GroomGen: A High-Quality Generative Hair Model Using Hierarchical Latent Representations

Despite recent successes in hair acquisition that fits a high-dimensional hair model to a specific input subject, generative hair models, which establish general embedding spaces for encoding, editing, and sampling diverse hairstyles, are way less explored. In this paper, we present GroomGen, the fi...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on graphics Vol. 42; no. 6; pp. 1 - 16
Main Authors Zhou, Yuxiao, Chai, Menglei, Pepe, Alessandro, Gross, Markus, Beeler, Thabo
Format Journal Article
LanguageEnglish
Published New York, NY, USA ACM 04.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite recent successes in hair acquisition that fits a high-dimensional hair model to a specific input subject, generative hair models, which establish general embedding spaces for encoding, editing, and sampling diverse hairstyles, are way less explored. In this paper, we present GroomGen, the first generative model designed for hair geometry composed of highly-detailed dense strands. Our approach is motivated by two key ideas. First, we construct hair latent spaces covering both individual strands and hairstyles. The latent spaces are compact, expressive, and well-constrained for high-quality and diverse sampling. Second, we adopt a hierarchical hair representation that parameterizes a complete hair model to three levels: single strands, sparse guide hairs, and complete dense hairs. This representation is critical to the compactness of latent spaces, the robustness of training, and the efficiency of inference. Based on this hierarchical latent representation, our proposed pipeline consists of a strand-VAE and a hairstyle-VAE that encode an individual strand and a set of guide hairs to their respective latent spaces, and a hybrid densification step that populates sparse guide hairs to a dense hair model. GroomGen not only enables novel hairstyle sampling and plausible hairstyle interpolation, but also supports interactive editing of complex hairstyles, or can serve as strong data-driven prior for hairstyle reconstruction from images. We demonstrate the superiority of our approach with qualitative examples of diverse sampled hairstyles and quantitative evaluation of generation quality regarding every single component and the entire pipeline.
AbstractList Despite recent successes in hair acquisition that fits a high-dimensional hair model to a specific input subject, generative hair models, which establish general embedding spaces for encoding, editing, and sampling diverse hairstyles, are way less explored. In this paper, we present GroomGen , the first generative model designed for hair geometry composed of highly-detailed dense strands. Our approach is motivated by two key ideas. First, we construct hair latent spaces covering both individual strands and hairstyles. The latent spaces are compact, expressive, and well-constrained for high-quality and diverse sampling. Second, we adopt a hierarchical hair representation that parameterizes a complete hair model to three levels: single strands, sparse guide hairs, and complete dense hairs. This representation is critical to the compactness of latent spaces, the robustness of training, and the efficiency of inference. Based on this hierarchical latent representation, our proposed pipeline consists of a strand-VAE and a hairstyle-VAE that encode an individual strand and a set of guide hairs to their respective latent spaces, and a hybrid densification step that populates sparse guide hairs to a dense hair model. GroomGen not only enables novel hairstyle sampling and plausible hairstyle interpolation, but also supports interactive editing of complex hairstyles, or can serve as strong data-driven prior for hairstyle reconstruction from images. We demonstrate the superiority of our approach with qualitative examples of diverse sampled hairstyles and quantitative evaluation of generation quality regarding every single component and the entire pipeline.
