Fortifying Vehicular Security through Low Overhead Physically Unclonable Functions
Within vehicles, the Controller Area Network (CAN) allows efficient communication between the electronic control units (ECUs) responsible for controlling the various subsystems. The CAN protocol was not designed to include much support for secure communication. The fact that so many critical systems...
Saved in:
Published in | ACM journal on emerging technologies in computing systems Vol. 18; no. 1; pp. 1 - 18 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
ACM
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Within vehicles, the Controller Area Network (CAN) allows efficient communication between the electronic control units (ECUs) responsible for controlling the various subsystems. The CAN protocol was not designed to include much support for secure communication. The fact that so many critical systems can be accessed through an insecure communication network presents a major security concern. Adding security features to CAN is difficult due to the limited resources available to the individual ECUs and the costs that would be associated with adding the necessary hardware to support any additional security operations without overly degrading the performance of standard communication. Replacing the protocol is another option, but it is subject to many of the same problems. The lack of security becomes even more concerning as vehicles continue to adopt smart features. Smart vehicles have a multitude of communication interfaces an attacker could exploit to gain access to the networks. In this work, we propose a security framework that is based on physically unclonable functions (PUFs) and lightweight cryptography (LWC). The framework does not require any modification to the standard CAN protocol while also minimizing the amount of additional message overhead required for its operation. The improvements in our proposed framework result in major reduction in the number of CAN frames that must be sent during operation. For a system with 20 ECUs, for example, our proposed framework only requires 6.5% of the number of CAN frames that is required by the existing approach to successfully authenticate every ECU. |
---|---|
AbstractList | Within vehicles, the Controller Area Network (CAN) allows efficient communication between the electronic control units (ECUs) responsible for controlling the various subsystems. The CAN protocol was not designed to include much support for secure communication. The fact that so many critical systems can be accessed through an insecure communication network presents a major security concern. Adding security features to CAN is difficult due to the limited resources available to the individual ECUs and the costs that would be associated with adding the necessary hardware to support any additional security operations without overly degrading the performance of standard communication. Replacing the protocol is another option, but it is subject to many of the same problems. The lack of security becomes even more concerning as vehicles continue to adopt smart features. Smart vehicles have a multitude of communication interfaces an attacker could exploit to gain access to the networks. In this work, we propose a security framework that is based on physically unclonable functions (PUFs) and lightweight cryptography (LWC). The framework does not require any modification to the standard CAN protocol while also minimizing the amount of additional message overhead required for its operation. The improvements in our proposed framework result in major reduction in the number of CAN frames that must be sent during operation. For a system with 20 ECUs, for example, our proposed framework only requires 6.5% of the number of CAN frames that is required by the existing approach to successfully authenticate every ECU. |
