10.1016/j.apm.2019.11.014
– ident: e_1_2_9_39_1
  doi: 10.1111/j.1365-246X.2011.05210.x
– ident: e_1_2_9_2_1
  doi: 10.1016/j.soildyn.2017.08.023
– ident: e_1_2_9_16_1
  doi: 10.1046/j.1365-246x.1999.00967.x
– volume: 75
  start-page: 41
  issue: 1
  year: 1985
  ident: e_1_2_9_53_1
  article-title: A comparison of synthetic seismograms
  publication-title: Bull Seismol Soc Am
– ident: e_1_2_9_17_1
  doi: 10.1002/nme.4532
– ident: e_1_2_9_29_1
SSID ssj0003607
Score 2.6013415
Snippet This paper aims at obtaining a semi‐analytical and semi‐numerical 3D model of source‐to‐site seismic wave propagation due to kinematic finite‐fault sources. To...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2925
SubjectTerms Absorption
Boundary conditions
Broadband
Building damage
Computer applications
coupled geophysics‐engineering simulation
Damage assessment
Earthquake damage
Earthquakes
Engineering
frequency‐wavenumber domain
Geophysics
kinematic finite‐fault source
Mathematical models
Modelling
Numerical simulations
P-waves
Perfectly matched layers
Physics
Point sources
Procedures
Propagation
Reduction
Seismic activity
Seismic propagation
Seismic wave propagation
Seismic waves
Simulation
Soil structure
source‐path‐site effects
Spectral element method
Three dimensional models
Water pollution
Wave propagation
Wavelengths
Title A procedure for 3D simulation of seismic wave propagation considering source‐path‐site effects: Theory, verification and application
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.3708
https://www.proquest.com/docview/2709940471
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Skx58i9UqEUQvbrub7KPrrWhL8SAoFgoelmSThaJttdsqePLo0d_oLzGTZNsqCuJpDzuzjyST-XZn5huEDrOAedz3hMN0mDEIiBMHhDmZcoVc-lEUcZ3lexm2O_5FN-jarEqohTH8ENMfbmAZer8GA2c8r81IQ-WjrNJI1_lCqhbgoesZcxQN3SldZl3twAXvrEtqheJXTzSDl_MgVXuZ1gq6LZ7PJJfcVSdjXk1fvlE3_u8FVtGyBZ-4YVbLGlqQg3W0NEdJuIHeGlj7NDEZSawALabnOO_1bZMvPMxwLnt5v5fiZ_YkQVbtSOZcant_qutgExP4eH2HjsfqADFqbHNHTrEhBDjByowgU8mos4HAc-H0TdRpNW_O2o7t1uAwAuVbngRqNcCHLJaMuq5gVITM9wiJPeoJ6mY-DwQn6l4Q26Sx8II0ZhkjIow5oVuoNBgO5DbCEU2ZUqPQfMb3RR1CvTyjqaiH6usw4mV0XMxckloqc-iocZ8YEmaSqLFNYGzL6GAq-WDoO36QqRSTn1gDzhMSKejsu8p1l9GRnsVf9ZPmVROOO38V3EWLBIoodEpgBZXGo4ncU9BmzPf1Iv4E6Xr4oQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5ED-rBt7g-I4he7NomfWz1JLqyPkFR8CCUpElhUdfH7ip48ujR3-gvMZO0u6soiKccOtM2j8lMMjPfAKxkAfeE70mHGzdjEFAnDih3Mq0KhfKjKBImyvckrF34B5fBZR9sFbkwFh-ic-GGkmH2axRwvJDe6KKGqgdVZhEm-g5gQW9znjrrYkex0O0AZlb0Hlwgz7p0o-D8qou6BmavmWr0zN4oXBV_aMNLrsvtliinL9_AG__ZhTEYye1Psm0XzDj0qcYEDPegEk7C2zYxak22HxXRNi1hu6RZv83rfJG7jDRVvXlbT8kzf1JIqzcl-yzNy3_q9xDrFvh4fceix7pBNzXJw0c2icUEWCdakjBYybLzhiQ9HvUpuNirnu_UnLxgg8MpZnB5CtHV0ETkseLMdSVnMuS-R2nsMU8yN_NFIAXV30L3JoulF6QxzziVYSwom4b-xl1DzQCJWMo1G8P6M74vK-jtFRlLZSXUB8RIlGCtmLokzdHMsajGTWJxmGmixzbBsS3Bcofy3iJ4_EAzX8x-kstwM6GRtp59V2vvEqyaafyVP6meVrGd_SvhEgzWzo-PkqP9k8M5GKKYU2EiBOehv_XYVgva0mmJRbOiPwFe-vy8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6kgujBt1ituoLoxbTJ7iZpvIlt8YWoKBQ8hN3sBor2YR8Knjx69Df6S9zJJm0VBfGUQ2by2N3Z-ZKZ-QahndjljmCOtHgSZnRdYgUu4VasXaFQzPd9kWT5XnjHt-y07tbTrEqohTH8EMMfbmAZyX4NBt6RcWlEGqoeVZH6UOc7yTy7DCu6cj2ijqKePeTLLOstOCOetUkp0_zqikb4chylJm6mNofusgc02SX3xUFfFKOXb9yN_3uDeTSbok98aJbLAppQrUU0M8ZJuITeDnHi1OSgq7BGtJhWcK_RTLt84XaMe6rRazYi_MyfFMjqLcmci9Lmn_o62AQFPl7foeWxPkCQGqfJIwfYMALsY21HkKpk1HlL4rF4-jK6rVVvjo6ttF2DxQnUbzkKuNUAIPJAcWrbklPpceYQEjjUkdSOmXClIPpeENykgXTcKOAxJ9ILBKErKNdqt9Qqwj6NuFaj0H2GMVmGWK-IaSTLnv489EUe7WUzF0Yplzm01HgIDQszCfXYhjC2ebQ9lOwY_o4fZArZ5IepBfdC4mvszGztu_NoN5nFX_XD6lUVjmt_FdxCU5eVWnh-cnG2jqYJFFQk6YEFlOt3B2pDw5y-2EzW8yeVLvt0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+procedure+for+3D+simulation+of+seismic+wave+propagation+considering+source%E2%80%90path%E2%80%90site+effects%3A+Theory%2C+verification+and+application&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Wu%2C+Mengtao&rft.au=Ba%2C+Zhenning&rft.au=Liang%2C+Jianwen&rft.date=2022-10-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=51&rft.issue=12&rft.spage=2925&rft.epage=2955&rft_id=info:doi/10.1002%2Feqe.3708&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_3708
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon