Neural network architecture optimization using automated machine learning for borehole resistivity measurements

SUMMARY Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse operators. Using extremely large DNNs to approximate the operators is possible, but it demands considerable training time. Moreover, evaluating the...

Full description

Saved in:
Bibliographic Details
Published inGeophysical journal international Vol. 234; no. 3; pp. 2487 - 2500
Main Authors Shahriari, M, Pardo, D, Kargaran, S, Teijeiro, T
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse operators. Using extremely large DNNs to approximate the operators is possible, but it demands considerable training time. Moreover, evaluating the network after training also requires a significant amount of memory and processing power. In addition, we may overfit the model. In this work, we propose a scoring function that accounts for the accuracy and size of the DNNs compared to a reference DNNs that provides good approximations for the operators. Using this scoring function, we use DNN architecture search algorithms to obtain a quasi-optimal DNN smaller than the reference network; hence, it requires less computational effort during training and evaluation. The quasi-optimal DNN delivers comparable accuracy to the original large DNN.
AbstractList SUMMARY Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse operators. Using extremely large DNNs to approximate the operators is possible, but it demands considerable training time. Moreover, evaluating the network after training also requires a significant amount of memory and processing power. In addition, we may overfit the model. In this work, we propose a scoring function that accounts for the accuracy and size of the DNNs compared to a reference DNNs that provides good approximations for the operators. Using this scoring function, we use DNN architecture search algorithms to obtain a quasi-optimal DNN smaller than the reference network; hence, it requires less computational effort during training and evaluation. The quasi-optimal DNN delivers comparable accuracy to the original large DNN.
Author Pardo, D
Kargaran, S
Teijeiro, T
Shahriari, M
Author_xml – sequence: 1
  givenname: M
  surname: Shahriari
  fullname: Shahriari, M
  email: m.shahriari.sh@gmail.com
– sequence: 2
  givenname: D
  surname: Pardo
  fullname: Pardo, D
– sequence: 3
  givenname: S
  surname: Kargaran
  fullname: Kargaran, S
– sequence: 4
  givenname: T
  surname: Teijeiro
  fullname: Teijeiro, T
BookMark eNp9kL1OwzAYRS1UJNrCxAt4YkGhtvPTeEQVf1IFC0jdoi_2l9QlsSvbAZWnJ6idme5wj85wZmRinUVCrjm740ymi3ZnFm0LWmTyjEx5WuSJyIrNhEyZzIskz9jmgsxC2DHGM56VU-JecfDQUYvx2_lPCl5tTUQVB4_U7aPpzQ9E4ywdgrEthSG6HiJq2sNIWqQdgrd_V-M8rZ3HreuQegwmRPNl4oH2CGHU9WhjuCTnDXQBr047Jx-PD--r52T99vSyul8nILI8JrlWqEpRL6VEBWJZy1TXqEHBUmjBUyaKlPFalKwEqQrRSIZpLXTTQKnLnKdzcnv0Ku9C8NhUe2968IeKs-qvVTW2qk6tRvrmSLth_y_4C8NTccI
Cites_doi 10.1007/s10462-011-9236-8
10.1190/geo2020-0389.1
10.1016/j.promfg.2020.02.075
10.1190/geo2021-0151.1
10.1088/0266-5611/16/5/313
10.1016/j.knosys.2020.106622
10.1093/gji/ggz204
10.1111/j.1365-246X.2007.03390.x
10.1016/j.jappgeo.2008.10.001
10.1093/gji/ggaa161
10.1190/geo2014-0211.1
10.1016/S0376-7361(09)70233-X
10.1190/geo2013-0175.1
10.1029/2021EA002186
10.1093/gji/ggac147
10.1109/CVPR.2016.90
10.1007/BF01901643
10.1007/s10596-020-09946-5
10.1190/geo2021-0240.1
10.30632/T60ALS-2019_IIII
10.1109/MSP.2017.2765695
10.1109/TGRS.2020.2986000
10.1109/TIT.2011.2182033
10.1145/3292500.3330648
10.1007/s00502-007-0449-0
10.1190/geo2010-0280.1
10.1007/s10596-019-09859-y
10.1190/tle34050524.1
10.1007/978-3-030-05318-5
10.1137/1.9780898717921
10.3390/geosciences8060225
10.1002/nme.6593
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society 2023
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press on behalf of The Royal Astronomical Society 2023
DBID AAYXX
CITATION
DOI 10.1093/gji/ggad249
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1365-246X
EndPage 2500
ExternalDocumentID 10_1093_gji_ggad249
10.1093/gji/ggad249
GroupedDBID -~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
1OB
1OC
1TH
29H
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABEML
ABEUO
ABIXL
ABJNI
ABNKS
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACCFJ
ACFRR
ACGFS
ACSCC
ACUFI
ACUTJ
ACXQS
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZOD
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AEWNT
AFBPY
AFEBI
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGKRT
AGSYK
AHEFC
AHXPO
AI.
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ATDFG
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
COF
CS3
CXTWN
D-E
D-F
DAKXR
DC6
DCZOG
DFGAJ
DILTD
DR2
D~K
EBS
EE~
EJD
F00
F04
F9B
FA8
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
FZ0
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
LC2
LC3
LH4
LP6
LP7
LW6
M49
MBTAY
MK4
N9A
NGC
NMDNZ
NOMLY
NU-
O0~
O9-
OCL
ODMLO
OIG
OJQWA
O~Y
P2P
P2X
P4D
PAFKI
PB-
PEELM
Q1.
Q11
Q5Y
QB0
RHF
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TCN
TJP
TOX
UB1
VH1
VOH
W8V
W99
WQJ
WRC
WYUIH
XG1
YAYTL
YKOAZ
YXANX
ZCG
ZY4
ZZE
~02
AAYXX
CITATION
ID FETCH-LOGICAL-a245t-5dcec82b799eca27b93dbedaca72d213026301b2808a9c62f90e3b2dffa8d8513
IEDL.DBID TOX
ISSN 0956-540X
IngestDate Thu Sep 12 20:06:58 EDT 2024
Wed Aug 28 03:18:17 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Neural networks, fuzzy logic
Wave propagation
Downhole method
Inverse theory
Machine learning
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a245t-5dcec82b799eca27b93dbedaca72d213026301b2808a9c62f90e3b2dffa8d8513
PageCount 14
ParticipantIDs crossref_primary_10_1093_gji_ggad249
oup_primary_10_1093_gji_ggad249
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Geophysical journal international
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Tarantola (2023080509544220200_bib41) 2005
Desbrandes (2023080509544220200_bib9) 1994; 38
Davydycheva (2023080509544220200_bib8) 2004; 67
Li (2023080509544220200_bib23) 2020
Puzyrev (2023080509544220200_bib29) 2019; 218
Rammay (2023080509544220200_bib30) 2022; 230
Moghadas (2023080509544220200_bib26) 2020; 222
Shahriari (2023080509544220200_bib34) 2020; 42
Fox (2023080509544220200_bib11) 2012; 38
Loseth (2023080509544220200_bib24) 2007; 170
Tipping (2023080509544220200_bib43) 2004
Goodfellow (2023080509544220200_bib12) 2016
Cheng (2023080509544220200_bib6) 2018; 35
Jin (2023080509544220200_bib21) 2019
Malinverno (2023080509544220200_bib25) 2000; 16
Beer (2023080509544220200_bib4) 2010
Shahriari (2023080509544220200_bib33) 2018; 8
Ijasana (2023080509544220200_bib18) 2013; 78 (6)
Watzenig (2023080509544220200_bib45) 2007; 124
Pardo (2023080509544220200_bib28) 2014; 80
Alyaev (2023080509544220200_bib2) 2021; 86
Srinivas (2023080509544220200_bib40) 2012; 58
He (2023080509544220200_bib14) 2021; 212
He (2023080509544220200_bib13) 2016
Shahriari (2023080509544220200_bib37) 2022; 87
Ba (2023080509544220200_bib3) 2014
Bittar (2023080509544220200_bib5) 2015; 34
Elsken (2023080509544220200_bib10) 2019
Jahani (2023080509544220200_bib19) 2022; 87
Hu (2023080509544220200_bib16) 2020; 58
Davydycheva (2023080509544220200_bib7) 2011; 76
Shahriari (2023080509544220200_bib35) 2020; 24
Jin (2023080509544220200_bib20) 2019
White (2023080509544220200_bib46) 2021
Kandasamy (2023080509544220200_bib22) 2018
Snoek (2023080509544220200_bib38) 2012
Higham (2023080509544220200_bib15) 2019; 61
Rasmussen (2023080509544220200_bib31) 2004
Spies (2023080509544220200_bib39) 1996; 17
Turner (2023080509544220200_bib44) 2021
Shahriari (2023080509544220200_bib32) 2020; 24
Theodoridis (2023080509544220200_bib42) 2015
O’Malley (2023080509544220200_bib27) 2019
Alyaev (2023080509544220200_bib1) 2022; 9
Hutter (2023080509544220200_bib17) 2019
Shahriari (2023080509544220200_bib36) 2020; 122
References_xml – volume: 38
  start-page: 85
  issue: 2
  year: 2012
  ident: 2023080509544220200_bib11
  article-title: A tutorial on variational Bayesian inference
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9236-8
  contributor:
    fullname: Fox
– volume: 86
  start-page: E269
  issue: 3
  year: 2021
  ident: 2023080509544220200_bib2
  article-title: Modeling extra-deep EM logs using a deep neural network
  publication-title: Geophysics
  doi: 10.1190/geo2020-0389.1
  contributor:
    fullname: Alyaev
– volume: 42
  start-page: 235
  year: 2020
  ident: 2023080509544220200_bib34
  article-title: A deep neural network as surrogate model for forward simulation of borehole resistivity measurements
  publication-title: Proc. Manufact.
  doi: 10.1016/j.promfg.2020.02.075
  contributor:
    fullname: Shahriari
– volume: 87
  start-page: IM57
  issue: 3
  year: 2022
  ident: 2023080509544220200_bib19
  article-title: Ensemble-based well-log interpretation and uncertainty quantification for well geosteering
  publication-title: Geophysics
  doi: 10.1190/geo2021-0151.1
  contributor:
    fullname: Jahani
– volume: 16
  start-page: 1343
  issue: 5
  year: 2000
  ident: 2023080509544220200_bib25
  article-title: Bayesian inversion of DC electrical measurements with uncertainties for reservoir monitoring
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/16/5/313
  contributor:
    fullname: Malinverno
– volume-title: Keras Tuner
  year: 2019
  ident: 2023080509544220200_bib27
  contributor:
    fullname: O’Malley
– volume: 212
  year: 2021
  ident: 2023080509544220200_bib14
  article-title: AutoML: a survey of the state-of-the-art
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2020.106622
  contributor:
    fullname: He
– volume-title: Advances in Neural Information Processing Systems
  year: 2014
  ident: 2023080509544220200_bib3
  article-title: Do deep nets really need to be deep?
  contributor:
    fullname: Ba
– volume: 218
  start-page: 817
  issue: 2
  year: 2019
  ident: 2023080509544220200_bib29
  article-title: Deep learning electromagnetic inversion with convolutional neural networks
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggz204
  contributor:
    fullname: Puzyrev
– volume: 170
  start-page: 44
  year: 2007
  ident: 2023080509544220200_bib24
  article-title: Electromagnetic fields in planarly layered anisotropic media
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2007.03390.x
  contributor:
    fullname: Loseth
– volume: 67
  start-page: 98
  year: 2004
  ident: 2023080509544220200_bib8
  article-title: Triaxial induction tool with electrode sleeve: FD modeling in 3D geometries
  publication-title: J. appl. Geophys.
  doi: 10.1016/j.jappgeo.2008.10.001
  contributor:
    fullname: Davydycheva
– volume-title: Machine Learning: A Bayesian and Optimization Perspective
  year: 2015
  ident: 2023080509544220200_bib42
  contributor:
    fullname: Theodoridis
– year: 2021
  ident: 2023080509544220200_bib44
  article-title: Bayesian optimization is superior to random search for machine learning hyperparameter tuning: analysis of the black-box optimization challenge 2020
  publication-title: CoRR
  contributor:
    fullname: Turner
– start-page: 2020
  volume-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS’18
  year: 2018
  ident: 2023080509544220200_bib22
  article-title: Neural architecture search with bayesian optimisation and optimal transport
  contributor:
    fullname: Kandasamy
– volume-title: Proceedings of the SPWLA Annual Logging Symposium
  year: 2010
  ident: 2023080509544220200_bib4
  article-title: Geosteering and/or reservoir characterization the prowess of new-generation LWD tools
  contributor:
    fullname: Beer
– volume: 222
  start-page: 247
  issue: 1
  year: 2020
  ident: 2023080509544220200_bib26
  article-title: One-dimensional deep learning inversion of electromagnetic induction data using convolutional neural network
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggaa161
  contributor:
    fullname: Moghadas
– volume: 80
  start-page: E111
  issue: 2
  year: 2014
  ident: 2023080509544220200_bib28
  article-title: Fast 1D inversion of logging-while-drilling resistivity measurements for the improved estimation of formation resistivity in high-angle and horizontal wells
  publication-title: Geophysics
  doi: 10.1190/geo2014-0211.1
  contributor:
    fullname: Pardo
– volume: 38
  start-page: 251
  year: 1994
  ident: 2023080509544220200_bib9
  article-title: Chapter 9 measurement while drilling
  publication-title: Dev. Petrol. Sci.
  doi: 10.1016/S0376-7361(09)70233-X
  contributor:
    fullname: Desbrandes
– volume: 78 (6)
  start-page: D473
  year: 2013
  ident: 2023080509544220200_bib18
  article-title: Inversion-based petrophysical interpretation of logging-while-drilling nuclear and resistivity measurements
  publication-title: Geophysics
  doi: 10.1190/geo2013-0175.1
  contributor:
    fullname: Ijasana
– volume: 9
  start-page: e2021EA002186
  issue: 9
  year: 2022
  ident: 2023080509544220200_bib1
  article-title: Direct multi-modal inversion of geophysical logs using deep learning
  publication-title: Earth Space Sci.
  doi: 10.1029/2021EA002186
  contributor:
    fullname: Alyaev
– volume: 230
  start-page: 1800
  issue: 3
  year: 2022
  ident: 2023080509544220200_bib30
  article-title: Probabilistic model-error assessment of deep learning proxies: an application to real-time inversion of borehole electromagnetic measurements
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggac147
  contributor:
    fullname: Rammay
– start-page: 770
  volume-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2016
  ident: 2023080509544220200_bib13
  article-title: Deep residual learning for image recognition
  doi: 10.1109/CVPR.2016.90
  contributor:
    fullname: He
– volume: 17
  start-page: 517
  issue: 4
  year: 1996
  ident: 2023080509544220200_bib39
  article-title: Electrical and electromagnetic borehole measurements: a review
  publication-title: Surv. Geophys.
  doi: 10.1007/BF01901643
  contributor:
    fullname: Spies
– volume: 24
  start-page: 1285
  year: 2020
  ident: 2023080509544220200_bib32
  article-title: Borehole resistivity simulations of oil-water transition zones with a 1.5D numerical solver
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-020-09946-5
  contributor:
    fullname: Shahriari
– volume: 87
  start-page: D83
  issue: 2
  year: 2022
  ident: 2023080509544220200_bib37
  article-title: A deep learning approach to design a borehole instrument for geosteering
  publication-title: Geophysics
  doi: 10.1190/geo2021-0240.1
  contributor:
    fullname: Shahriari
– volume: 61
  issue: 4
  year: 2019
  ident: 2023080509544220200_bib15
  article-title: Deep learning: an introduction for applied mathematicians
  publication-title: SIAM Rev.
  contributor:
    fullname: Higham
– volume-title: Proceedings of the SPWLA Annual Logging Symposium
  year: 2019
  ident: 2023080509544220200_bib21
  article-title: Using a physics-driven deep neural network to solve inverse problems for LWD azimuthal resistivity measurements
  doi: 10.30632/T60ALS-2019_IIII
  contributor:
    fullname: Jin
– start-page: 2951
  volume-title: Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2, NIPS’12
  year: 2012
  ident: 2023080509544220200_bib38
  article-title: Practical bayesian optimization of machine learning algorithms
  contributor:
    fullname: Snoek
– volume: 35
  start-page: 126
  year: 2018
  ident: 2023080509544220200_bib6
  article-title: Model compression and acceleration for deep neural networks: the principles, progress, and challenges
  publication-title: IEEE Signal Proc. Mag.
  doi: 10.1109/MSP.2017.2765695
  contributor:
    fullname: Cheng
– start-page: 1
  volume-title: J. Mach. Learn. Res.
  year: 2019
  ident: 2023080509544220200_bib10
  article-title: Neural architecture search: a survey
  contributor:
    fullname: Elsken
– volume: 58
  start-page: 8013
  issue: 11
  year: 2020
  ident: 2023080509544220200_bib16
  article-title: A supervised descent learning technique for solving directional electromagnetic logging-while-drilling inverse problems
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2986000
  contributor:
    fullname: Hu
– volume: 58
  start-page: 3250
  year: 2012
  ident: 2023080509544220200_bib40
  article-title: Information-theoretic regret bounds for gaussian process optimization in the bandit setting
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2011.2182033
  contributor:
    fullname: Srinivas
– start-page: 63
  volume-title: Gaussian Processes in Machine Learning
  year: 2004
  ident: 2023080509544220200_bib31
  contributor:
    fullname: Rasmussen
– start-page: 1946
  volume-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
  year: 2019
  ident: 2023080509544220200_bib20
  article-title: Auto-Keras: an efficient neural architecture search system
  doi: 10.1145/3292500.3330648
  contributor:
    fullname: Jin
– start-page: 28 454
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: 2023080509544220200_bib46
  article-title: How powerful are performance predictors in neural architecture search?
  contributor:
    fullname: White
– volume: 124
  start-page: 240
  year: 2007
  ident: 2023080509544220200_bib45
  article-title: Bayesian inference for inverse problems- statistical inversion
  publication-title: Elektrotech. Informationstech.
  doi: 10.1007/s00502-007-0449-0
  contributor:
    fullname: Watzenig
– volume: 76
  start-page: F293
  issue: 5
  year: 2011
  ident: 2023080509544220200_bib7
  article-title: A fast modelling method to solve Maxwell’s equations in 1D layered biaxial anisotropic medium
  publication-title: Geophysics
  doi: 10.1190/geo2010-0280.1
  contributor:
    fullname: Davydycheva
– volume: 24
  start-page: 971
  year: 2020
  ident: 2023080509544220200_bib35
  article-title: A deep learning approach to the inversion of borehole resistivity measurements
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-019-09859-y
  contributor:
    fullname: Shahriari
– volume: 34
  start-page: 524
  issue: 5
  year: 2015
  ident: 2023080509544220200_bib5
  article-title: Advancement and economic benefit of geosteering and well-placement technology
  publication-title: Leading Edge
  doi: 10.1190/tle34050524.1
  contributor:
    fullname: Bittar
– volume-title: Deep Learning
  year: 2016
  ident: 2023080509544220200_bib12
  contributor:
    fullname: Goodfellow
– volume-title: Automated Machine Learning: Methods, Systems, Challenges
  year: 2019
  ident: 2023080509544220200_bib17
  doi: 10.1007/978-3-030-05318-5
  contributor:
    fullname: Hutter
– start-page: 41
  volume-title: Bayesian Inference: An Introduction to Principles and Practice in Machine Learning
  year: 2004
  ident: 2023080509544220200_bib43
  contributor:
    fullname: Tipping
– volume-title: Inverse Problem Theory and Methods for Model Parameter Estimation
  year: 2005
  ident: 2023080509544220200_bib41
  doi: 10.1137/1.9780898717921
  contributor:
    fullname: Tarantola
– start-page: 367
  volume-title: Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, Vol. 115 of Proceedings of Machine Learning Research
  year: 2020
  ident: 2023080509544220200_bib23
  article-title: Random search and reproducibility for neural architecture search
  contributor:
    fullname: Li
– volume: 8
  start-page: 1
  issue: 6
  year: 2018
  ident: 2023080509544220200_bib33
  article-title: A numerical 1.5D method for the rapid simulation of geophysical resistivity measurements
  publication-title: Geosciences
  doi: 10.3390/geosciences8060225
  contributor:
    fullname: Shahriari
– volume: 122
  start-page: 1629
  issue: 6
  year: 2020
  ident: 2023080509544220200_bib36
  article-title: Error control and loss functions for the deep learning inversion of borehole resistivity measurements
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6593
  contributor:
    fullname: Shahriari
SSID ssj0014148
Score 2.4561007
Snippet SUMMARY Deep neural networks (DNNs) offer a real-time solution for the inversion of borehole resistivity measurements to approximate forward and inverse...
SourceID crossref
oup
SourceType Aggregation Database
Publisher
StartPage 2487
Title Neural network architecture optimization using automated machine learning for borehole resistivity measurements
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA6yIHgRn7g-c9hr2DaPNjmKuCyCetmF3kpeLQrbitv9_07a-ET03LSHmU7mS-ab-RCaJJILI3hKVEYt4T7xxGiXE8NVJZXP07Tv4r9_yOZLfleIIhJk17-U8BWb1s9P07rWDg4KsNWGgWjw2y4ei49iAU97kax-pB4AkCK24f1491viCc1sX_LIbA_tRgCIrweP7aMt3xyg7Z6IadeHqA3TMuB5M9Cz8deLftxCfK9i4yQOjPUa603XAuj0Dq96WqTHUQeixgBHMXjYBwVcDKfqEM1BKQKvPu8F10doObtd3MxJFEUgmnLREeGst5KaXClvNc2NYs54p63OqaOhDJlBzBoqE6mVzWilEs8MdVWlpQN4xY7RqGkbf4Iwl04kjvEqsYoL-FLKQpVUaJUzoSo7RpN3i5Uvw-yLcqhZsxIMW0bDjtEVWPOvFaf_rjhDO0HHfSBvnaNR97rxF5DtO3PZ-_oNPEirYg
link.rule.ids 315,783,787,1607,27936,27937
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+network+architecture+optimization+using+automated+machine+learning+for+borehole+resistivity+measurements&rft.jtitle=Geophysical+journal+international&rft.au=Shahriari%2C+M&rft.au=Pardo%2C+D&rft.au=Kargaran%2C+S&rft.au=Teijeiro%2C+T&rft.date=2023-09-01&rft.issn=0956-540X&rft.eissn=1365-246X&rft.volume=234&rft.issue=3&rft.spage=2487&rft.epage=2500&rft_id=info:doi/10.1093%2Fgji%2Fggad249&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_gji_ggad249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0956-540X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0956-540X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0956-540X&client=summon