ArticleNumber | 8 |
Author | Labrado, Carson Thapliyal, Himanshu Mohanty, Saraju P. |
Author_xml | – sequence: 1 givenname: Carson surname: Labrado fullname: Labrado, Carson email: labradocarson@gmail.com organization: University of Kentucky, Lexington, KY, USA – sequence: 2 givenname: Himanshu surname: Thapliyal fullname: Thapliyal, Himanshu email: hthapliyal@ieee.org organization: University of Kentucky, Lexington, KY, USA – sequence: 3 givenname: Saraju P. surname: Mohanty fullname: Mohanty, Saraju P. email: saraju.mohanty@unt.edu organization: University of North Texas, Denton, TX, USA |
BookMark | eNptkE1LAzEYhINUsK3i3VNunlaTTfbrKMWqUKio9bq8-dhuJE0km1X239vS2oN4moF5GIaZoJHzTiN0SckNpTy7ZZynnLMTNKZZRhJecjI6epaeoUnXfRDCiqqoxuhl7kM0zWDcGr_r1sjeQsCvWvbBxAHHNvh-3eKF_8bLLx1aDQo_t0NnJFg74JWT1jsQVuN572Q03nXn6LQB2-mLg07Ran7_NntMFsuHp9ndIoHtvpg0TKmyBF5lOQNdFVQpWYq81CqvGgIq5SLVlOlcFwpAFVrIhqW0EIRzITLKpuh63yuD77qgm_ozmA2Eoaak3l1RH67YkskfUpoIu7ExgLH_8Fd7HuTmWPob_gBGKmtx |
CitedBy_id | crossref_primary_10_1007_s10836_022_06012_z crossref_primary_10_1007_s41635_022_00126_8 crossref_primary_10_1007_s42979_024_03319_w crossref_primary_10_1109_MCE_2022_3154346 crossref_primary_10_3390_electronics11233845 crossref_primary_10_3389_frcmn_2023_1096841 crossref_primary_10_1007_s42979_022_01238_2 crossref_primary_10_1145_3624477 |
Cites_doi | 10.1007/s11241-007-9012-7 10.5555/2691365.2691419 10.1109/JIOT.2018.2849324 10.1145/2905055.2905328 10.1109/MCE.2019.2928577 10.1109/TITS.2017.2665968 10.1109/ICSPCC.2016.7753631 10.1109/MCOMSTD.2017.1700015 10.3390/app10196692 10.3390/s19183905 10.1007/978-3-540-74735-2_31 10.1145/3355402.3355414 10.1109/SP.2010.34 10.1007/978-3-662-48797-6_10 10.1145/2517968.2517972 10.1109/TCE.2015.7389805 10.3390/s17071517 10.3390/electronics8010052 10.1109/TCE.2016.7448561 10.1109/MCOM.2018.1701047 10.1109/ICCNC.2017.7876236 10.1109/ReConFig.2010.24 10.1007/s11280-019-00677-x 10.5555/2033036.2033053 10.1145/3390771 10.1016/j.mejo.2019.104605 10.1145/1873548.1873557 10.25046/aj0203165 10.1109/TCE.2019.2926192 |
ContentType | Journal Article |
Copyright | Association for Computing Machinery. |
Copyright_xml | – notice: Association for Computing Machinery. |
DBID | AAYXX CITATION |
DOI | 10.1145/3442443 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1550-4840 |
EndPage | 18 |
ExternalDocumentID | 10_1145_3442443 3442443 |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1738662 |
GroupedDBID | -DZ .4S .DC 23M 4.4 5GY 5VS 8US AAKMM AALFJ AAYFX ABPPZ ACM ADBCU ADL ADMLS ADPZR AEBYY AENEX AENSD AFWIH AFWXC AIKLT ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF BDXCO CCLIF CS3 D0L EBS EDO FEDTE GQ3 GUFHI HGAVV H~9 LHSKQ MK~ ML~ P1C P2P RNS ROL TUS W7O ZCA AAYXX AEFXT AEJOY AKRVB CITATION |
ID | FETCH-LOGICAL-a244t-f3dd88a49563ae971ddc8b68ed69f0ad24b2e13e6e7daad7ebcf3217b044bb513 |
ISSN | 1550-4832 |
IngestDate | Thu Apr 24 22:55:25 EDT 2025 Thu Jul 03 08:32:03 EDT 2025 Fri Feb 21 01:26:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Physically unclonable function lightweight cryptography vehicular security controller area network |
Language | English |
License | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a244t-f3dd88a49563ae971ddc8b68ed69f0ad24b2e13e6e7daad7ebcf3217b044bb513 |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1145_3442443 crossref_citationtrail_10_1145_3442443 acm_primary_3442443 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | ACM journal on emerging technologies in computing systems |
PublicationTitleAbbrev | ACM JETC |
PublicationYear | 2022 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | Michael Feiri, Jonathan Petit, and Frank Kargl. 2013. Efficient and secure storage of private keys for pseudonymous vehicular communication. In Proceedings of the ACM Workshop on Security, Privacy & Dependability for Cyber Vehicles. ACM, 9–18. 10.1145/2517968.2517972 Elaine Barker and Quynh Dang. 2016. NIST Special Publication 800-57 Part 1, Revision 4. Technical Report. NIST. James B. Wendt and Miodrag Potkonjak. 2014. Hardware obfuscation using PUF-based logic. In Proceedings of the IEEE/ACM International Conference on Computer-aided Design (ICCAD’14). IEEE, 270–271. 10.5555/2691365.2691419 Craig Costello and Patrick Longa. 2015. FourQ: Four-dimensional decompositions on a q-curve over the Mersenne prime. In Advances in Cryptology – ASIACRYPT 2015, Tetsu Iwata and Jung Hee Cheon (Eds.). Springer Berlin, 214–235. 10.1007/978-3-662-48797-6_10 Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015 (2015), 91. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. 2010. Experimental security analysis of a modern automobile. In Proceedings of the IEEE Symposium on Security and Privacy. 447–462. 10.1109/SP.2010.34 Rafael Alvarez, Cándido Caballero-Gil, Juan Santonja, and Antonio Zamora. 2017. Algorithms for lightweight key exchange. Sensors 17, 7 (2017), 1517. Weike Wang, Xiaobing Zhang, Qiang Hao, Zhun Zhang, Bin Xu, Haifeng Dong, Tongsheng Xia, and Xiang Wang. 2019. Hardware-enhanced protection for the runtime data security in embedded systems. Electronics 8, 1 (2019), 52. Aishwarya, Farha Syed, Jaya Nupur, Aishwarya Vichare, and Arun Mishra. 2016. Authentication of electronic control unit using arbiter physical unclonable functions in modern automobiles. In Proceedings of the 2nd International Conference on Information and Communication Technology for Competitive Strategies (ICTCS’16). ACM, New York, NY. 10.1145/2905055.2905328 Carson Labrado, Himanshu Thapliyal, Stacy Prowell, and Teja Kuruganti. 2019. Use of thermistor temperature sensors for cyber-physical system security. Sensors 19, 18 (2019), 3905. Andreea-Ina Radu and Flavio D. Garcia. 2016. LeiA: A lightweight authentication protocol for CAN. In Computer Security – ESORICS 2016, Ioannis Askoxylakis, Sotiris Ioannidis, Sokratis Katsikas, and Catherine Meadows (Eds.). Springer International Publishing, 283–300. S. Woo, H. J. Jo, and D. H. Lee. 2015. A practical wireless attack on the connected car and security protocol for in-vehicle CAN. IEEE Trans. Intell. Transport. Syst. 16, 2 (Apr. 2015), 993–1006. B. Choi, S. Lee, J. Na, and J. Lee. 2016. Secure firmware validation and update for consumer devices in home networking. IEEE Trans. Consum. Electron. 62, 1 (Feb. 2016), 39–44. Zhao Huang and Quan Wang. 2020. A PUF-based unified identity verification framework for secure IoT hardware via device authentication. World Wide Web 23, 2 (2020), 1057–1088. S. Dinesh Kumar and Himanshu Thapliyal. 2020. Design of adiabatic logic-based energy-efficient and reliable PUF for IoT devices. ACM J. Emerg. Technol. Comput. Syst. 16, 3 (2020), 1–18. 10.1145/3390771 Ali Shuja Siddiqui, Yutian Gui, Jim Plusquellic, and Fareena Saqib. 2017. A secure communication framework for ECUs. Adv. Sci., Technol. Eng. Syst. J. 2, 3 (2017), 1307–1313. ISO/IEC 29192-2:2019. 2019. Information Technology – Lightweight Cryptography – Part 2: Block ciphers. Standard. International Organization for Standardization, Geneva, CH. R. Buttigieg, M. Farrugia, and C. Meli. 2017. Security issues in controller area networks in automobiles. In Proceedings of the 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA’17). 93–98. Jungwon Lee, Seoyeon Choi, Dayoung Kim, Yunyoung Choi, and Wookyung Sun. 2020. A novel hardware security architecture for IoT device: PD-CRP (PUF database and challenge–response pair) bloom filter on memristor-based PUF. Appl. Sci. 10, 19 (2020), 6692. B. Chatterjee, D. Das, S. Maity, and S. Sen. 2019. RF-PUF: Enhancing IoT security through authentication of wireless nodes using in-situ machine learning. IEEE Internet Things J. 6, 1 (Feb. 2019), 388–398. Bogdan Groza, Stefan Murvay, Anthony van Herrewege, and Ingrid Verbauwhede. 2012. LiBrA-CAN: A lightweight broadcast authentication protocol for controller area networks. In Cryptology and Network Security. Springer Berlin, 185–200. Ramao Tiago Tiburski, Carlos Roberto Moratelli, Sergio F. Johann, Marcelo Veiga Neves, Everton de Matos, Leonardo Albernaz Amaral, and Fabiano Hessel. 2019. Lightweight security architecture based on embedded virtualization and trust mechanisms for IoT edge devices. IEEE Commun. Mag. 57, 2 (2019), 67–73. 10.1109/MCOM.2018.1701047 Y. Wu, Yeon-Jin Kim, Zheyan Piao, J. Chung, and Yong-En Kim. 2016. Security protocol for controller area network using ECANDC compression algorithm. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC’16). 1–4. M. R. Moore, R. A. Bridges, F. L. Combs, and A. L. Anderson. 2019. Data-driven extraction of vehicle states from can bus traffic for cyberprotection and safety. IEEE Consum. Electron. Mag. 8, 6 (Nov. 2019), 104–110. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe. 2007. PRESENT: An ultra-lightweight block cipher. In Cryptographic Hardware and Embedded Systems - CHES 2007. Springer Berlin, 450–466. 10.1007/978-3-540-74735-2_31 Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. 2007. Controller area network (CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Syst. 35, 3 (01 Apr. 2007), 239–272. 10.1007/s11241-007-9012-7 The National Institute of Standards and Technology (NIST) Computer Security Resource Center (CSRC). 2017. Lightweight Cryptography. Retrieved from https://csrc.nist.gov/projects/lightweight-crypt ography. Yusuke Nozaki and Masaya Yoshikawa. 2019. Energy Harvesting PUF Oriented ID generation method and its evaluation system. In Proceedings of the International Conference on Information Technology and Computer Communications (ITCC’19). ACM, New York, NY, 119–124. 10.1145/3355402.3355414 S. Parkinson, P. Ward, K. Wilson, and J. Miller. 2017. Cyber threats facing autonomous and connected vehicles: Future challenges. IEEE Trans. Intell. Transport. Syst. 18, 11 (2017), 2898–2915. Sajid Khan, Ambika Prasad Shah, Neha Gupta, Shailesh Singh Chouhan, Jai Gopal Pandey, and Santosh Kumar Vishvakarma. 2019. An ultra-low power, reconfigurable, aging resilient RO PUF for IoT applications. Microelectron. J. 92 (2019), 104605. Yohei Hori, Takahiro Yoshida, Toshihiro Katashita, and Akashi Satoh. 2010. Quantitative and statistical performance evaluation of arbiter physical unclonable functions on FPGAs. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig’10). IEEE, 298–303. 10.1109/ReConFig.2010.24 Jian Guo, Thomas Peyrin, and Axel Poschmann. 2011. The PHOTON family of lightweight hash functions. In Advances in Cryptology – CRYPTO 2011, Phillip Rogaway (Ed.). Springer Berlin, 222–239. 10.5555/2033036.2033053 ISO/IEC 29192-5:2016. 2016. Information Technology – Security Techniques – Lightweight Cryptography – Part 5: Hash-functions. Standard. International Organization for Standardization, Geneva, CH. Dominik Merli, Frederic Stumpf, and Claudia Eckert. 2010. Improving the quality of ring oscillator PUFs on FPGAs. In Proceedings of the 5th Workshop on Embedded Systems Security. ACM, 9. 10.1145/1873548.1873557 Mesbah Uddin, Aysha S. Shanta, Md Badruddoja Majumder, Md Sakib Hasan, and Garrett S. Rose. 2019. Memristor crossbar PUF based lightweight hardware security for IoT. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE’19). IEEE, 1–4. Z. King and Shucheng Yu. 2017. Investigating and securing communications in the Controller Area Network (CAN). In Proceedings of the International Conference on Computing, Networking and Communications (ICNC’17). 814–818. V. P. Yanambaka, S. P. Mohanty, E. Kougianos, and D. Puthal. 2019. PMsec: Physical unclonable function-based robust and lightweight authentication in the internet of medical things. IEEE Trans. Consum. Electron. 65, 3 (Aug. 2019), 388–397. H. Ju, Y. Kim, Y. Jeon, and J. Kim. 2015. Implementation of a hardware security chip for mobile devices. IEEE Trans. Consum. Electron. 61, 4 (Nov. 2015), 500–506. S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao. 2017. Vehicle-to-Everything (v2x) services supported by LTE-based systems and 5G. IEEE Commun. Stand. Mag. 1, 2 (2017), 70–76. Woo S. (e_1_2_1_37_1) 2015; 16 IEC (e_1_2_1_17_1) IEC (e_1_2_1_16_1) e_1_2_1_20_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_28_1 e_1_2_1_25_1 Groza Bogdan (e_1_2_1_12_1) e_1_2_1_29_1 Uddin Mesbah (e_1_2_1_34_1) Miller Charlie (e_1_2_1_26_1) 2015 e_1_2_1_7_1 e_1_2_1_31_1 e_1_2_1_8_1 e_1_2_1_6_1 e_1_2_1_35_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_1_1 e_1_2_1_10_1 Radu Andreea-Ina (e_1_2_1_30_1) 2016 e_1_2_1_33_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_39_1 e_1_2_1_38_1 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_36_1 Buttigieg R. (e_1_2_1_5_1) e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – reference: V. P. Yanambaka, S. P. Mohanty, E. Kougianos, and D. Puthal. 2019. PMsec: Physical unclonable function-based robust and lightweight authentication in the internet of medical things. IEEE Trans. Consum. Electron. 65, 3 (Aug. 2019), 388–397. – reference: S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, and L. Zhao. 2017. Vehicle-to-Everything (v2x) services supported by LTE-based systems and 5G. IEEE Commun. Stand. Mag. 1, 2 (2017), 70–76. – reference: S. Parkinson, P. Ward, K. Wilson, and J. Miller. 2017. Cyber threats facing autonomous and connected vehicles: Future challenges. IEEE Trans. Intell. Transport. Syst. 18, 11 (2017), 2898–2915. – reference: Z. King and Shucheng Yu. 2017. Investigating and securing communications in the Controller Area Network (CAN). In Proceedings of the International Conference on Computing, Networking and Communications (ICNC’17). 814–818. – reference: Yusuke Nozaki and Masaya Yoshikawa. 2019. Energy Harvesting PUF Oriented ID generation method and its evaluation system. In Proceedings of the International Conference on Information Technology and Computer Communications (ITCC’19). ACM, New York, NY, 119–124. 10.1145/3355402.3355414 – reference: Bogdan Groza, Stefan Murvay, Anthony van Herrewege, and Ingrid Verbauwhede. 2012. LiBrA-CAN: A lightweight broadcast authentication protocol for controller area networks. In Cryptology and Network Security. Springer Berlin, 185–200. – reference: H. Ju, Y. Kim, Y. Jeon, and J. Kim. 2015. Implementation of a hardware security chip for mobile devices. IEEE Trans. Consum. Electron. 61, 4 (Nov. 2015), 500–506. – reference: M. R. Moore, R. A. Bridges, F. L. Combs, and A. L. Anderson. 2019. Data-driven extraction of vehicle states from can bus traffic for cyberprotection and safety. IEEE Consum. Electron. Mag. 8, 6 (Nov. 2019), 104–110. – reference: S. Woo, H. J. Jo, and D. H. Lee. 2015. A practical wireless attack on the connected car and security protocol for in-vehicle CAN. IEEE Trans. Intell. Transport. Syst. 16, 2 (Apr. 2015), 993–1006. – reference: Michael Feiri, Jonathan Petit, and Frank Kargl. 2013. Efficient and secure storage of private keys for pseudonymous vehicular communication. In Proceedings of the ACM Workshop on Security, Privacy & Dependability for Cyber Vehicles. ACM, 9–18. 10.1145/2517968.2517972 – reference: ISO/IEC 29192-2:2019. 