ArticleNumber 270
Author Beeler, Thabo
Chai, Menglei
Zhou, Yuxiao
Pepe, Alessandro
Gross, Markus
Author_xml – sequence: 1
  givenname: Yuxiao
  surname: Zhou
  fullname: Zhou, Yuxiao
  email: yuxiao.zhou@inf.ethz.ch
  organization: ETH Zurich, Switzerland
– sequence: 2
  givenname: Menglei
  surname: Chai
  fullname: Chai, Menglei
  email: mengleichai@google.com
  organization: Google Inc., United States of America
– sequence: 3
  givenname: Alessandro
  surname: Pepe
  fullname: Pepe, Alessandro
  email: apepe@google.com
  organization: Google Inc., United States of America
– sequence: 4
  givenname: Markus
  surname: Gross
  fullname: Gross, Markus
  email: grossm@inf.ethz.ch
  organization: ETH Zurich, Switzerland
– sequence: 5
  givenname: Thabo
  surname: Beeler
  fullname: Beeler, Thabo
  email: tbeeler@google.com
  organization: Google Inc., Switzerland
BookMark eNptkEFLAzEQhYMo2Fbx7ik3T9HJ7maT9VaKtkJFFAveltnstI1sd0uyCv33Rlo9iKd5zPvmMbwhO267lhi7kHAtZaZu0lyaFIojNpBKaaHT3ByzAegUBKQgT9kwhHcAyLMsH7C3qe-6zZTaWz7mM7dai-cPbFy_43FHHnv3SXyGzvPHrqaGL4JrVxGMlrdrZ7Hhc-yp7fkLbT2FqOJN14YzdrLEJtD5YY7Y4v7udTIT86fpw2Q8F5hkWS-MhcoQ5tImSVGbqtLWLAujKg2SbEU6MTUVpHNFCUGFURqUtdJWoYVEpiN2tc-1vgvB07LcerdBvysllN-FlIdCIin-kNbtn-09uuYf_nLPo938hv6YX39dbBE
CitedBy_id crossref_primary_10_1145_3658147
Cites_doi 10.1145/2816795.2818112
10.1145/2661229.2661284
10.1111/j.1467-8659.2012.03192.x
10.1145/1360612.1360629
10.1109/TVCG.2020.2968433
10.1145/3528223.3530116
10.1145/2897824.2925961
10.1007/978-3-031-19827-4_5
10.1145/1141911.1142012
10.1109/CVPR52729.2023.01224
10.1145/2766931
10.1145/3272127.3275020
10.1109/TVCG.2020.3029823
10.1145/2366145.2366165
10.1007/978-3-030-87361-5_44
10.1145/3355089.3356511
10.1145/1531326.1531362
10.1109/CVPR52688.2022.00605
10.1145/1618452.1618510
10.1109/TVCG.2016.2551242
10.1145/1015706.1015784
10.1109/CVPR.2019.00453
10.5555/3128975.3129002
10.1145/2601097.2601194
10.1145/2185520.2185613
10.1145/2461912.2462026
10.1007/978-3-030-58452-8_24
10.1145/2601097.2601211
10.1145/3272127.3275019
10.1523/JNEUROSCI.05-07-01688.1985
10.1145/2185520.2185612
10.1109/CVPR52688.2022.00158
10.1145/3072959.3073627
10.1145/1073204.1073267
10.1145/2461912.2461990
ContentType Journal Article
Copyright Owner/Author
Copyright_xml – notice: Owner/Author
DBID AAYXX
CITATION
DOI 10.1145/3618309
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-7368
EndPage 16
ExternalDocumentID 10_1145_3618309
3618309
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
F5P
FEDTE
GUFHI
HGAVV
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TWZ
UHB
UPT
WH7
XSW
ZCA
~02
AAYXX
CITATION
ID FETCH-LOGICAL-a244t-8c0b8ea61c229d8bb7c8f985b701ecbe728de9e765e2e0ba9e78a1d57c5ac0213
ISSN 0730-0301
IngestDate Thu Apr 24 23:06:46 EDT 2025
Wed Aug 27 16:38:19 EDT 2025
Mon Aug 25 17:41:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords hairstyle generation
strand-level hair modeling
Language English
License Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a244t-8c0b8ea61c229d8bb7c8f985b701ecbe728de9e765e2e0ba9e78a1d57c5ac0213
OpenAccessLink https://dl.acm.org/doi/10.1145/3618309
PageCount 16
ParticipantIDs crossref_primary_10_1145_3618309
crossref_citationtrail_10_1145_3618309
acm_primary_3618309
PublicationCentury 2000
PublicationDate 2023-12-04
PublicationDateYYYYMMDD 2023-12-04
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-04
  day: 04
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle ACM transactions on graphics
PublicationTitleAbbrev ACM TOG
PublicationYear 2023
Publisher ACM
Publisher_xml – name: ACM
References Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture for Generative Adversarial Networks. In CVPR 2019. 4401--4410.
Yuefan Shen, Changgeng Zhang, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2021. DeepSketchHair: Deep Sketch-Based 3D Hair Modeling. IEEE Trans. Vis. Comput. Graph. 27, 7 (2021), 3250--3263.
Kyle Olszewski, Duygu Ceylan, Jun Xing, Jose Echevarria, Zhili Chen, Weikai Chen, and Hao Li. 2020. Intuitive, Interactive Beard and Hair Synthesis With Generative Models. In CVPR 2020. 7444--7454.
Qing Lyu, Menglei Chai, Xiang Chen, and Kun Zhou. 2022. Real-Time Hair Simulation With Neural Interpolation. IEEE Trans. Vis. Comput. Graph. 28, 4 (2022), 1894--1905.
Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In ICML 2015, Vol. 37. 448--456.
Menglei Chai, Changxi Zheng, and Kun Zhou. 2017. Adaptive Skinning for Interactive Hair-Solid Simulation. IEEE Trans. Vis. Comput. Graph. 23, 7 (2017), 1725--1738.
Tamar Flash and Neville Hogan. 1985. The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model. Journal of Neuroscience 5, 7 (1985), 1688--1703.
Shu Liang, Xiufeng Huang, Xianyu Meng, Kunyao Chen, Linda G. Shapiro, and Ira Kemelmacher-Shlizerman. 2018. Video to fully automatic 3D hair model. ACM Trans. Graph. 37, 6 (2018), 206.
Linjie Luo, Hao Li, and Szymon Rusinkiewicz. 2013. Structure-aware hair capture. ACM Trans. Graph. 32, 4 (2013), 76:1--76:12.
Radu Alexandru Rosu, Shunsuke Saito, Ziyan Wang, Chenglei Wu, Sven Behnke, and Giljoo Nam. 2022. Neural Strands: Learning Hair Geometry and Appearance from Multi-view Images. In ECCV 2022, Vol. 13693. 73--89.
Yichen Wei, Eyal Ofek, Long Quan, and Heung-Yeung Shum. 2005. Modeling hair from multiple views. ACM Trans. Graph. 24, 3 (2005), 816--820.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In CVPR 2016. 770--778.
Menglei Chai, Lvdi Wang, Yanlin Weng, Yizhou Yu, Baining Guo, and Kun Zhou. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4 (2012), 116:1--116:8.
Keyu Wu, Yifan Ye, Lingchen Yang, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2022. NeuralHDHair: Automatic High-fidelity Hair Modeling from a Single Image Using Implicit Neural Representations. In CVPR 2022. 1516--1525.
Lvdi Wang, Yizhou Yu, Kun Zhou, and Baining Guo. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3 (2009), 56.
Zexiang Xu, Hsiang-Tao Wu, Lvdi Wang, Changxi Zheng, Xin Tong, and Yue Qi. 2014. Dynamic hair capture using spacetime optimization. ACM Trans. Graph. 33, 6 (2014), 224:1--224:11.
Sylvain Paris, Héctor M. Briceño, and François X. Sillion. 2004. Capture of hair geometry from multiple images. ACM Trans. Graph. 23, 3 (2004), 712--719.
Ziyan Wang, Giljoo Nam, Tuur Stuyck, Stephen Lombardi, Michael Zollhöfer, Jessica K. Hodgins, and Christoph Lassner. 2022. HVH: Learning a Hybrid Neural Volumetric Representation for Dynamic Hair Performance Capture. In CVPR 2022. 6133--6144.
Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In NIPS 2014. 2672--2680.
Meng Zhang, Menglei Chai, Hongzhi Wu, Hao Yang, and Kun Zhou. 2017. Adata-driven approach to four-view image-based hair modeling. ACM Trans. Graph. 36, 4 (2017), 156:1--156:11.
Tomás Lay Herrera, Arno Zinke, and Andreas Weber. 2012. Lighting hair from the inside: a thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6 (2012), 146:1--146:9.
Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and Manmohan Chandraker. 2021. Modulated Periodic Activations for Generalizable Local Functional Representations. In ICCV 2021. 14194--14203.
Tiancheng Sun, Giljoo Nam, Carlos Aliaga, Christophe Hery, and Ravi Ramamoorthi. 2021. Human Hair Inverse Rendering using Multi-View Photometric data. In EGSR 2021. 179--190.
Qing Zhang, Jing Tong, Huamin Wang, Zhigeng Pan, and Ruigang Yang. 2012. Simulation Guided Hair Dynamics Modeling from Video. Comput. Graph. Forum 31, 7 (2012), 2003--2010.
Zhiyi Kuang, Yiyang Chen, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2022. Deep-MVSHair: Deep Hair Modeling from Sparse Views. In SIGGRAPH Asia 2022. 10:1--10:8.
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV 2020, Vol. 12346. 405--421.
Lingchen Yang, Zefeng Shi, Youyi Zheng, and Kun Zhou. 2019. Dynamic hair modeling from monocular videos using deep neural networks. ACM Trans. Graph. 38, 6 (2019), 235:1--235:12.
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR 2015.
Menglei Chai, Linjie Luo, Kalyan Sunkavalli, Nathan Carr, Sunil Hadap, and Kun Zhou. 2015. High-quality hair modeling from a single portrait photo. ACM Trans. Graph. 34, 6 (2015), 204:1--204:10.
Menglei Chai, Lvdi Wang, Yanlin Weng, Xiaogang Jin, and Kun Zhou. 2013. Dynamic hair manipulation in images and videos. ACM Trans. Graph. 32, 4 (2013), 75:1--75:8.
Menglei Chai, Changxi Zheng, and Kun Zhou. 2014. A reduced model for interactive hairs. ACM Trans. Graph. 33, 4 (2014), 124:1--124:11.
Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In ICLR 2016.
Yi Zhou, Liwen Hu, Jun Xing, Weikai Chen, Han-Wei Kung, Xin Tong, and Hao Li. 2018. HairNet: Single-View Hair Reconstruction Using Convolutional Neural Networks. In ECCV 2018, Vol. 11215. 249--265.
Yujian Zheng, Zirong Jin, Moran Li, Haibin Huang, Chongyang Ma, Shuguang Cui, and Xiaoguang Han. 2023. HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for Single-View 3D Hair Modeling. In CVPR 2023. 12726--12735.
Martín Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative Adversarial Networks. In ICML 2017, Vol. 70. 214--223.
Wenzel Jakob, Jonathan T. Moon, and Steve Marschner. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5 (2009), 164.
Florence Bertails, Basile Audoly, Bernard Querleux, Frédéric Leroy, Jean Luc Lévêque, and Marie-Paule Cani. 2005. Predicting Natural Hair Shapes by Solving the Statics of Flexible Rods. In Eurographics 2005. 81--84.
Sylvain Paris, Will Chang, Oleg I. Kozhushnyan, Wojciech Jarosz, Wojciech Matusik, Matthias Zwicker, and Frédo Durand. 2008. Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3 (2008), 30.
Sebastian Winberg, Gaspard Zoss, Prashanth Chandran, Paulo F. U. Gotardo, and Derek Bradley. 2022. Facial hair tracking for high fidelity performance capture. ACM Trans. Graph. 41, 4 (2022), 165:1--165:12.
Peng Guan, Leonid Sigal, Valeria Reznitskaya, and Jessica K. Hodgins. 2012. Multi-linear Data-Driven Dynamic Hair Model with Efficient Hair-Body Collision Handling. In SCA 2012. 295--304.
Menglei Chai, Tianjia Shao, Hongzhi Wu, Yanlin Weng, and Kun Zhou. 2016. AutoHair: fully automatic hair modeling from a single image. ACM Trans. Graph. 35, 4 (2016), 116:1--116:12.
Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and Jean Luc Lévêque. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. 25, 3 (2006), 1180--1187.
Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. 2016. Instance Normalization: The Missing Ingredient for Fast Stylization. CoRR abs/1607.08022 (2016).
Shunsuke Saito, Liwen Hu, Chongyang Ma, Hikaru Ibayashi, Linjie Luo, and Hao Li. 2018. 3D hair synthesis using volumetric variational autoencoders. ACM Trans. Graph. 37, 6 (2018), 208.
Giljoo Nam, Chenglei Wu, Min H. Kim, and Yaser Sheikh. 2019. Strand-Accurate Multi-View Hair Capture. In CVPR 2019. 155--164.
Thabo Beeler, Bernd Bickel, Gioacchino Noris, Paul A. Beardsley, Steve Marschner, Robert W. Sumner, and Markus H. Gross. 2012. Coupled 3D reconstruction of sparse facial hair and skin. ACM Trans. Graph. 31, 4 (2012), 117:1--117:10.
Qiaomu Ren, Haikun Wei, and Yangang Wang. 2021. Hair Salon: A Geometric Example-Based Method to Generate 3D Hair Data. In ICIG 2021, Vol. 12890. 533--544.
Liwen Hu, Derek Bradley, Hao Li, and Thabo Beeler. 2017. Simulation-Ready Hair Capture. Comput. Graph. Forum 36, 2 (2017), 281--294.
Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In ICLR 2014.
Linjie Luo, Hao Li, Sylvain Paris, Thibaut Weise, Mark Pauly, and Szymon Rusinkiewicz. 2012. Multi-view hair capture using orientation fields. In CVPR 2012. 1490--1497.
Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2015. Single-view hair modeling using a hairstyle database. ACM Trans. Graph. 34, 4 (2015), 125:1--125:9.
Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2014. Robust hair capture using simulated examples. ACM Trans. Graph. 33, 4 (2014), 126:1--126:10.
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_20_1
e_1_2_2_2_1
e_1_2_2_43_1
e_1_2_2_8_1
He Kaiming (e_1_2_2_14_1) 2016
e_1_2_2_28_1
e_1_2_2_45_1
e_1_2_2_47_1
Ioffe Sergey (e_1_2_2_19_1) 2015; 37
Mehta Ishit (e_1_2_2_29_1) 2021
Olszewski Kyle (e_1_2_2_32_1) 2020; 2020
Diederik (e_1_2_2_23_1) 2014
Ulyanov Dmitry (e_1_2_2_41_1) 2016
e_1_2_2_38_1
e_1_2_2_11_1
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_15_1
Luo Linjie (e_1_2_2_26_1) 2012
e_1_2_2_36_1
Goodfellow Ian J. (e_1_2_2_12_1) 2014
e_1_2_2_25_1
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_7_1
Arjovsky Martín (e_1_2_2_1_1) 2017; 70
e_1_2_2_21_1
e_1_2_2_3_1
e_1_2_2_42_1
e_1_2_2_9_1
Nam Giljoo (e_1_2_2_31_1) 2019
e_1_2_2_44_1
e_1_2_2_27_1
e_1_2_2_46_1
Diederik (e_1_2_2_22_1) 2015
Zhou Yi (e_1_2_2_52_1) 2018; 11215
e_1_2_2_37_1
e_1_2_2_39_1
e_1_2_2_10_1
Sun Tiancheng (e_1_2_2_40_1) 2021
e_1_2_2_18_1
e_1_2_2_33_1
e_1_2_2_16_1
Radford Alec (e_1_2_2_35_1) 2016
Kuang Zhiyi (e_1_2_2_24_1) 2022
e_1_2_2_50_1
Guan Peng (e_1_2_2_13_1) 2012
Bertails Florence (e_1_2_2_4_1) 2005
References_xml – reference: Ziyan Wang, Giljoo Nam, Tuur Stuyck, Stephen Lombardi, Michael Zollhöfer, Jessica K. Hodgins, and Christoph Lassner. 2022. HVH: Learning a Hybrid Neural Volumetric Representation for Dynamic Hair Performance Capture. In CVPR 2022. 6133--6144.
