Neural network architecture optimization using automated machine learning for borehole resistivity measurements
SUMMARY Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse operators. Using extremely large DNNs to approximate the operators is possible, but it demands considerable training time. Moreover, evaluating the...
Saved in:
Published in | Geophysical journal international Vol. 234; no. 3; pp. 2487 - 2500 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
01.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | SUMMARY
Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse operators. Using extremely large DNNs to approximate the operators is possible, but it demands considerable training time. Moreover, evaluating the network after training also requires a significant amount of memory and processing power. In addition, we may overfit the model. In this work, we propose a scoring function that accounts for the accuracy and size of the DNNs compared to a reference DNNs that provides good approximations for the operators. Using this scoring function, we use DNN architecture search algorithms to obtain a quasi-optimal DNN smaller than the reference network; hence, it requires less computational effort during training and evaluation. The quasi-optimal DNN delivers comparable accuracy to the original large DNN. |
---|---|
AbstractList | SUMMARY
Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse operators. Using extremely large DNNs to approximate the operators is possible, but it demands considerable training time. Moreover, evaluating the network after training also requires a significant amount of memory and processing power. In addition, we may overfit the model. In this work, we propose a scoring function that accounts for the accuracy and size of the DNNs compared to a reference DNNs that provides good approximations for the operators. Using this scoring function, we use DNN architecture search algorithms to obtain a quasi-optimal DNN smaller than the reference network; hence, it requires less computational effort during training and evaluation. The quasi-optimal DNN delivers comparable accuracy to the original large DNN. |
Author | Pardo, D Kargaran, S Teijeiro, T Shahriari, M |
Author_xml | – sequence: 1 givenname: M surname: Shahriari fullname: Shahriari, M email: m.shahriari.sh@gmail.com – sequence: 2 givenname: D surname: Pardo fullname: Pardo, D – sequence: 3 givenname: S surname: Kargaran fullname: Kargaran, S – sequence: 4 givenname: T surname: Teijeiro fullname: Teijeiro, T |
BookMark | eNp9kL1OwzAYRS1UJNrCxAt4YkGhtvPTeEQVf1IFC0jdoi_2l9QlsSvbAZWnJ6idme5wj85wZmRinUVCrjm740ymi3ZnFm0LWmTyjEx5WuSJyIrNhEyZzIskz9jmgsxC2DHGM56VU-JecfDQUYvx2_lPCl5tTUQVB4_U7aPpzQ9E4ywdgrEthSG6HiJq2sNIWqQdgrd_V-M8rZ3HreuQegwmRPNl4oH2CGHU9WhjuCTnDXQBr047Jx-PD--r52T99vSyul8nILI8JrlWqEpRL6VEBWJZy1TXqEHBUmjBUyaKlPFalKwEqQrRSIZpLXTTQKnLnKdzcnv0Ku9C8NhUe2968IeKs-qvVTW2qk6tRvrmSLth_y_4C8NTccI |
Cites_doi | 10.1007/s10462-011-9236-8 10.1190/geo2020-0389.1 10.1016/j.promfg.2020.02.075 10.1190/geo2021-0151.1 10.1088/0266-5611/16/5/313 10.1016/j.knosys.2020.106622 10.1093/gji/ggz204 10.1111/j.1365-246X.2007.03390.x 10.1016/j.jappgeo.2008.10.001 10.1093/gji/ggaa161 10.1190/geo2014-0211.1 10.1016/S0376-7361(09)70233-X 10.1190/geo2013-0175.1 10.1029/2021EA002186 10.1093/gji/ggac147 10.1109/CVPR.2016.90 10.1007/BF01901643 10.1007/s10596-020-09946-5 10.1190/geo2021-0240.1 10.30632/T60ALS-2019_IIII 10.1109/MSP.2017.2765695 10.1109/TGRS.2020.2986000 10.1109/TIT.2011.2182033 10.1145/3292500.3330648 10.1007/s00502-007-0449-0 10.1190/geo2010-0280.1 10.1007/s10596-019-09859-y 10.1190/tle34050524.1 10.1007/978-3-030-05318-5 10.1137/1.9780898717921 10.3390/geosciences8060225 10.1002/nme.6593 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society 2023 |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society 2023 |
DBID | AAYXX CITATION |
DOI | 10.1093/gji/ggad249 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1365-246X |
EndPage | 2500 |
ExternalDocumentID | 10_1093_gji_ggad249 10.1093/gji/ggad249 |
GroupedDBID | -~X .2P .3N .GA .I3 .Y3 0R~ 10A 1OB 1OC 1TH 29H 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABEML ABEUO ABIXL ABJNI ABNKS ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACCFJ ACFRR ACGFS ACSCC ACUFI ACUTJ ACXQS ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZOD ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AEWNT AFBPY AFEBI AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGKRT AGSYK AHEFC AHXPO AI. AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ATDFG AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE COF CS3 CXTWN D-E D-F DAKXR DC6 DCZOG DFGAJ DILTD DR2 D~K EBS EE~ EJD F00 F04 F9B FA8 FEDTE FLIZI FLUFQ FOEOM FRJ FZ0 GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN LC2 LC3 LH4 LP6 LP7 LW6 M49 MBTAY MK4 N9A NGC NMDNZ NOMLY NU- O0~ O9- OCL ODMLO OIG OJQWA O~Y P2P P2X P4D PAFKI PB- PEELM Q1. Q11 Q5Y QB0 RHF ROL ROX ROZ RUSNO RW1 RX1 RXO TCN TJP TOX UB1 VH1 VOH W8V W99 WQJ WRC WYUIH XG1 YAYTL YKOAZ YXANX ZCG ZY4 ZZE ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-a245t-5dcec82b799eca27b93dbedaca72d213026301b2808a9c62f90e3b2dffa8d8513 |
IEDL.DBID | TOX |
ISSN | 0956-540X |
IngestDate | Thu Sep 12 20:06:58 EDT 2024 Wed Aug 28 03:18:17 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Neural networks, fuzzy logic Wave propagation Downhole method Inverse theory Machine learning |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a245t-5dcec82b799eca27b93dbedaca72d213026301b2808a9c62f90e3b2dffa8d8513 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1093_gji_ggad249 oup_primary_10_1093_gji_ggad249 |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geophysical journal international |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Tarantola (2023080509544220200_bib41) 2005 Desbrandes (2023080509544220200_bib9) 1994; 38 Davydycheva (2023080509544220200_bib8) 2004; 67 Li (2023080509544220200_bib23) 2020 Puzyrev (2023080509544220200_bib29) 2019; 218 Rammay (2023080509544220200_bib30) 2022; 230 Moghadas (2023080509544220200_bib26) 2020; 222 Shahriari (2023080509544220200_bib34) 2020; 42 Fox (2023080509544220200_bib11) 2012; 38 Loseth (2023080509544220200_bib24) 2007; 170 Tipping (2023080509544220200_bib43) 2004 Goodfellow (2023080509544220200_bib12) 2016 Cheng (2023080509544220200_bib6) 2018; 35 Jin (2023080509544220200_bib21) 2019 Malinverno (2023080509544220200_bib25) 2000; 16 Beer (2023080509544220200_bib4) 2010 Shahriari (2023080509544220200_bib33) 2018; 8 Ijasana (2023080509544220200_bib18) 2013; 78 (6) Watzenig (2023080509544220200_bib45) 2007; 124 Pardo (2023080509544220200_bib28) 2014; 80 Alyaev (2023080509544220200_bib2) 2021; 86 Srinivas (2023080509544220200_bib40) 2012; 58 He (2023080509544220200_bib14) 2021; 212 He (2023080509544220200_bib13) 2016 Shahriari (2023080509544220200_bib37) 2022; 87 Ba (2023080509544220200_bib3) 2014 Bittar (2023080509544220200_bib5) 2015; 34 Elsken (2023080509544220200_bib10) 2019 Jahani (2023080509544220200_bib19) 2022; 87 Hu (2023080509544220200_bib16) 2020; 58 Davydycheva (2023080509544220200_bib7) 2011; 76 Shahriari (2023080509544220200_bib35) 2020; 24 Jin (2023080509544220200_bib20) 2019 White (2023080509544220200_bib46) 2021 Kandasamy (2023080509544220200_bib22) 2018 Snoek (2023080509544220200_bib38) 2012 Higham (2023080509544220200_bib15) 2019; 61 Rasmussen (2023080509544220200_bib31) 2004 Spies (2023080509544220200_bib39) 1996; 17 Turner (2023080509544220200_bib44) 2021 Shahriari (2023080509544220200_bib32) 2020; 24 Theodoridis (2023080509544220200_bib42) 2015 O’Malley (2023080509544220200_bib27) 2019 Alyaev (2023080509544220200_bib1) 2022; 9 Hutter (2023080509544220200_bib17) 2019 Shahriari (2023080509544220200_bib36) 2020; 122 |
References_xml | – volume: 38 start-page: 85 issue: 2 year: 2012 ident: 2023080509544220200_bib11 article-title: A tutorial on variational Bayesian inference publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-011-9236-8 contributor: fullname: Fox – volume: 86 start-page: E269 issue: 3 year: 2021 ident: 2023080509544220200_bib2 article-title: Modeling extra-deep EM logs using a deep neural network publication-title: Geophysics doi: 10.1190/geo2020-0389.1 contributor: fullname: Alyaev – volume: 42 start-page: 235 year: 2020 ident: 2023080509544220200_bib34 article-title: A deep neural network as surrogate model for forward simulation of borehole resistivity measurements publication-title: Proc. Manufact. doi: 10.1016/j.promfg.2020.02.075 contributor: fullname: Shahriari – volume: 87 start-page: IM57 issue: 3 year: 2022 ident: 2023080509544220200_bib19 article-title: Ensemble-based well-log interpretation and uncertainty quantification for well geosteering publication-title: Geophysics doi: 10.1190/geo2021-0151.1 contributor: fullname: Jahani – volume: 16 start-page: 1343 issue: 5 year: 2000 ident: 2023080509544220200_bib25 article-title: Bayesian inversion of DC electrical measurements with uncertainties for reservoir monitoring publication-title: Inverse Problems doi: 10.1088/0266-5611/16/5/313 contributor: fullname: Malinverno – volume-title: Keras Tuner year: 2019 ident: 2023080509544220200_bib27 contributor: fullname: O’Malley – volume: 212 year: 2021 ident: 2023080509544220200_bib14 article-title: AutoML: a survey of the state-of-the-art publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2020.106622 contributor: fullname: He – volume-title: Advances in Neural Information Processing Systems year: 2014 ident: 2023080509544220200_bib3 article-title: Do deep nets really need to be deep? contributor: fullname: Ba – volume: 218 start-page: 817 issue: 2 year: 2019 ident: 2023080509544220200_bib29 article-title: Deep learning electromagnetic inversion with convolutional neural networks publication-title: Geophys. J. Int. doi: 10.1093/gji/ggz204 contributor: fullname: Puzyrev – volume: 170 start-page: 44 year: 2007 ident: 2023080509544220200_bib24 article-title: Electromagnetic fields in planarly layered anisotropic media publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.2007.03390.x contributor: fullname: Loseth – volume: 67 start-page: 98 year: 2004 ident: 2023080509544220200_bib8 article-title: Triaxial induction tool with electrode sleeve: FD modeling in 3D geometries publication-title: J. appl. Geophys. doi: 10.1016/j.jappgeo.2008.10.001 contributor: fullname: Davydycheva – volume-title: Machine Learning: A Bayesian and Optimization Perspective year: 2015 ident: 2023080509544220200_bib42 contributor: fullname: Theodoridis – year: 2021 ident: 2023080509544220200_bib44 article-title: Bayesian optimization is superior to random search for machine learning hyperparameter tuning: analysis of the black-box optimization challenge 2020 publication-title: CoRR contributor: fullname: Turner – start-page: 2020 volume-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18 year: 2018 ident: 2023080509544220200_bib22 article-title: Neural architecture search with bayesian optimisation and optimal transport contributor: fullname: Kandasamy – volume-title: Proceedings of the SPWLA Annual Logging Symposium year: 2010 ident: 2023080509544220200_bib4 article-title: Geosteering and/or reservoir characterization the prowess of new-generation LWD tools contributor: fullname: Beer – volume: 222 start-page: 247 issue: 1 year: 2020 ident: 2023080509544220200_bib26 article-title: One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network publication-title: Geophys. J. Int. doi: 10.1093/gji/ggaa161 contributor: fullname: Moghadas – volume: 80 start-page: E111 issue: 2 year: 2014 ident: 2023080509544220200_bib28 article-title: Fast 1D inversion of logging-while-drilling resistivity measurements for the improved estimation of formation resistivity in high-angle and horizontal wells publication-title: Geophysics doi: 10.1190/geo2014-0211.1 contributor: fullname: Pardo – volume: 38 start-page: 251 year: 1994 ident: 2023080509544220200_bib9 article-title: Chapter 9 measurement while drilling publication-title: Dev. Petrol. Sci. doi: 10.1016/S0376-7361(09)70233-X contributor: fullname: Desbrandes – volume: 78 (6) start-page: D473 year: 2013 ident: 2023080509544220200_bib18 article-title: Inversion-based petrophysical interpretation of logging-while-drilling nuclear and resistivity measurements