2019. Information Technology – Lightweight Cryptography – Part 2: Block ciphers. Standard. International Organization for Standardization, Geneva, CH. – reference: Mesbah Uddin, Aysha S. Shanta, Md Badruddoja Majumder, Md Sakib Hasan, and Garrett S. Rose. 2019. Memristor crossbar PUF based lightweight hardware security for IoT. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE’19). IEEE, 1–4. – reference: Jian Guo, Thomas Peyrin, and Axel Poschmann. 2011. The PHOTON family of lightweight hash functions. In Advances in Cryptology – CRYPTO 2011, Phillip Rogaway (Ed.). Springer Berlin, 222–239. 10.5555/2033036.2033053 – reference: Elaine Barker and Quynh Dang. 2016. NIST Special Publication 800-57 Part 1, Revision 4. Technical Report. NIST. – reference: B. Choi, S. Lee, J. Na, and J. Lee. 2016. Secure firmware validation and update for consumer devices in home networking. IEEE Trans. Consum. Electron. 62, 1 (Feb. 2016), 39–44. – reference: Sajid Khan, Ambika Prasad Shah, Neha Gupta, Shailesh Singh Chouhan, Jai Gopal Pandey, and Santosh Kumar Vishvakarma. 2019. An ultra-low power, reconfigurable, aging resilient RO PUF for IoT applications. Microelectron. J. 92 (2019), 104605. – reference: Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015 (2015), 91. – reference: Aishwarya, Farha Syed, Jaya Nupur, Aishwarya Vichare, and Arun Mishra. 2016. Authentication of electronic control unit using arbiter physical unclonable functions in modern automobiles. In Proceedings of the 2nd International Conference on Information and Communication Technology for Competitive Strategies (ICTCS’16). ACM, New York, NY. 10.1145/2905055.2905328 – reference: Rafael Alvarez, Cándido Caballero-Gil, Juan Santonja, and Antonio Zamora. 2017. Algorithms for lightweight key exchange. Sensors 17, 7 (2017), 1517. – reference: Jungwon Lee, Seoyeon Choi, Dayoung Kim, Yunyoung Choi, and Wookyung Sun. 2020. A novel hardware security architecture for IoT device: PD-CRP (PUF database and challenge–response pair) bloom filter on memristor-based PUF. Appl. Sci. 10, 19 (2020), 6692. – reference: Andreea-Ina Radu and Flavio D. Garcia. 2016. LeiA: A lightweight authentication protocol for CAN. In Computer Security – ESORICS 2016, Ioannis Askoxylakis, Sotiris Ioannidis, Sokratis Katsikas, and Catherine Meadows (Eds.). Springer International Publishing, 283–300. – reference: Weike Wang, Xiaobing Zhang, Qiang Hao, Zhun Zhang, Bin Xu, Haifeng Dong, Tongsheng Xia, and Xiang Wang. 2019. Hardware-enhanced protection for the runtime data security in embedded systems. Electronics 8, 1 (2019), 52. – reference: S. Dinesh Kumar and Himanshu Thapliyal. 2020. Design of adiabatic logic-based energy-efficient and reliable PUF for IoT devices. ACM J. Emerg. Technol. Comput. Syst. 16, 3 (2020), 1–18. 10.1145/3390771 – reference: Ramao Tiago Tiburski, Carlos Roberto Moratelli, Sergio F. Johann, Marcelo Veiga Neves, Everton de Matos, Leonardo Albernaz Amaral, and Fabiano Hessel. 2019. Lightweight security architecture based on embedded virtualization and trust mechanisms for IoT edge devices. IEEE Commun. Mag. 57, 2 (2019), 67–73. 10.1109/MCOM.2018.1701047 – reference: Carson Labrado, Himanshu Thapliyal, Stacy Prowell, and Teja Kuruganti. 2019. Use of thermistor temperature sensors for cyber-physical system security. Sensors 19, 18 (2019), 3905. – reference: Ali Shuja Siddiqui, Yutian Gui, Jim Plusquellic, and Fareena Saqib. 2017. A secure communication framework for ECUs. Adv. Sci., Technol. Eng. Syst. J. 2, 3 (2017), 1307–1313. – reference: ISO/IEC 29192-5:2016. 2016. Information Technology – Security Techniques – Lightweight Cryptography – Part 5: Hash-functions. Standard. International Organization for Standardization, Geneva, CH. – reference: R. Buttigieg, M. Farrugia, and C. Meli. 2017. Security issues in controller area networks in automobiles. In Proceedings of the 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA’17). 