– reference: Sebastian Winberg, Gaspard Zoss, Prashanth Chandran, Paulo F. U. Gotardo, and Derek Bradley. 2022. Facial hair tracking for high fidelity performance capture. ACM Trans. Graph. 41, 4 (2022), 165:1--165:12.
– reference: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. In CVPR 2016. 770--778.
– reference: Zhiyi Kuang, Yiyang Chen, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2022. Deep-MVSHair: Deep Hair Modeling from Sparse Views. In SIGGRAPH Asia 2022. 10:1--10:8.
– reference: Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In ICLR 2016.
– reference: Tiancheng Sun, Giljoo Nam, Carlos Aliaga, Christophe Hery, and Ravi Ramamoorthi. 2021. Human Hair Inverse Rendering using Multi-View Photometric data. In EGSR 2021. 179--190.
– reference: Yi Zhou, Liwen Hu, Jun Xing, Weikai Chen, Han-Wei Kung, Xin Tong, and Hao Li. 2018. HairNet: Single-View Hair Reconstruction Using Convolutional Neural Networks. In ECCV 2018, Vol. 11215. 249--265.
– reference: Kyle Olszewski, Duygu Ceylan, Jun Xing, Jose Echevarria, Zhili Chen, Weikai Chen, and Hao Li. 2020. Intuitive, Interactive Beard and Hair Synthesis With Generative Models. In CVPR 2020. 7444--7454.
– reference: Shunsuke Saito, Liwen Hu, Chongyang Ma, Hikaru Ibayashi, Linjie Luo, and Hao Li. 2018. 3D hair synthesis using volumetric variational autoencoders. ACM Trans. Graph. 37, 6 (2018), 208.
– reference: Tomás Lay Herrera, Arno Zinke, and Andreas Weber. 2012. Lighting hair from the inside: a thermal approach to hair reconstruction. ACM Trans. Graph. 31, 6 (2012), 146:1--146:9.
– reference: Florence Bertails, Basile Audoly, Marie-Paule Cani, Bernard Querleux, Frédéric Leroy, and Jean Luc Lévêque. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. 25, 3 (2006), 1180--1187.
– reference: Giljoo Nam, Chenglei Wu, Min H. Kim, and Yaser Sheikh. 2019. Strand-Accurate Multi-View Hair Capture. In CVPR 2019. 155--164.
– reference: Peng Guan, Leonid Sigal, Valeria Reznitskaya, and Jessica K. Hodgins. 2012. Multi-linear Data-Driven Dynamic Hair Model with Efficient Hair-Body Collision Handling. In SCA 2012. 295--304.
– reference: Qiaomu Ren, Haikun Wei, and Yangang Wang. 2021. Hair Salon: A Geometric Example-Based Method to Generate 3D Hair Data. In ICIG 2021, Vol. 12890. 533--544.
– reference: Lingchen Yang, Zefeng Shi, Youyi Zheng, and Kun Zhou. 2019. Dynamic hair modeling from monocular videos using deep neural networks. ACM Trans. Graph. 38, 6 (2019), 235:1--235:12.
– reference: Wenzel Jakob, Jonathan T. Moon, and Steve Marschner. 2009. Capturing hair assemblies fiber by fiber. ACM Trans. Graph. 28, 5 (2009), 164.
– reference: Yujian Zheng, Zirong Jin, Moran Li, Haibin Huang, Chongyang Ma, Shuguang Cui, and Xiaoguang Han. 2023. HairStep: Transfer Synthetic to Real Using Strand and Depth Maps for Single-View 3D Hair Modeling. In CVPR 2023. 12726--12735.
– reference: Menglei Chai, Linjie Luo, Kalyan Sunkavalli, Nathan Carr, Sunil Hadap, and Kun Zhou. 2015. High-quality hair modeling from a single portrait photo. ACM Trans. Graph. 34, 6 (2015), 204:1--204:10.
– reference: Tamar Flash and Neville Hogan. 1985. The Coordination of Arm Movements: An Experimentally Confirmed Mathematical Model. Journal of Neuroscience 5, 7 (1985), 1688--1703.