publication-title: Geophysics doi: 10.1190/geo2013-0175.1 contributor: fullname: Ijasana – volume: 9 start-page: e2021EA002186 issue: 9 year: 2022 ident: 2023080509544220200_bib1 article-title: Direct multi-modal inversion of geophysical logs using deep learning publication-title: Earth Space Sci. doi: 10.1029/2021EA002186 contributor: fullname: Alyaev – volume: 230 start-page: 1800 issue: 3 year: 2022 ident: 2023080509544220200_bib30 article-title: Probabilistic model-error assessment of deep learning proxies: an application to real-time inversion of borehole electromagnetic measurements publication-title: Geophys. J. Int. doi: 10.1093/gji/ggac147 contributor: fullname: Rammay – start-page: 770 volume-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2016 ident: 2023080509544220200_bib13 article-title: Deep residual learning for image recognition doi: 10.1109/CVPR.2016.90 contributor: fullname: He – volume: 17 start-page: 517 issue: 4 year: 1996 ident: 2023080509544220200_bib39 article-title: Electrical and electromagnetic borehole measurements: a review publication-title: Surv. Geophys. doi: 10.1007/BF01901643 contributor: fullname: Spies – volume: 24 start-page: 1285 year: 2020 ident: 2023080509544220200_bib32 article-title: Borehole resistivity simulations of oil-water transition zones with a 1.5D numerical solver publication-title: Comput. Geosci. doi: 10.1007/s10596-020-09946-5 contributor: fullname: Shahriari – volume: 87 start-page: D83 issue: 2 year: 2022 ident: 2023080509544220200_bib37 article-title: A deep learning approach to design a borehole instrument for geosteering publication-title: Geophysics doi: 10.1190/geo2021-0240.1 contributor: fullname: Shahriari – volume: 61 issue: 4 year: 2019 ident: 2023080509544220200_bib15 article-title: Deep learning: an introduction for applied mathematicians publication-title: SIAM Rev. contributor: fullname: Higham – volume-title: Proceedings of the SPWLA Annual Logging Symposium year: 2019 ident: 2023080509544220200_bib21 article-title: Using a physics-driven deep neural network to solve inverse problems for LWD azimuthal resistivity measurements doi: 10.30632/T60ALS-2019_IIII contributor: fullname: Jin – start-page: 2951 volume-title: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, NIPS’12 year: 2012 ident: 2023080509544220200_bib38 article-title: Practical bayesian optimization of machine learning algorithms contributor: fullname: Snoek – volume: 35 start-page: 126 year: 2018 ident: 2023080509544220200_bib6 article-title: Model compression and acceleration for deep neural networks: the principles, progress, and challenges publication-title: IEEE Signal Proc. Mag. doi: 10.1109/MSP.2017.2765695 contributor: fullname: Cheng – start-page: 1 volume-title: J. Mach. Learn. Res. year: 2019 ident: 2023080509544220200_bib10 article-title: Neural architecture search: a survey contributor: fullname: Elsken – volume: 58 start-page: 8013 issue: 11 year: 2020 ident: 2023080509544220200_bib16 article-title: A supervised descent learning technique for solving directional electromagnetic logging-while-drilling inverse problems publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2986000 contributor: fullname: Hu – volume: 58 start-page: 3250 year: 2012 ident: 2023080509544220200_bib40 article-title: Information-theoretic regret bounds for gaussian process optimization in the bandit setting publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.2011.2182033 contributor: fullname: Srinivas – start-page: 63 volume-title: Gaussian Processes in Machine Learning year: 2004 ident: 2023080509544220200_bib31 contributor: fullname: Rasmussen – start-page: 1946 volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining year: 2019 ident: 2023080509544220200_bib20 article-title: Auto-Keras: an efficient neural architecture search system doi: 10.1145/3292500.3330648 contributor: fullname: Jin – start-page: 28 454 volume-title: Advances in Neural Information Processing Systems year: 2021 ident: 2023080509544220200_bib46 article-title: How powerful are performance predictors in neural architecture search? contributor: fullname: White – volume: 124 start-page: 240 year: 2007 ident: 2023080509544220200_bib45 article-title: Bayesian inference for inverse problems- statistical inversion publication-title: Elektrotech. Informationstech. doi: 10.1007/s00502-007-0449-0 contributor: fullname: Watzenig – volume: 76 start-page: F293 issue: 5 year: 2011 ident: 2023080509544220200_bib7 article-title: A fast modelling method to solve Maxwell’s equations in 1D layered biaxial anisotropic medium publication-title: Geophysics doi: 10.1190/geo2010-0280.1 contributor: fullname: Davydycheva – volume: 24 start-page: 971 year: 2020 ident: 2023080509544220200_bib35 article-title: A deep learning approach to the inversion of borehole resistivity measurements publication-title: Comput. Geosci. doi: 10.1007/s10596-019-09859-y contributor: fullname: Shahriari – volume: 34 start-page: 524 issue: 5 year: 2015 ident: 2023080509544220200_bib5 article-title: Advancement and economic benefit of geosteering and well-placement technology publication-title: Leading Edge doi: 10.1190/tle34050524.1 contributor: fullname: Bittar – volume-title: Deep Learning year: 2016 ident: 2023080509544220200_bib12 contributor: fullname: Goodfellow – volume-title: Automated Machine Learning: Methods, Systems, Challenges year: 2019 ident: 2023080509544220200_bib17 doi: 10.1007/978-3-030-05318-5 contributor: fullname: Hutter – start-page: 41 volume-title: Bayesian Inference: An Introduction to Principles and Practice in Machine Learning year: 2004 ident: 2023080509544220200_bib43 contributor: fullname: Tipping – volume-title: Inverse Problem Theory and Methods for Model Parameter Estimation year: 2005 ident: 2023080509544220200_bib41 doi: 10.1137/1.9780898717921 contributor: fullname: Tarantola – start-page: 367 volume-title: Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, Vol. 115 of Proceedings of Machine Learning Research year: 2020 ident: 2023080509544220200_bib23 article-title: Random search and reproducibility for neural architecture search contributor: fullname: Li – volume: 8 start-page: 1 issue: 6 year: 2018 ident: 2023080509544220200_bib33 article-title: A numerical 1.5D method for the rapid simulation of geophysical resistivity measurements publication-title: Geosciences doi: 10.3390/geosciences8060225 contributor: fullname: Shahriari – volume: 122 start-page: 1629 issue: 6 year: 2020 ident: 2023080509544220200_bib36 article-title: Error control and loss functions for the deep learning inversion of borehole resistivity measurements publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.6593 contributor: fullname: Shahriari |
SSID | ssj0014148 |
Score | 2.4561007 |
Snippet | SUMMARY
Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse... |
SourceID | crossref oup |
SourceType | Aggregation Database Publisher |
StartPage | 2487 |
Title | Neural network architecture optimization using automated machine learning for borehole resistivity measurements |
Volume | 234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA6yIHgRn7g-c9hr2DaPNjmKuCyCetmF3kpeLQrbitv9_07a-ET03LSHmU7mS-ab-RCaJJILI3hKVEYt4T7xxGiXE8NVJZXP07Tv4r9_yOZLfleIIhJk17-U8BWb1s9P07rWDg4KsNWGgWjw2y4ei49iAU97kax-pB4AkCK24f1491viCc1sX_LIbA_tRgCIrweP7aMt3xyg7Z6IadeHqA3TMuB5M9Cz8deLftxCfK9i4yQOjPUa603XAuj0Dq96WqTHUQeixgBHMXjYBwVcDKfqEM1BKQKvPu8F10doObtd3MxJFEUgmnLREeGst5KaXClvNc2NYs54p63OqaOhDJlBzBoqE6mVzWilEs8MdVWlpQN4xY7RqGkbf4Iwl04kjvEqsYoL-FLKQpVUaJUzoSo7RpN3i5Uvw-yLcqhZsxIMW0bDjtEVWPOvFaf_rjhDO0HHfSBvnaNR97rxF5DtO3PZ-_oNPEirYg |
link.rule.ids | 315,783,787,1607,27936,27937 |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+architecture+optimization+using+automated+machine+learning+for+borehole+resistivity+measurements&rft.jtitle=Geophysical+journal+international&rft.au=Shahriari%2C+M&rft.au=Pardo%2C+D&rft.au=Kargaran%2C+S&rft.au=Teijeiro%2C+T&rft.date=2023-09-01&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=234&rft.issue=3&rft.spage=2487&rft.epage=2500&rft_id=info:doi/10.1093%2Fgji%2Fggad249&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_gji_ggad249 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon |