Multi-Scale and Multi-Layer Lattice Transformer for Underwater Image Enhancement

Underwater images are often subject to color deviation and a loss of detail due to the absorption and scattering of light. The challenge of enhancing underwater images is compounded by variations in wavelength and distance attenuation, as well as color deviation that exist across different scales an...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on multimedia computing communications and applications Vol. 20; no. 11; pp. 1 - 24
Main Authors Hsu, Wei-Yen, Hsu, Yu-Yu
Format Journal Article
LanguageEnglish
Published New York, NY ACM 14.11.2024
Subjects
Online AccessGet full text
ISSN1551-6857
1551-6865
DOI10.1145/3688802

Cover

Loading…
Abstract Underwater images are often subject to color deviation and a loss of detail due to the absorption and scattering of light. The challenge of enhancing underwater images is compounded by variations in wavelength and distance attenuation, as well as color deviation that exist across different scales and layers, resulting in different degrees of color deviation, attenuation, and blurring. To address these issues, we propose a novel multi-scale and multi-layer lattice transformer (MMLattFormer) to effectively eliminate artifacts and color deviation, prevent over-enhancement, and preserve details across various scales and layers, thereby achieving more accurate and natural results in underwater image enhancement. The proposed MMLattFormer model integrates the advantage of LattFormer to enhance global perception with the advantage of “multi-scale and multi-layer” configuration to leverages the differences and complementarities between features of various scales and layers to boost local perception. The proposed MMLattFormer model is comprised of multi-scale and multi-layer LattFormers. Each LattFormer primarily encompasses two modules: Multi-head Transposed-attention Residual Network (MTRN) and Gated-attention Residual Network (GRN). The MTRN module enables cross-pixel interaction and pixel-level aggregation in an efficient manner to extract more significant and distinguishable features, whereas the GRN module can effectively suppress under-informed or redundant features and retain only useful information, enabling excellent image restoration exploiting the local and global structures of the images. Moreover, to better capture local details, we introduce depthwise convolution in these two modules before generating global attention maps and decomposing images into different features to better capture the local context in image features. The qualitative and quantitative results indicate that the proposed method outperforms state-of-the-art approaches in delivering more natural results. This is evident in its superior detail preservation, effective prevention of over-enhancement, and successful removal of artifacts and color deviation on several public datasets.
AbstractList Underwater images are often subject to color deviation and a loss of detail due to the absorption and scattering of light. The challenge of enhancing underwater images is compounded by variations in wavelength and distance attenuation, as well as color deviation that exist across different scales and layers, resulting in different degrees of color deviation, attenuation, and blurring. To address these issues, we propose a novel multi-scale and multi-layer lattice transformer (MMLattFormer) to effectively eliminate artifacts and color deviation, prevent over-enhancement, and preserve details across various scales and layers, thereby achieving more accurate and natural results in underwater image enhancement. The proposed MMLattFormer model integrates the advantage of LattFormer to enhance global perception with the advantage of “multi-scale and multi-layer” configuration to leverages the differences and complementarities between features of various scales and layers to boost local perception. The proposed MMLattFormer model is comprised of multi-scale and multi-layer LattFormers. Each LattFormer primarily encompasses two modules: Multi-head Transposed-attention Residual Network (MTRN) and Gated-attention Residual Network (GRN). The MTRN module enables cross-pixel interaction and pixel-level aggregation in an efficient manner to extract more significant and distinguishable features, whereas the GRN module can effectively suppress under-informed or redundant features and retain only useful information, enabling excellent image restoration exploiting the local and global structures of the images. Moreover, to better capture local details, we introduce depthwise convolution in these two modules before generating global attention maps and decomposing images into different features to better capture the local context in image features. The qualitative and quantitative results indicate that the proposed method outperforms state-of-the-art approaches in delivering more natural results. This is evident in its superior detail preservation, effective prevention of over-enhancement, and successful removal of artifacts and color deviation on several public datasets.
ArticleNumber 354
Author Hsu, Wei-Yen
Hsu, Yu-Yu
Author_xml – sequence: 1
  givenname: Wei-Yen
  orcidid: 0000-0002-4599-0744
  surname: Hsu
  fullname: Hsu, Wei-Yen
  email: shenswy@gmail.com
  organization: Department of Information Management and Advanced Institute of Manufacturing with High-Tech Innovations and Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan
– sequence: 2
  givenname: Yu-Yu
  orcidid: 0009-0002-2375-5783
  surname: Hsu
  fullname: Hsu, Yu-Yu
  email: aoeter9436@gmail.com
  organization: Department of Information Management, National Chung Cheng University, Chiayi, Taiwan
BookMark eNptkM1Lw0AQxRepYFvFu6fcPEWzn9kepdRaiCjYnsNkMtFIspHNivS_N5Lag3h67838eIc3YxPXOWLskic3nCt9K421NhEnbMq15rGxRk-OXqdnbNb370kijVZmyp4fP5tQxy8IDUXgymjMGezJRxmEUCNFWw-urzrfDrdBop0ryX9BGOKmhVeKVu4NHFJLLpyz0wqani4OOme7-9V2-RBnT-vN8i6LQSgV4iIt5SIxukBRVVaTUpSWSpJAyVGmIkVrSfAScOBxoYXhWmFBhkplU9JyzuKxF33X956qHOsAoe5c8FA3OU_ynznywxwDf_2H__B1C37_D3k1koDtEfp9fgPZmGj0
CitedBy_id crossref_primary_10_3390_app15020706
Cites_doi 10.1109/TIP.2017.2663846
10.1109/ACSSC.2003.1292216
10.1109/TIP.2023.3244647
10.1016/j.jvcir.2014.11.006
10.48550/arXiv.1906.06819
10.1109/TCSVT.2019.2963772
10.1109/ICCVW.2013.113
10.1109/TIP.2023.3276332
10.1109/TCSVT.2023.3253898
10.1109/TPAMI.2020.2977624
10.1109/TBC.2024.3349773
10.1016/j.patcog.2019.107038
10.1109/TIP.2011.2179666
10.1109/CVPR.2017.618
10.1109/TIP.2017.2759252
10.1145/3578584
10.1109/ACCESS.2020.3034275
10.1109/TIP.2021.3076367
10.1109/TIP.2019.2955241
10.1109/LSP.2012.2227726
10.1109/LSP.2018.2804246
10.1109/TIP.2022.3196546
10.1145/3571600.3571630
10.1109/TGRS.2022.3205061
10.1109/TIM.2022.3189630.
10.1109/ICCV48922.2021.00986
10.1109/LRA.2020.2974710
10.1109/TPAMI.2010.168
10.1145/3639407
10.1109/TIM.2022.3192280
10.1145/3511021
10.1109/TPAMI.2023.3307666
10.1016/j.image.2023.117032
10.1016/j.cag.2023.01.009
10.1109/TNNLS.2023.3289958
10.1109/TITS.2023.3287574
10.1145/3489520
10.1109/TIP.2015.2491020
10.1109/TIM.2022.3204081
10.1109/ICCVW54120.2021.00221
10.1109/TIP.2020.3039574
10.1007/978-3-031-19797-0_27
10.1145/3592613
10.1109/TIM.2022.3142061
10.1109/TCSVT.2023.3237993
10.1002/col.20070
10.1109/ICIP.2017.8296508
10.1016/j.patcog.2022.109294
ContentType Journal Article
Copyright Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
Copyright_xml – notice: Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
DBID AAYXX
CITATION
DOI 10.1145/3688802
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1551-6865
EndPage 24
ExternalDocumentID 10_1145_3688802
3688802
GrantInformation_xml – fundername: National Science and Technology Council, Taiwan
  grantid: NSTC110-2221-E-194-027-MY3 and NSTC111-2410-H-194-038-MY3
GroupedDBID .4S
.DC
23M
4.4
5GY
5VS
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACM
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ASPBG
AVWKF
CCLIF
CS3
EBS
EDO
FEDTE
GQ3
GUFHI
HGAVV
I07
LHSKQ
MK~
ML~
P1C
P2P
RNS
ROL
TUS
W7O
ZCA
AAYXX
AEFXT
AEJOY
AKRVB
CITATION
ID FETCH-LOGICAL-a244t-b7d39065bc2ff85e44e7d43e2c31c3727c88e21daca24c9526154cbe6ed487e53
ISSN 1551-6857
IngestDate Thu Jul 03 08:25:47 EDT 2025
Thu Apr 24 23:07:06 EDT 2025
Fri Feb 21 01:25:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Underwater image enhancement
detail preservation
color correction
multi-scale
multi-layer
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a244t-b7d39065bc2ff85e44e7d43e2c31c3727c88e21daca24c9526154cbe6ed487e53
ORCID 0009-0002-2375-5783
0000-0002-4599-0744
PageCount 24
ParticipantIDs crossref_citationtrail_10_1145_3688802
crossref_primary_10_1145_3688802
acm_primary_3688802
PublicationCentury 2000
PublicationDate 2024-11-14
PublicationDateYYYYMMDD 2024-11-14
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-14
  day: 14
PublicationDecade 2020
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle ACM transactions on multimedia computing communications and applications
PublicationTitleAbbrev ACM TOMM
PublicationYear 2024
Publisher ACM
Publisher_xml – name: ACM
References (Bib0014) 2023; 29
(Bib0028) 2023; 19
(Bib0002) 2024; 20
(Bib0039) 2017; 27
(Bib0038) 2020; 30
(Bib0019) 2011; 21
(Bib0029) 2021
(Bib0034) 2003
(Bib0021) 2015; 24
(Bib0048) 2023; 33
(Bib0013) 2024
(Bib0031) 2022; 71
(Bib0015) 2020; 5
(Bib0010) 2018; 25
(Bib0047) 2024; 70
(Bib0050) 2023; 33
(Bib0011) 2020; 98
(Bib0016) 2021; 30
(Bib0040) 2023
(Bib0001) 2023; 19
(Bib0023) 2017; 26
(Bib0041) 2020; 8
(Bib0033) 2017
(Bib0017) 2022; 60
(Bib0012) 2023; 137
(Bib0004) 2023; 19
(Bib0036) 2017
(Bib0009) 2022; 71
(Bib0020) 2013
(Bib0037) 2019
(Bib0044) 2021
(Bib0051) 2022; 31
(Bib0027) 2017
(Bib0025) 2019; 29
(Bib0006) 2021; 30
(Bib0030) 2023; 118
(Bib0018) 2010; 33
(Bib0026) 2021; 17
(Bib0045) 2022
(Bib0008) 2022; 71
(Bib0042) 2012; 20
(Bib0003) 2023; 45
(Bib0005) 2022; 71
(Bib0035) 2004; 13
(Bib0022) 2015; 26
(Bib0024) 2020; 43
(Bib0032) 2023; 111
(Bib0043) 2005; 30
(Bib0049) 2023; 32
(Bib0046) 2023; 32
(Bib0007) 2023; 24 11
e_1_3_1_43_2
e_1_3_1_22_2
e_1_3_1_45_2
e_1_3_1_24_2
e_1_3_1_8_2
e_1_3_1_20_2
e_1_3_1_4_2
e_1_3_1_6_2
e_1_3_1_26_2
e_1_3_1_47_2
e_1_3_1_2_2
e_1_3_1_28_2
e_1_3_1_49_2
e_1_3_1_32_2
e_1_3_1_34_2
e_1_3_1_13_2
e_1_3_1_51_2
e_1_3_1_11_2
e_1_3_1_30_2
e_1_3_1_17_2
e_1_3_1_15_2
e_1_3_1_36_2
Song Wei (e_1_3_1_41_2) 2023
e_1_3_1_19_2
e_1_3_1_38_2
e_1_3_1_21_2
e_1_3_1_44_2
e_1_3_1_23_2
e_1_3_1_46_2
e_1_3_1_7_2
e_1_3_1_40_2
e_1_3_1_9_2
e_1_3_1_42_2
e_1_3_1_29_2
e_1_3_1_3_2
e_1_3_1_5_2
e_1_3_1_25_2
e_1_3_1_48_2
e_1_3_1_27_2
e_1_3_1_33_2
e_1_3_1_35_2
e_1_3_1_12_2
e_1_3_1_50_2
e_1_3_1_10_2
e_1_3_1_31_2
e_1_3_1_52_2
e_1_3_1_16_2
e_1_3_1_14_2
e_1_3_1_37_2
e_1_3_1_18_2
e_1_3_1_39_2
References_xml – volume: 26
  start-page: 1579
  issue: 4
  year: 2017
  end-page: 1594
  ident: Bib0023
  article-title: Underwater image restoration based on image blurriness and light absorption
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2017.2663846
– start-page: 1398
  year: 2003
  end-page: 1402
  ident: Bib0034
  article-title: Multiscale structural similarity for image quality assessment
  publication-title: Proceedings of the IEEE International Conference on Image Processing
  doi: 10.1109/ACSSC.2003.1292216
– volume: 33
  start-page: 3622
  issue: 8
  year: 2023
  end-page: 3637
  ident: Bib0048
  article-title: UIALN: Enhancement for underwater image with artificial light
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– volume: 32
  start-page: 1442
  year: 2023
  end-page: 1457
  ident: Bib0049
  article-title: Domain adaptation for underwater image enhancement
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2023.3244647
– volume: 26
  start-page: 132
  year: 2015
  end-page: 145
  ident: Bib0022
  article-title: Automatic red-channel underwater image restoration
  publication-title: Journal of Visual Communication and Image Representation
  doi: 10.1016/j.jvcir.2014.11.006
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  ident: Bib0035
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
  doi: 10.48550/arXiv.1906.06819
– volume: 19
  start-page: 1
  issue: 6
  year: 2023
  end-page: 21
  ident: Bib0004
  article-title: Recurrent multi-scale approximation-guided network for single image super-resolution
  publication-title: ACM Transactions on Multimedia Computing Communications and Applications
– start-page: 1382
  year: 2017
  end-page: 1386
  ident: Bib0027
  article-title: A deep CNN method for underwater image enhancement
  publication-title: Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP ’17)
– volume: 30
  start-page: 4861
  issue: 12
  year: 2020
  end-page: 4875
  ident: Bib0038
  article-title: Real-world underwater enhancement: Challenges, benchmarks, and solutions under natural light
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2019.2963772
– start-page: 825
  year: 2013
  end-page: 830
  ident: Bib0020
  article-title: Transmission estimation in underwater single images
  publication-title: Proceedings of the IEEE International Conference on Computer Vision Workshops
  doi: 10.1109/ICCVW.2013.113
– volume: 30
  start-page: 21
  issue: 1
  year: 2005
  end-page: 30
  ident: Bib0043
  article-title: The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations
  publication-title: Color Research & Application
– volume: 32
  start-page: 3066
  year: 2023
  end-page: 3079
  ident: Bib0046
  article-title: U-shape transformer for underwater image enhancement
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2023.3276332
– volume: 33
  start-page: 5391
  issue: 10
  year: 2023
  end-page: 5405
  ident: Bib0050
  article-title: UIE-FSMC: Underwater image enhancement based on few-shot learning and multi-color space
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2023.3253898
– volume: 43
  start-page: 2822
  issue: 8
  year: 2020
  end-page: 2837
  ident: Bib0024
  article-title: Underwater single image color restoration using haze-lines and a new quantitative dataset
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2020.2977624
– volume: 24 11
  start-page: 12312
  year: 2023
  end-page: 12322
  ident: Bib0007
  article-title: Pedestrian detection using multi-scale structure-enhanced super-resolution
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1944
  year: 2021
  end-page: 1952
  ident: Bib0044
  article-title: Efficient wavelet boost learning-based multi-stage progressive refinement network for underwater image enhancement
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 70
  start-page: 637
  issue: 2
  year: 2024
  end-page: 653
  ident: Bib0047
  article-title: DMML: Deep multi-prior and multi-discriminator learning for underwater image enhancement
  publication-title: IEEE Transactions on Broadcasting
  doi: 10.1109/TBC.2024.3349773
– volume: 98
  start-page: 107038
  year: 2020
  ident: Bib0011
  article-title: Underwater scene prior inspired deep underwater image and video enhancement
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.107038
– volume: 21
  start-page: 1756
  issue: 4
  year: 2011
  end-page: 1769
  ident: Bib0019
  article-title: Underwater image enhancement by wavelength compensation and dehazing
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2011.2179666
– volume: 24
  start-page: 6062
  issue: 12
  year: 2015
  end-page: 6071
  ident: Bib0021
  article-title: An underwater color image quality evaluation metric
  publication-title: IEEE Transactions on Image Processing
– start-page: 678
  year: 2023
  end-page: 688
  ident: Bib0040
  article-title: A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 17
  start-page: 1
  issue: 3s
  year: 2021
  end-page: 20
  ident: Bib0026
  article-title: Leveraging deep statistics for underwater image enhancement
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
– volume: 71
  year: 2022
  ident: Bib0008
  article-title: Object detection using structure-preserving wavelet pyramid reflection removal network
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 19
  start-page: 1
  issue: 1
  year: 2023
  end-page: 23
  ident: Bib0028
  article-title: Wavelength-based attributed deep neural network for underwater image restoration
  publication-title: ACM Transactions on Multimedia Computing, Communications and Applications
– volume: 118
  year: 2023
  ident: Bib0030
  article-title: A transformer-based network for perceptual contrastive underwater image enhancement
  publication-title: IEEE Signal Processing: Image Communication
– start-page: 624
  year: 2017
  end-page: 632
  ident: Bib0033
  article-title: Deep Laplacian pyramid networks for fast and accurate super-resolution
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/CVPR.2017.618
– volume: 27
  start-page: 379
  issue: 1
  year: 2017
  end-page: 393
  ident: Bib0039
  article-title: Color balance and fusion for underwater image enhancement
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2017.2759252
– start-page: 465
  year: 2022
  end-page: 482
  ident: Bib0045
  article-title: Uncertainty inspired underwater image enhancement
  publication-title: Proceedings of the Computer Vision (ECCV ’22)
– volume: 19
  start-page: 1
  issue: 4
  year: 2023
  end-page: 24
  ident: Bib0001
  article-title: UID2021: An underwater image dataset for evaluation of no-reference quality assessment metrics
  publication-title: ACM Transactions on Multimedia Computing, Communications, and Applications
  doi: 10.1145/3578584
– volume: 71
  year: 2022
  ident: Bib0009
  article-title: Pedestrian detection using stationary wavelet dilated residual super-resolution
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 20
  start-page: 1
  issue: 5
  year: 2024
  end-page: 18
  ident: Bib0002
  article-title: Context-detail-aware united network for single image deraining
  publication-title: ACM Transactions on Multimedia Computing Communications and Applications
– volume: 8
  start-page: 197448
  year: 2020
  end-page: 197462
  ident: Bib0041
  article-title: A hybrid framework for underwater image enhancement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3034275
– volume: 30
  start-page: 4985
  issue: 11
  year: 2021
  end-page: 5000
  ident: Bib0016
  article-title: Underwater image enhancement via medium transmission-guided multi-color space embedding
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2021.3076367
– volume: 29
  start-page: 4376
  issue: 11
  year: 2019
  end-page: 4389
  ident: Bib0025
  article-title: An underwater image enhancement benchmark dataset and beyond
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2019.2955241
– volume: 30
  start-page: 934
  year: 2021
  end-page: 947
  ident: Bib0006
  article-title: Ratio-and-scale-aware YOLO for pedestrian detection
  publication-title: IEEE Transactions on Image Processing
– volume: 20
  start-page: 209
  issue: 3
  year: 2012
  end-page: 212
  ident: Bib0042
  article-title: Making a “completely blind” image quality analyzer
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2012.2227726
– volume: 45
  start-page: 15979
  issue: 12
  year: 2023
  end-page: 15995
  ident: Bib0003
  article-title: Wavelet approximation-aware residual network for single image deraining
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 25
  start-page: 323
  issue: 3
  year: 2018
  end-page: 327
  ident: Bib0010
  article-title: Emerging from water: Underwater image color correction based on weakly supervised color transfer
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2018.2804246
– volume: 31
  start-page: 5442
  year: 2022
  end-page: 5455
  ident: Bib0051
  article-title: Underwater image enhancement with hyper-laplacian reflectance priors
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2022.3196546
– volume: 29
  start-page: 1
  year: 2023
  end-page: 9
  ident: Bib0014
  article-title: Towards realistic underwater dataset generation and color restoration
  publication-title: Proceedings of the 13th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP ’22) Article
  doi: 10.1145/3571600.3571630
– year: 2019
  ident: Bib0037
  article-title: A fusion adversarial underwater image enhancement network with a public test dataset
– volume: 60
  start-page: 1
  issue: 1
  year: 2022
  end-page: 16
  ident: Bib0017
  article-title: Reinforced Swin-Convs transformer for simultaneous underwater sensing scene image enhancement and super-resolution
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2022.3205061
– volume: 137
  year: 2023
  ident: Bib0012
  article-title: Recurrent wavelet structure-preserving residual network for single image deraining
  publication-title: Pattern Recognition
– volume: 111
  start-page: 77
  year: 2023
  end-page: 88
  ident: Bib0032
  article-title: UDAformer: Underwater image enhancement based on dual attention transformer
  publication-title: Computers & Graphics
– volume: 71
  year: 2022
  ident: Bib0005
  article-title: Detail-enhanced wavelet residual network for single image super-resolution
  publication-title: IEEE Transactions on Instrumentation and Measurement
– volume: 71
  start-page: 1
  year: 2022
  end-page: 18
  ident: Bib0031
  article-title: Underwater image enhancement via adaptive group attention-based multiscale cascade transformer
  publication-title: IEEE Transactions on Instrumentation and Measurement
  doi: 10.1109/TIM.2022.3189630.
– year: 2017
  ident: Bib0036
  article-title: Sgdr: Stochastic gradient descent with warm restarts
– year: 2024
  ident: Bib0013
  article-title: Wavelet pyramid recurrent structure-preserving attention network for single image super-resolution
  publication-title: IEEE Transactions on Neural Networks and Learning Systems.
– start-page: 10012
  year: 2021
  end-page: 10022
  ident: Bib0029
  article-title: Swin transformer: Hierarchical vision transformer using shifted windows
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  doi: 10.1109/ICCV48922.2021.00986
– volume: 5
  start-page: 3227
  issue: 2
  year: 2020
  end-page: 3234
  ident: Bib0015
  article-title: Fast underwater image enhancement for improved visual perception
  publication-title: IEEE Robotics and Automation Letters
  doi: 10.1109/LRA.2020.2974710
– volume: 33
  start-page: 2341
  issue: 12
  year: 2010
  end-page: 2353
  ident: Bib0018
  article-title: Single image haze removal using dark channel prior
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2010.168
– ident: e_1_3_1_50_2
  doi: 10.1109/TIP.2023.3244647
– ident: e_1_3_1_18_2
  doi: 10.1109/TGRS.2022.3205061
– ident: e_1_3_1_20_2
  doi: 10.1109/TIP.2011.2179666
– ident: e_1_3_1_38_2
– ident: e_1_3_1_3_2
  doi: 10.1145/3639407
– ident: e_1_3_1_21_2
  doi: 10.1109/ICCVW.2013.113
– ident: e_1_3_1_26_2
  doi: 10.1109/TIP.2019.2955241
– ident: e_1_3_1_37_2
– ident: e_1_3_1_6_2
  doi: 10.1109/TIM.2022.3192280
– ident: e_1_3_1_29_2
  doi: 10.1145/3511021
– ident: e_1_3_1_4_2
  doi: 10.1109/TPAMI.2023.3307666
– ident: e_1_3_1_19_2
  doi: 10.1109/TPAMI.2010.168
– ident: e_1_3_1_30_2
  doi: 10.1109/ICCV48922.2021.00986
– ident: e_1_3_1_31_2
  doi: 10.1016/j.image.2023.117032
– ident: e_1_3_1_11_2
  doi: 10.1109/LSP.2018.2804246
– ident: e_1_3_1_33_2
  doi: 10.1016/j.cag.2023.01.009
– ident: e_1_3_1_35_2
  doi: 10.1109/ACSSC.2003.1292216
– ident: e_1_3_1_42_2
  doi: 10.1109/ACCESS.2020.3034275
– ident: e_1_3_1_23_2
  doi: 10.1016/j.jvcir.2014.11.006
– ident: e_1_3_1_14_2
  doi: 10.1109/TNNLS.2023.3289958
– ident: e_1_3_1_16_2
  doi: 10.1109/LRA.2020.2974710
– ident: e_1_3_1_8_2
  doi: 10.1109/TITS.2023.3287574
– ident: e_1_3_1_40_2
  doi: 10.1109/TIP.2017.2759252
– ident: e_1_3_1_32_2
  doi: 10.1109/TIM.2022.3189630.
– ident: e_1_3_1_51_2
  doi: 10.1109/TCSVT.2023.3253898
– ident: e_1_3_1_36_2
  doi: 10.48550/arXiv.1906.06819
– ident: e_1_3_1_27_2
  doi: 10.1145/3489520
– ident: e_1_3_1_17_2
  doi: 10.1109/TIP.2021.3076367
– ident: e_1_3_1_39_2
  doi: 10.1109/TCSVT.2019.2963772
– ident: e_1_3_1_47_2
  doi: 10.1109/TIP.2023.3276332
– ident: e_1_3_1_22_2
  doi: 10.1109/TIP.2015.2491020
– ident: e_1_3_1_9_2
  doi: 10.1109/TIM.2022.3204081
– ident: e_1_3_1_25_2
  doi: 10.1109/TPAMI.2020.2977624
– ident: e_1_3_1_45_2
  doi: 10.1109/ICCVW54120.2021.00221
– ident: e_1_3_1_7_2
  doi: 10.1109/TIP.2020.3039574
– ident: e_1_3_1_15_2
  doi: 10.1145/3571600.3571630
– ident: e_1_3_1_46_2
  doi: 10.1007/978-3-031-19797-0_27
– ident: e_1_3_1_34_2
  doi: 10.1109/CVPR.2017.618
– ident: e_1_3_1_2_2
  doi: 10.1145/3578584
– ident: e_1_3_1_5_2
  doi: 10.1145/3592613
– start-page: 678
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_3_1_41_2
– ident: e_1_3_1_10_2
  doi: 10.1109/TIM.2022.3142061
– ident: e_1_3_1_49_2
  doi: 10.1109/TCSVT.2023.3237993
– ident: e_1_3_1_44_2
  doi: 10.1002/col.20070
– ident: e_1_3_1_28_2
  doi: 10.1109/ICIP.2017.8296508
– ident: e_1_3_1_24_2
  doi: 10.1109/TIP.2017.2663846
– ident: e_1_3_1_52_2
  doi: 10.1109/TIP.2022.3196546
– ident: e_1_3_1_48_2
  doi: 10.1109/TBC.2024.3349773
– ident: e_1_3_1_13_2
  doi: 10.1016/j.patcog.2022.109294
– ident: e_1_3_1_43_2
  doi: 10.1109/LSP.2012.2227726
– ident: e_1_3_1_12_2
  doi: 10.1016/j.patcog.2019.107038
SSID ssj0036546
Score 2.362449
Snippet Underwater images are often subject to color deviation and a loss of detail due to the absorption and scattering of light. The challenge of enhancing...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Computing methodologies
Reconstruction
SubjectTermsDisplay Computing methodologies -- Reconstruction
Title Multi-Scale and Multi-Layer Lattice Transformer for Underwater Image Enhancement
URI https://dl.acm.org/doi/10.1145/3688802
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66Xrz4FtcXOYgXiaZ59HEUH6jsiqCCe1raNEVBV9EWwV_vJE3boB7US7ebhizMFybfbOebQWgnCIqIp5SSJIwYERnlJKWFJHA60ILnWaFtH7LhZXh2Ky7u5F3T796pS8psX338qCv5D6owBrgalewfkG0XhQG4B3zhCgjD9VcYW_UsuQYzu4QJ-32QAo3eG6SlyWurq5cbZgpjJqXQNjp6T01txPMnk7BzMrk3yLcZME1J2qOh6R_RNBO3bxVs9qHVmthU9Kp0it1OYlJXfPbfirf75q2y-Xz6gYw6-ZkbHVVkVPl_QDBhlHiB8LaMS2p3DlQGJIzr_g-Nh2XU30mB5y8D7-CttdTfXbow1S94CKE6Zd2p1eYSuifTaIZBpMB6aObweDi4bo5jbtRatVraLHXgphsyop48MuKxipsFNOfCAXxYY7uIpvRkCc03rTaw87zL6MqDGoOJsQc1dlBjD2oMH7iDGluosQf1Cro9Pbk5OiOuGQZJgYGVJItyngBfzBQrilhqIXSUC66Z4oHiwEJVHGsW5KmC-SqREBlLoTId6hxiUi35KupNnid6DWGaF1zncZIr4P6ikFlk4gbFOXDbiCZpHy2BbcYvdbmTsbNYH-02thorVz_etDF5HNfadtlNxO3EZo0vU9Z__IUNNNvtr03UK18rvQWUr8y2Haifn81avQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Scale+and+Multi-Layer+Lattice+Transformer+for+Underwater+Image+Enhancement&rft.jtitle=ACM+transactions+on+multimedia+computing+communications+and+applications&rft.au=Hsu%2C+Wei-Yen&rft.au=Hsu%2C+Yu-Yu&rft.date=2024-11-14&rft.pub=ACM&rft.eissn=1551-6865&rft.volume=20&rft.issue=11&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1145%2F3688802&rft.externalDocID=3688802
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1551-6857&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1551-6857&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1551-6857&client=summon