– reference: Menglei Chai, Tianjia Shao, Hongzhi Wu, Yanlin Weng, and Kun Zhou. 2016. AutoHair: fully automatic hair modeling from a single image. ACM Trans. Graph. 35, 4 (2016), 116:1--116:12.
– reference: Keyu Wu, Yifan Ye, Lingchen Yang, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2022. NeuralHDHair: Automatic High-fidelity Hair Modeling from a Single Image Using Implicit Neural Representations. In CVPR 2022. 1516--1525.
– reference: Qing Zhang, Jing Tong, Huamin Wang, Zhigeng Pan, and Ruigang Yang. 2012. Simulation Guided Hair Dynamics Modeling from Video. Comput. Graph. Forum 31, 7 (2012), 2003--2010.
– reference: Menglei Chai, Lvdi Wang, Yanlin Weng, Yizhou Yu, Baining Guo, and Kun Zhou. 2012. Single-view hair modeling for portrait manipulation. ACM Trans. Graph. 31, 4 (2012), 116:1--116:8.
– reference: Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In ICML 2015, Vol. 37. 448--456.
– reference: Yichen Wei, Eyal Ofek, Long Quan, and Heung-Yeung Shum. 2005. Modeling hair from multiple views. ACM Trans. Graph. 24, 3 (2005), 816--820.
– reference: Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and Manmohan Chandraker. 2021. Modulated Periodic Activations for Generalizable Local Functional Representations. In ICCV 2021. 14194--14203.
– reference: Zexiang Xu, Hsiang-Tao Wu, Lvdi Wang, Changxi Zheng, Xin Tong, and Yue Qi. 2014. Dynamic hair capture using spacetime optimization. ACM Trans. Graph. 33, 6 (2014), 224:1--224:11.
– reference: Shu Liang, Xiufeng Huang, Xianyu Meng, Kunyao Chen, Linda G. Shapiro, and Ira Kemelmacher-Shlizerman. 2018. Video to fully automatic 3D hair model. ACM Trans. Graph. 37, 6 (2018), 206.
– reference: Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2015. Single-view hair modeling using a hairstyle database. ACM Trans. Graph. 34, 4 (2015), 125:1--125:9.
– reference: Sylvain Paris, Héctor M. Briceño, and François X. Sillion. 2004. Capture of hair geometry from multiple images. ACM Trans. Graph. 23, 3 (2004), 712--719.
– reference: Liwen Hu, Derek Bradley, Hao Li, and Thabo Beeler. 2017. Simulation-Ready Hair Capture. Comput. Graph. Forum 36, 2 (2017), 281--294.
– reference: Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. 2016. Instance Normalization: The Missing Ingredient for Fast Stylization. CoRR abs/1607.08022 (2016).
– reference: Qing Lyu, Menglei Chai, Xiang Chen, and Kun Zhou. 2022. Real-Time Hair Simulation With Neural Interpolation. IEEE Trans. Vis. Comput. Graph. 28, 4 (2022), 1894--1905.
– reference: Linjie Luo, Hao Li, Sylvain Paris, Thibaut Weise, Mark Pauly, and Szymon Rusinkiewicz. 2012. Multi-view hair capture using orientation fields. In CVPR 2012. 1490--1497.
– reference: Tero Karras, Samuli Laine, and Timo Aila. 2019. A Style-Based Generator Architecture for Generative Adversarial Networks. In CVPR 2019. 4401--4410.
– reference: Menglei Chai, Changxi Zheng, and Kun Zhou. 2014. A reduced model for interactive hairs. ACM Trans. Graph. 33, 4 (2014), 124:1--124:11.
– reference: Radu Alexandru Rosu, Shunsuke Saito, Ziyan Wang, Chenglei Wu, Sven Behnke, and Giljoo Nam. 2022. Neural Strands: Learning Hair Geometry and Appearance from Multi-view Images. In ECCV 2022, Vol. 13693. 73--89.
– reference: Florence Bertails, Basile Audoly, Bernard Querleux, Frédéric Leroy, Jean Luc Lévêque, and Marie-Paule Cani. 2005. Predicting Natural Hair Shapes by Solving the Statics of Flexible Rods. In Eurographics 2005. 81--84.