93–98. – reference: Zhao Huang and Quan Wang. 2020. A PUF-based unified identity verification framework for secure IoT hardware via device authentication. World Wide Web 23, 2 (2020), 1057–1088. – reference: James B. Wendt and Miodrag Potkonjak. 2014. Hardware obfuscation using PUF-based logic. In Proceedings of the IEEE/ACM International Conference on Computer-aided Design (ICCAD’14). IEEE, 270–271. 10.5555/2691365.2691419 – reference: Y. Wu, Yeon-Jin Kim, Zheyan Piao, J. Chung, and Yong-En Kim. 2016. Security protocol for controller area network using ECANDC compression algorithm. In Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC’16). 1–4. – reference: Yohei Hori, Takahiro Yoshida, Toshihiro Katashita, and Akashi Satoh. 2010. Quantitative and statistical performance evaluation of arbiter physical unclonable functions on FPGAs. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs (ReConFig’10). IEEE, 298–303. 10.1109/ReConFig.2010.24 – reference: The National Institute of Standards and Technology (NIST) Computer Security Resource Center (CSRC). 2017. Lightweight Cryptography. Retrieved from https://csrc.nist.gov/projects/lightweight-crypt ography. – reference: A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe. 2007. PRESENT: An ultra-lightweight block cipher. In Cryptographic Hardware and Embedded Systems - CHES 2007. Springer Berlin, 450–466. 10.1007/978-3-540-74735-2_31 – reference: B. Chatterjee, D. Das, S. Maity, and S. Sen. 2019. RF-PUF: Enhancing IoT security through authentication of wireless nodes using in-situ machine learning. IEEE Internet Things J. 6, 1 (Feb. 2019), 388–398. – reference: Dominik Merli, Frederic Stumpf, and Claudia Eckert. 2010. Improving the quality of ring oscillator PUFs on FPGAs. In Proceedings of the 5th Workshop on Embedded Systems Security. ACM, 9. 10.1145/1873548.1873557 – reference: Craig Costello and Patrick Longa. 2015. FourQ: Four-dimensional decompositions on a q-curve over the Mersenne prime. In Advances in Cryptology – ASIACRYPT 2015, Tetsu Iwata and Jung Hee Cheon (Eds.). Springer Berlin, 214–235. 10.1007/978-3-662-48797-6_10 – reference: Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. 2007. Controller area network (CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Syst. 35, 3 (01 Apr. 2007), 239–272. 10.1007/s11241-007-9012-7 – reference: K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage. 2010. Experimental security analysis of a modern automobile. In Proceedings of the IEEE Symposium on Security and Privacy. 447–462. 10.1109/SP.2010.34 – ident: e_1_2_1_10_1 doi: 10.1007/s11241-007-9012-7 – ident: e_1_2_1_32_1 – ident: e_1_2_1_36_1 doi: 10.5555/2691365.2691419 – ident: e_1_2_1_6_1 doi: 10.1109/JIOT.2018.2849324 – ident: e_1_2_1_1_1 doi: 10.1145/2905055.2905328 – ident: e_1_2_1_27_1 doi: 10.1109/MCE.2019.2928577 – ident: e_1_2_1_29_1 doi: 10.1109/TITS.2017.2665968 – ident: e_1_2_1_38_1 doi: 10.1109/ICSPCC.2016.7753631 – ident: e_1_2_1_7_1 doi: 10.1109/MCOMSTD.2017.1700015 – volume-title: Information Technology – Lightweight Cryptography – Part 2: Block ciphers. Standard ident: e_1_2_1_16_1 – volume-title: Cryptology and Network Security ident: e_1_2_1_12_1 – ident: e_1_2_1_24_1 doi: 10.3390/app10196692 – volume: 16 start-page: 2 year: 2015 ident: e_1_2_1_37_1 article-title: A practical wireless attack on the connected car and security protocol for in-vehicle CAN publication-title: IEEE Trans. Intell. Transport. Syst. – ident: e_1_2_1_23_1 doi: 10.3390/s19183905 – ident: e_1_2_1_4_1 doi: 10.1007/978-3-540-74735-2_31 – ident: e_1_2_1_28_1 doi: 10.1145/3355402.3355414 – volume-title: Garcia year: 2016 ident: e_1_2_1_30_1 – ident: e_1_2_1_21_1 doi: 10.1109/SP.2010.34 – ident: e_1_2_1_9_1 doi: 10.1007/978-3-662-48797-6_10 – volume-title: Black Hat USA 2015 year: 2015 ident: e_1_2_1_26_1 – ident: e_1_2_1_11_1 doi: 10.1145/2517968.2517972 – volume-title: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE’19) ident: e_1_2_1_34_1 – ident: e_1_2_1_18_1 doi: 10.1109/TCE.2015.7389805 – ident: e_1_2_1_2_1 doi: 10.3390/s17071517 – ident: e_1_2_1_35_1 doi: 10.3390/electronics8010052 – ident: e_1_2_1_8_1 doi: 10.1109/TCE.2016.7448561 – ident: e_1_2_1_33_1 doi: 10.1109/MCOM.2018.1701047 – ident: e_1_2_1_20_1 doi: 10.1109/ICCNC.2017.7876236 – ident: e_1_2_1_14_1 doi: 10.1109/ReConFig.2010.24 – ident: e_1_2_1_15_1 doi: 10.1007/s11280-019-00677-x – ident: e_1_2_1_13_1 doi: 10.5555/2033036.2033053 – ident: e_1_2_1_22_1 doi: 10.1145/3390771 – ident: e_1_2_1_19_1 doi: 10.1016/j.mejo.2019.104605 – volume-title: Information Technology – Security Techniques – Lightweight Cryptography – Part 5: Hash-functions. Standard ident: e_1_2_1_17_1 – ident: e_1_2_1_25_1 doi: 10.1145/1873548.1873557 – ident: e_1_2_1_31_1 doi: 10.25046/aj0203165 – ident: e_1_2_1_39_1 doi: 10.1109/TCE.2019.2926192 – volume-title: Proceedings of the 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA’17) ident: e_1_2_1_5_1 |
SSID | ssj0037979 |
Score | 2.3047464 |
Snippet | Within vehicles, the Controller Area Network (CAN) allows efficient communication between the electronic control units (ECUs) responsible for controlling the... |
SourceID | crossref acm |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Computer systems organization Embedded and cyber-physical systems Embedded systems Embedded systems security Hardware security implementation Hardware-based security protocols Security and privacy Security in hardware |
SubjectTermsDisplay | Computer systems organization -- Embedded and cyber-physical systems Computer systems organization -- Embedded systems Security and privacy -- Embedded systems security Security and privacy -- Hardware security implementation Security and privacy -- Hardware-based security protocols Security and privacy -- Security in hardware |
Title | Fortifying Vehicular Security through Low Overhead Physically Unclonable Functions |
URI | https://dl.acm.org/doi/10.1145/3442443 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeuHCo4AoBbQHxCVy8e76eYwKUYUaQDRFvUX7shKUxqh1hMKvZ9b7stoeACmyovV64-x8np0dz3yD0FvaEHgORJYQomSS0ZIkotY8MUy-oqCGcc64Bmafi5Pz7NNFfjF4Y2qySzpxJH_fmVfyP1KFNpCryZL9B8mGQaEBvoN84QgShuNfyXgKtvPKJip918uVDSk9cxXpQgme0_bX-Av8N1C7qq91Y-Sy3oG5KdetTZ2awuoWPXeelPZ4FoklNmOTSdxXNOq8N37VB3P1UenbPnr6ekB_3pM5wlZctS6u5Dq-8J8vOdi-O26JtFeXsFwut0H07RKkvfPu6h_b8dejoW-C0hu-iYljinaqNU-N69LqXj1ss4RNt_VxwJ1VrmSwSttOt_V_ZqgyWGbS91hc4kLgoTtzH-1R2FbQEdqbfJidnvm1m5V1z84Y7tWmWZth37tLjRUjLwdWzMAcmT9GD90-Ak8sKJ6ge3qzjx75Gh3Yqeyn6FvECA4YwR4j2GEEA0awxwiOGMERIzhg5Bk6n36cH58kro5GwuGOu6RhSlUVN1thxnVdEqVkJYpKq6JuUq5oJqgmTBe6VJwreEhlw2CrKtIsEyIn7DkabdqNfoEwF1IoomXK6iarasmpzmWaVxo-admwA7QPs7P4aZlSFm7ODtA7P1sL6ajnTQWU9cKmxeexIw4d_Rg3ury88xcO0YOIv1do1F1t9WuwFjvxxon4DxFhb9k |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fortifying+Vehicular+Security+through+Low+Overhead+Physically+Unclonable+Functions&rft.jtitle=ACM+journal+on+emerging+technologies+in+computing+systems&rft.au=Labrado%2C+Carson&rft.au=Thapliyal%2C+Himanshu&rft.au=Mohanty%2C+Saraju+P.&rft.date=2022-01-01&rft.pub=ACM&rft.issn=1550-4832&rft.eissn=1550-4840&rft.volume=18&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1145%2F3442443&rft.externalDocID=3442443 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1550-4832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1550-4832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1550-4832&client=summon |