Multi-Scale and Multi-Layer Lattice Transformer for Underwater Image Enhancement
Underwater images are often subject to color deviation and a loss of detail due to the absorption and scattering of light. The challenge of enhancing underwater images is compounded by variations in wavelength and distance attenuation, as well as color deviation that exist across different scales an...
Saved in:
Published in | ACM transactions on multimedia computing communications and applications Vol. 20; no. 11; pp. 1 - 24 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
ACM
14.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1551-6857 1551-6865 |
DOI | 10.1145/3688802 |
Cover
Loading…
Abstract | Underwater images are often subject to color deviation and a loss of detail due to the absorption and scattering of light. The challenge of enhancing underwater images is compounded by variations in wavelength and distance attenuation, as well as color deviation that exist across different scales and layers, resulting in different degrees of color deviation, attenuation, and blurring. To address these issues, we propose a novel multi-scale and multi-layer lattice transformer (MMLattFormer) to effectively eliminate artifacts and color deviation, prevent over-enhancement, and preserve details across various scales and layers, thereby achieving more accurate and natural results in underwater image enhancement. The proposed MMLattFormer model integrates the advantage of LattFormer to enhance global perception with the advantage of “multi-scale and multi-layer” configuration to leverages the differences and complementarities between features of various scales and layers to boost local perception. The proposed MMLattFormer model is comprised of multi-scale and multi-layer LattFormers. Each LattFormer primarily encompasses two modules: Multi-head Transposed-attention Residual Network (MTRN) and Gated-attention Residual Network (GRN). The MTRN module enables cross-pixel interaction and pixel-level aggregation in an efficient manner to extract more significant and distinguishable features, whereas the GRN module can effectively suppress under-informed or redundant features and retain only useful information, enabling excellent image restoration exploiting the local and global structures of the images. Moreover, to better capture local details, we introduce depthwise convolution in these two modules before generating global attention maps and decomposing images into different features to better capture the local context in image features. The qualitative and quantitative results indicate that the proposed method outperforms state-of-the-art approaches in delivering more natural results. This is evident in its superior detail preservation, effective prevention of over-enhancement, and successful removal of artifacts and color deviation on several public datasets. |
---|---|
AbstractList | Underwater images are often subject to color deviation and a loss of detail due to the absorption and scattering of light. The challenge of enhancing underwater images is compounded by variations in wavelength and distance attenuation, as well as color deviation that exist across different scales and layers, resulting in different degrees of color deviation, attenuation, and blurring. To address these issues, we propose a novel multi-scale and multi-layer lattice transformer (MMLattFormer) to effectively eliminate artifacts and color deviation, prevent over-enhancement, and preserve details across various scales and layers, thereby achieving more accurate and natural results in underwater image enhancement. The proposed MMLattFormer model integrates the advantage of LattFormer to enhance global perception with the advantage of “multi-scale and multi-layer” configuration to leverages the differences and complementarities between features of various scales and layers to boost local perception. The proposed MMLattFormer model is comprised of multi-scale and multi-layer LattFormers. Each LattFormer primarily encompasses two modules: Multi-head Transposed-attention Residual Network (MTRN) and Gated-attention Residual Network (GRN). The MTRN module enables cross-pixel interaction and pixel-level aggregation in an efficient manner to extract more significant and distinguishable features, whereas the GRN module can effectively suppress under-informed or redundant features and retain only useful information, enabling excellent image restoration exploiting the local and global structures of the images. Moreover, to better capture local details, we introduce depthwise convolution in these two modules before generating global attention maps and decomposing images into different features to better capture the local context in image features. The qualitative and quantitative results indicate that the proposed method outperforms state-of-the-art approaches in delivering more natural results. This is evident in its superior detail preservation, effective prevention of over-enhancement, and successful removal of artifacts and color deviation on several public datasets. |
ArticleNumber | 354 |
Author | Hsu, Wei-Yen Hsu, Yu-Yu |
Author_xml | – sequence: 1 givenname: Wei-Yen orcidid: 0000-0002-4599-0744 surname: Hsu fullname: Hsu, Wei-Yen email: shenswy@gmail.com organization: Department of Information Management and Advanced Institute of Manufacturing with High-Tech Innovations and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan – sequence: 2 givenname: Yu-Yu orcidid: 0009-0002-2375-5783 surname: Hsu fullname: Hsu, Yu-Yu email: aoeter9436@gmail.com organization: Department of Information Management, National Chung Cheng University, Chiayi, Taiwan |
BookMark | eNptkM1Lw0AQxRepYFvFu6fcPEWzn9kepdRaiCjYnsNkMtFIspHNivS_N5Lag3h67838eIc3YxPXOWLskic3nCt9K421NhEnbMq15rGxRk-OXqdnbNb370kijVZmyp4fP5tQxy8IDUXgymjMGezJRxmEUCNFWw-urzrfDrdBop0ryX9BGOKmhVeKVu4NHFJLLpyz0wqani4OOme7-9V2-RBnT-vN8i6LQSgV4iIt5SIxukBRVVaTUpSWSpJAyVGmIkVrSfAScOBxoYXhWmFBhkplU9JyzuKxF33X956qHOsAoe5c8FA3OU_ynznywxwDf_2H__B1C37_D3k1koDtEfp9fgPZmGj0 |
CitedBy_id | crossref_primary_10_3390_app15020706 |
Cites_doi | 10.1109/TIP.2017.2663846 10.1109/ACSSC.2003.1292216 10.1109/TIP.2023.3244647 10.1016/j.jvcir.2014.11.006 10.48550/arXiv.1906.06819 10.1109/TCSVT.2019.2963772 10.1109/ICCVW.2013.113 10.1109/TIP.2023.3276332 10.1109/TCSVT.2023.3253898 10.1109/TPAMI.2020.2977624 10.1109/TBC.2024.3349773 10.1016/j.patcog.2019.107038 10.1109/TIP.2011.2179666 10.1109/CVPR.2017.618 10.1109/TIP.2017.2759252 10.1145/3578584 10.1109/ACCESS.2020.3034275 10.1109/TIP.2021.3076367 10.1109/TIP.2019.2955241 10.1109/LSP.2012.2227726 10.1109/LSP.2018.2804246 10.1109/TIP.2022.3196546 10.1145/3571600.3571630 10.1109/TGRS.2022.3205061 10.1109/TIM.2022.3189630. 10.1109/ICCV48922.2021.00986 10.1109/LRA.2020.2974710 10.1109/TPAMI.2010.168 10.1145/3639407 10.1109/TIM.2022.3192280 10.1145/3511021 10.1109/TPAMI.2023.3307666 10.1016/j.image.2023.117032 10.1016/j.cag.2023.01.009 10.1109/TNNLS.2023.3289958 10.1109/TITS.2023.3287574 10.1145/3489520 10.1109/TIP.2015.2491020 10.1109/TIM.2022.3204081 10.1109/ICCVW54120.2021.00221 10.1109/TIP.2020.3039574 10.1007/978-3-031-19797-0_27 10.1145/3592613 10.1109/TIM.2022.3142061 10.1109/TCSVT.2023.3237993 10.1002/col.20070 10.1109/ICIP.2017.8296508 10.1016/j.patcog.2022.109294 |
ContentType | Journal Article |
Copyright | Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
Copyright_xml | – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from |
DBID | AAYXX CITATION |
DOI | 10.1145/3688802 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1551-6865 |
EndPage | 24 |
ExternalDocumentID | 10_1145_3688802 3688802 |
GrantInformation_xml | – fundername: National Science and Technology Council, Taiwan grantid: NSTC110-2221-E-194-027-MY3 and NSTC111-2410-H-194-038-MY3 |
GroupedDBID | .4S .DC 23M 4.4 5GY 5VS 8US AAKMM AALFJ AAYFX ABPPZ ACM ADBCU ADL ADMLS ADPZR AEBYY AENEX AENSD AFWIH AFWXC AIKLT ALMA_UNASSIGNED_HOLDINGS ARCSS ASPBG AVWKF CCLIF CS3 EBS EDO FEDTE GQ3 GUFHI HGAVV I07 LHSKQ MK~ ML~ P1C P2P RNS ROL TUS W7O ZCA AAYXX AEFXT AEJOY AKRVB CITATION |
ID | FETCH-LOGICAL-a244t-b7d39065bc2ff85e44e7d43e2c31c3727c88e21daca24c9526154cbe6ed487e53 |
ISSN | 1551-6857 |
IngestDate | Thu Jul 03 08:25:47 EDT 2025 Thu Apr 24 23:07:06 EDT 2025 Fri Feb 21 01:25:30 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Underwater image enhancement detail preservation color correction multi-scale multi-layer |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a244t-b7d39065bc2ff85e44e7d43e2c31c3727c88e21daca24c9526154cbe6ed487e53 |
ORCID | 0009-0002-2375-5783 0000-0002-4599-0744 |
PageCount | 24 |
ParticipantIDs | crossref_citationtrail_10_1145_3688802 crossref_primary_10_1145_3688802 acm_primary_3688802 |
PublicationCentury | 2000 |
PublicationDate | 2024-11-14 |
PublicationDateYYYYMMDD | 2024-11-14 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | ACM transactions on multimedia computing communications and applications |
PublicationTitleAbbrev | ACM TOMM |
PublicationYear | 2024 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | (Bib0014) 2023; 29 (Bib0028) 2023; 19 (Bib0002) 2024; 20 (Bib0039) 2017; 27 (Bib0038) 2020; 30 (Bib0019) 2011; 21 (Bib0029) 2021 (Bib0034) 2003 (Bib0021) 2015; 24 (Bib0048) 2023; 33 (Bib0013) 2024 (Bib0031) 2022; 71 (Bib0015) 2020; 5 (Bib0010) 2018; 25 (Bib0047) 2024; 70 (Bib0050) 2023; 33 (Bib0011) 2020; 98 (Bib0016) 2021; 30 (Bib0040) 2023 (Bib0001) 2023; 19 (Bib0023) 2017; 26 (Bib0041) 2020; 8 (Bib0033) 2017 (Bib0017) 2022; 60 (Bib0012) 2023; 137 (Bib0004) 2023; 19 (Bib0036) 2017 (Bib0009) 2022; 71 (Bib0020) 2013 (Bib0037) 2019 (Bib0044) 2021 (Bib0051) 2022; 31 (Bib0027) 2017 (Bib0025) 2019; 29 (Bib0006) 2021; 30 (Bib0030) 2023; 118 (Bib0018) 2010; 33 (Bib0026) 2021; 17 (Bib0045) 2022 (Bib0008) 2022; 71 (Bib0042) 2012; 20 (Bib0003) 2023; 45 (Bib0005) 2022; 71 (Bib0035) 2004; 13 (Bib0022) 2015; 26 (Bib0024) 2020; 43 (Bib0032) 2023; 111 (Bib0043) 2005; 30 (Bib0049) 2023; 32 (Bib0046) 2023; 32 (Bib0007) 2023; 24 11 e_1_3_1_43_2 e_1_3_1_22_2 e_1_3_1_45_2 e_1_3_1_24_2 e_1_3_1_8_2 e_1_3_1_20_2 e_1_3_1_4_2 e_1_3_1_6_2 e_1_3_1_26_2 e_1_3_1_47_2 e_1_3_1_2_2 e_1_3_1_28_2 e_1_3_1_49_2 e_1_3_1_32_2 e_1_3_1_34_2 e_1_3_1_13_2 e_1_3_1_51_2 e_1_3_1_11_2 e_1_3_1_30_2 e_1_3_1_17_2 e_1_3_1_15_2 e_1_3_1_36_2 Song Wei (e_1_3_1_41_2) 2023 e_1_3_1_19_2 e_1_3_1_38_2 e_1_3_1_21_2 e_1_3_1_44_2 e_1_3_1_23_2 e_1_3_1_46_2 e_1_3_1_7_2 e_1_3_1_40_2 e_1_3_1_9_2 e_1_3_1_42_2 e_1_3_1_29_2 e_1_3_1_3_2 e_1_3_1_5_2 e_1_3_1_25_2 e_1_3_1_48_2 e_1_3_1_27_2 e_1_3_1_33_2 e_1_3_1_35_2 e_1_3_1_12_2 e_1_3_1_50_2 e_1_3_1_10_2 e_1_3_1_31_2 e_1_3_1_52_2 e_1_3_1_16_2 e_1_3_1_14_2 e_1_3_1_37_2 e_1_3_1_18_2 e_1_3_1_39_2 |
References_xml | – volume: 26 start-page: 1579 issue: 4 year: 2017 end-page: 1594 ident: Bib0023 article-title: Underwater image restoration based on image blurriness and light absorption publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2017.2663846 – start-page: 1398 year: 2003 end-page: 1402 ident: Bib0034 article-title: Multiscale structural similarity for image quality assessment publication-title: Proceedings of the IEEE International Conference on Image Processing doi: 10.1109/ACSSC.2003.1292216 – volume: 33 start-page: 3622 issue: 8 year: 2023 end-page: 3637 ident: Bib0048 article-title: UIALN: Enhancement for underwater image with artificial light publication-title: IEEE Transactions on Circuits and Systems for Video Technology – volume: 32 start-page: 1442 year: 2023 end-page: 1457 ident: Bib0049 article-title: Domain adaptation for underwater image enhancement publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2023.3244647 – volume: 26 start-page: 132 year: 2015 end-page: 145 ident: Bib0022 article-title: Automatic red-channel underwater image restoration publication-title: Journal of Visual Communication and Image Representation doi: 10.1016/j.jvcir.2014.11.006 – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 ident: Bib0035 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Transactions on Image Processing doi: 10.48550/arXiv.1906.06819 – volume: 19 start-page: 1 issue: 6 year: 2023 end-page: 21 ident: Bib0004 article-title: Recurrent multi-scale approximation-guided network for single image super-resolution publication-title: ACM Transactions on Multimedia Computing Communications and Applications – start-page: 1382 year: 2017 end-page: 1386 ident: Bib0027 article-title: A deep CNN method for underwater image enhancement publication-title: Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP ’17) – volume: 30 start-page: 4861 issue: 12 year: 2020 end-page: 4875 ident: Bib0038 article-title: Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2019.2963772 – start-page: 825 year: 2013 end-page: 830 ident: Bib0020 article-title: Transmission estimation in underwater single images publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops doi: 10.1109/ICCVW.2013.113 – volume: 30 start-page: 21 issue: 1 year: 2005 end-page: 30 ident: Bib0043 article-title: The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations publication-title: Color Research & Application – volume: 32 start-page: 3066 year: 2023 end-page: 3079 ident: Bib0046 article-title: U-shape transformer for underwater image enhancement publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2023.3276332 – volume: 33 start-page: 5391 issue: 10 year: 2023 end-page: 5405 ident: Bib0050 article-title: UIE-FSMC: Underwater image enhancement based on few-shot learning and multi-color space publication-title: IEEE Transactions on Circuits and Systems for Video Technology doi: 10.1109/TCSVT.2023.3253898 – volume: 43 start-page: 2822 issue: 8 year: 2020 end-page: 2837 ident: Bib0024 article-title: Underwater single image color restoration using haze-lines and a new quantitative dataset publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2020.2977624 – volume: 24 11 start-page: 12312 year: 2023 end-page: 12322 ident: Bib0007 article-title: Pedestrian detection using multi-scale structure-enhanced super-resolution publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1944 year: 2021 end-page: 1952 ident: Bib0044 article-title: Efficient wavelet boost learning-based multi-stage progressive refinement network for underwater image enhancement publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 70 start-page: 637 issue: 2 year: 2024 end-page: 653 ident: Bib0047 article-title: DMML: Deep multi-prior and multi-discriminator learning for underwater image enhancement publication-title: IEEE Transactions on Broadcasting doi: 10.1109/TBC.2024.3349773 – volume: 98 start-page: 107038 year: 2020 ident: Bib0011 article-title: Underwater scene prior inspired deep underwater image and video enhancement publication-title: Pattern Recognition doi: 10.1016/j.patcog.2019.107038 – volume: 21 start-page: 1756 issue: 4 year: 2011 end-page: 1769 ident: Bib0019 article-title: Underwater image enhancement by wavelength compensation and dehazing publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2011.2179666 – volume: 24 start-page: 6062 issue: 12 year: 2015 end-page: 6071 ident: Bib0021 article-title: An underwater color image quality evaluation metric publication-title: IEEE Transactions on Image Processing – start-page: 678 year: 2023 end-page: 688 ident: Bib0040 article-title: A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 17 start-page: 1 issue: 3s year: 2021 end-page: 20 ident: Bib0026 article-title: Leveraging deep statistics for underwater image enhancement publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications – volume: 71 year: 2022 ident: Bib0008 article-title: Object detection using structure-preserving wavelet pyramid reflection removal network publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 19 start-page: 1 issue: 1 year: 2023 end-page: 23 ident: Bib0028 article-title: Wavelength-based attributed deep neural network for underwater image restoration publication-title: ACM Transactions on Multimedia Computing, Communications and Applications – volume: 118 year: 2023 ident: Bib0030 article-title: A transformer-based network for perceptual contrastive underwater image enhancement publication-title: IEEE Signal Processing: Image Communication – start-page: 624 year: 2017 end-page: 632 ident: Bib0033 article-title: Deep Laplacian pyramid networks for fast and accurate super-resolution publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition doi: 10.1109/CVPR.2017.618 – volume: 27 start-page: 379 issue: 1 year: 2017 end-page: 393 ident: Bib0039 article-title: Color balance and fusion for underwater image enhancement publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2017.2759252 – start-page: 465 year: 2022 end-page: 482 ident: Bib0045 article-title: Uncertainty inspired underwater image enhancement publication-title: Proceedings of the Computer Vision (ECCV ’22) – volume: 19 start-page: 1 issue: 4 year: 2023 end-page: 24 ident: Bib0001 article-title: UID2021: An underwater image dataset for evaluation of no-reference quality assessment metrics publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications doi: 10.1145/3578584 – volume: 71 year: 2022 ident: Bib0009 article-title: Pedestrian detection using stationary wavelet dilated residual super-resolution publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 20 start-page: 1 issue: 5 year: 2024 end-page: 18 ident: Bib0002 article-title: Context-detail-aware united network for single image deraining publication-title: ACM Transactions on Multimedia Computing Communications and Applications – volume: 8 start-page: 197448 year: 2020 end-page: 197462 ident: Bib0041 article-title: A hybrid framework for underwater image enhancement publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3034275 – volume: 30 start-page: 4985 issue: 11 year: 2021 end-page: 5000 ident: Bib0016 article-title: Underwater image enhancement via medium transmission-guided multi-color space embedding publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2021.3076367 – volume: 29 start-page: 4376 issue: 11 year: 2019 end-page: 4389 ident: Bib0025 article-title: An underwater image enhancement benchmark dataset and beyond publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2019.2955241 – volume: 30 start-page: 934 year: 2021 end-page: 947 ident: Bib0006 article-title: Ratio-and-scale-aware YOLO for pedestrian detection publication-title: IEEE Transactions on Image Processing – volume: 20 start-page: 209 issue: 3 year: 2012 end-page: 212 ident: Bib0042 article-title: Making a “completely blind” image quality analyzer publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2012.2227726 – volume: 45 start-page: 15979 issue: 12 year: 2023 end-page: 15995 ident: Bib0003 article-title: Wavelet approximation-aware residual network for single image deraining publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 25 start-page: 323 issue: 3 year: 2018 end-page: 327 ident: Bib0010 article-title: Emerging from water: Underwater image color correction based on weakly supervised color transfer publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2018.2804246 – volume: 31 start-page: 5442 year: 2022 end-page: 5455 ident: Bib0051 article-title: Underwater image enhancement with hyper-laplacian reflectance priors publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2022.3196546 – volume: 29 start-page: 1 year: 2023 end-page: 9 ident: Bib0014 article-title: Towards realistic underwater dataset generation and color restoration publication-title: Proceedings of the 13th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP ’22) Article doi: 10.1145/3571600.3571630 – year: 2019 ident: Bib0037 article-title: A fusion adversarial underwater image enhancement network with a public test dataset – volume: 60 start-page: 1 issue: 1 year: 2022 end-page: 16 ident: Bib0017 article-title: Reinforced Swin-Convs transformer for simultaneous underwater sensing scene image enhancement and super-resolution publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2022.3205061 – volume: 137 year: 2023 ident: Bib0012 article-title: Recurrent wavelet structure-preserving residual network for single image deraining publication-title: Pattern Recognition – volume: 111 start-page: 77 year: 2023 end-page: 88 ident: Bib0032 article-title: UDAformer: Underwater image enhancement based on dual attention transformer publication-title: Computers & Graphics – volume: 71 year: 2022 ident: Bib0005 article-title: Detail-enhanced wavelet residual network for single image super-resolution publication-title: IEEE Transactions on Instrumentation and Measurement – volume: 71 start-page: 1 year: 2022 end-page: 18 ident: Bib0031 article-title: Underwater image enhancement via adaptive group attention-based multiscale cascade transformer publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/TIM.2022.3189630. – year: 2017 ident: Bib0036 article-title: Sgdr: Stochastic gradient descent with warm restarts – year: 2024 ident: Bib0013 article-title: Wavelet pyramid recurrent structure-preserving attention network for single image super-resolution publication-title: IEEE Transactions on Neural Networks and Learning Systems. – start-page: 10012 year: 2021 end-page: 10022 ident: Bib0029 article-title: Swin transformer: Hierarchical vision transformer using shifted windows publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition doi: 10.1109/ICCV48922.2021.00986 – volume: 5 start-page: 3227 issue: 2 year: 2020 end-page: 3234 ident: Bib0015 article-title: Fast underwater image enhancement for improved visual perception publication-title: IEEE Robotics and Automation Letters doi: 10.1109/LRA.2020.2974710 – volume: 33 start-page: 2341 issue: 12 year: 2010 end-page: 2353 ident: Bib0018 article-title: Single image haze removal using dark channel prior publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2010.168 – ident: e_1_3_1_50_2 doi: 10.1109/TIP.2023.3244647 – ident: e_1_3_1_18_2 doi: 10.1109/TGRS.2022.3205061 – ident: e_1_3_1_20_2 doi: 10.1109/TIP.2011.2179666 – ident: e_1_3_1_38_2 – ident: e_1_3_1_3_2 doi: 10.1145/3639407 – ident: e_1_3_1_21_2 doi: 10.1109/ICCVW.2013.113 – ident: e_1_3_1_26_2 doi: 10.1109/TIP.2019.2955241 – ident: e_1_3_1_37_2 – ident: e_1_3_1_6_2 doi: 10.1109/TIM.2022.3192280 – ident: e_1_3_1_29_2 doi: 10.1145/3511021 – ident: e_1_3_1_4_2 doi: 10.1109/TPAMI.2023.3307666 – ident: e_1_3_1_19_2 doi: 10.1109/TPAMI.2010.168 – ident: e_1_3_1_30_2 doi: 10.1109/ICCV48922.2021.00986 – ident: e_1_3_1_31_2 doi: 10.1016/j.image.2023.117032 – ident: e_1_3_1_11_2 doi: 10.1109/LSP.2018.2804246 – ident: e_1_3_1_33_2 doi: 10.1016/j.cag.2023.01.009 – ident: e_1_3_1_35_2 doi: 10.1109/ACSSC.2003.1292216 – ident: e_1_3_1_42_2 doi: 10.1109/ACCESS.2020.3034275 – ident: e_1_3_1_23_2 doi: 10.1016/j.jvcir.2014.11.006 – ident: e_1_3_1_14_2 doi: 10.1109/TNNLS.2023.3289958 – ident: e_1_3_1_16_2 doi: 10.1109/LRA.2020.2974710 – ident: e_1_3_1_8_2 doi: 10.1109/TITS.2023.3287574 – ident: e_1_3_1_40_2 doi: 10.1109/TIP.2017.2759252 – ident: e_1_3_1_32_2 doi: 10.1109/TIM.2022.3189630. – ident: e_1_3_1_51_2 doi: 10.1109/TCSVT.2023.3253898 – ident: e_1_3_1_36_2 doi: 10.48550/arXiv.1906.06819 – ident: e_1_3_1_27_2 doi: 10.1145/3489520 – ident: e_1_3_1_17_2 doi: 10.1109/TIP.2021.3076367 – ident: e_1_3_1_39_2 doi: 10.1109/TCSVT.2019.2963772 – ident: e_1_3_1_47_2 doi: 10.1109/TIP.2023.3276332 – ident: e_1_3_1_22_2 doi: 10.1109/TIP.2015.2491020 – ident: e_1_3_1_9_2 doi: 10.1109/TIM.2022.3204081 – ident: e_1_3_1_25_2 doi: 10.1109/TPAMI.2020.2977624 – ident: e_1_3_1_45_2 doi: 10.1109/ICCVW54120.2021.00221 – ident: e_1_3_1_7_2 doi: 10.1109/TIP.2020.3039574 – ident: e_1_3_1_15_2 doi: 10.1145/3571600.3571630 – ident: e_1_3_1_46_2 doi: 10.1007/978-3-031-19797-0_27 – ident: e_1_3_1_34_2 doi: 10.1109/CVPR.2017.618 – ident: e_1_3_1_2_2 doi: 10.1145/3578584 – ident: e_1_3_1_5_2 doi: 10.1145/3592613 – start-page: 678 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_3_1_41_2 – ident: e_1_3_1_10_2 doi: 10.1109/TIM.2022.3142061 – ident: e_1_3_1_49_2 doi: 10.1109/TCSVT.2023.3237993 – ident: e_1_3_1_44_2 doi: 10.1002/col.20070 – ident: e_1_3_1_28_2 doi: 10.1109/ICIP.2017.8296508 – ident: e_1_3_1_24_2 doi: 10.1109/TIP.2017.2663846 – ident: e_1_3_1_52_2 doi: 10.1109/TIP.2022.3196546 – ident: e_1_3_1_48_2 doi: 10.1109/TBC.2024.3349773 – ident: e_1_3_1_13_2 doi: 10.1016/j.patcog.2022.109294 – ident: e_1_3_1_43_2 doi: 10.1109/LSP.2012.2227726 – ident: e_1_3_1_12_2 doi: 10.1016/j.patcog.2019.107038 |
SSID | ssj0036546 |
Score | 2.362449 |
Snippet | Underwater images are often subject to color deviation and a loss of detail due to the absorption and scattering of light. The challenge of enhancing... |
SourceID | crossref acm |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Computing methodologies Reconstruction |
SubjectTermsDisplay | Computing methodologies -- Reconstruction |
Title | Multi-Scale and Multi-Layer Lattice Transformer for Underwater Image Enhancement |
URI | https://dl.acm.org/doi/10.1145/3688802 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66Xrz4FtcXOYgXiaZ59HEUH6jsiqCCe1raNEVBV9EWwV_vJE3boB7US7ebhizMFybfbOebQWgnCIqIp5SSJIwYERnlJKWFJHA60ILnWaFtH7LhZXh2Ky7u5F3T796pS8psX338qCv5D6owBrgalewfkG0XhQG4B3zhCgjD9VcYW_UsuQYzu4QJ-32QAo3eG6SlyWurq5cbZgpjJqXQNjp6T01txPMnk7BzMrk3yLcZME1J2qOh6R_RNBO3bxVs9qHVmthU9Kp0it1OYlJXfPbfirf75q2y-Xz6gYw6-ZkbHVVkVPl_QDBhlHiB8LaMS2p3DlQGJIzr_g-Nh2XU30mB5y8D7-CttdTfXbow1S94CKE6Zd2p1eYSuifTaIZBpMB6aObweDi4bo5jbtRatVraLHXgphsyop48MuKxipsFNOfCAXxYY7uIpvRkCc03rTaw87zL6MqDGoOJsQc1dlBjD2oMH7iDGluosQf1Cro9Pbk5OiOuGQZJgYGVJItyngBfzBQrilhqIXSUC66Z4oHiwEJVHGsW5KmC-SqREBlLoTId6hxiUi35KupNnid6DWGaF1zncZIr4P6ikFlk4gbFOXDbiCZpHy2BbcYvdbmTsbNYH-02thorVz_etDF5HNfadtlNxO3EZo0vU9Z__IUNNNvtr03UK18rvQWUr8y2Haifn81avQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+and+Multi-Layer+Lattice+Transformer+for+Underwater+Image+Enhancement&rft.jtitle=ACM+transactions+on+multimedia+computing+communications+and+applications&rft.au=Hsu%2C+Wei-Yen&rft.au=Hsu%2C+Yu-Yu&rft.date=2024-11-14&rft.pub=ACM&rft.eissn=1551-6865&rft.volume=20&rft.issue=11&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1145%2F3688802&rft.externalDocID=3688802 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-6857&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-6857&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-6857&client=summon |