– reference: Liwen Hu, Chongyang Ma, Linjie Luo, and Hao Li. 2014. Robust hair capture using simulated examples. ACM Trans. Graph. 33, 4 (2014), 126:1--126:10.
– reference: Yuefan Shen, Changgeng Zhang, Hongbo Fu, Kun Zhou, and Youyi Zheng. 2021. DeepSketchHair: Deep Sketch-Based 3D Hair Modeling. IEEE Trans. Vis. Comput. Graph. 27, 7 (2021), 3250--3263.
– reference: Menglei Chai, Changxi Zheng, and Kun Zhou. 2017. Adaptive Skinning for Interactive Hair-Solid Simulation. IEEE Trans. Vis. Comput. Graph. 23, 7 (2017), 1725--1738.
– reference: Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV 2020, Vol. 12346. 405--421.
– reference: Thabo Beeler, Bernd Bickel, Gioacchino Noris, Paul A. Beardsley, Steve Marschner, Robert W. Sumner, and Markus H. Gross. 2012. Coupled 3D reconstruction of sparse facial hair and skin. ACM Trans. Graph. 31, 4 (2012), 117:1--117:10.
– reference: Meng Zhang, Menglei Chai, Hongzhi Wu, Hao Yang, and Kun Zhou. 2017. Adata-driven approach to four-view image-based hair modeling. ACM Trans. Graph. 36, 4 (2017), 156:1--156:11.
– reference: Sylvain Paris, Will Chang, Oleg I. Kozhushnyan, Wojciech Jarosz, Wojciech Matusik, Matthias Zwicker, and Frédo Durand. 2008. Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27, 3 (2008), 30.
– reference: Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative Adversarial Nets. In NIPS 2014. 2672--2680.
– reference: Linjie Luo, Hao Li, and Szymon Rusinkiewicz. 2013. Structure-aware hair capture. ACM Trans. Graph. 32, 4 (2013), 76:1--76:12.
– reference: Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In ICLR 2014.
– reference: Menglei Chai, Lvdi Wang, Yanlin Weng, Xiaogang Jin, and Kun Zhou. 2013. Dynamic hair manipulation in images and videos. ACM Trans. Graph. 32, 4 (2013), 75:1--75:8.
– reference: Martín Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative Adversarial Networks. In ICML 2017, Vol. 70. 214--223.
– reference: Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR 2015.
– reference: Lvdi Wang, Yizhou Yu, Kun Zhou, and Baining Guo. 2009. Example-based hair geometry synthesis. ACM Trans. Graph. 28, 3 (2009), 56.
– volume-title: Deep Residual Learning for Image Recognition. In CVPR
  year: 2016
  ident: e_1_2_2_14_1
– ident: e_1_2_2_5_1
  doi: 10.1145/2816795.2818112
– ident: e_1_2_2_47_1
  doi: 10.1145/2661229.2661284
– volume: 11215
  volume-title: HairNet: Single-View Hair Reconstruction Using Convolutional Neural Networks. In ECCV
  year: 2018
  ident: e_1_2_2_52_1
– ident: e_1_2_2_50_1
  doi: 10.1111/j.1467-8659.2012.03192.x
– ident: e_1_2_2_34_1
  doi: 10.1145/1360612.1360629
– volume-title: Generative Adversarial Nets. In NIPS
  year: 2014
  ident: e_1_2_2_12_1
– volume: 37
  volume-title: ICML
  year: 2015
  ident: e_1_2_2_19_1
– ident: e_1_2_2_39_1
  doi: 10.1109/TVCG.2020.2968433
– ident: e_1_2_2_45_1
  doi: 10.1145/3528223.3530116
– volume-title: Modulated Periodic Activations for Generalizable Local Functional Representations. In ICCV
  year: 2021
  ident: e_1_2_2_29_1
– ident: e_1_2_2_6_1
  doi: 10.1145/2897824.2925961
– ident: e_1_2_2_37_1
  doi: 10.1007/978-3-031-19827-4_5
– ident: e_1_2_2_3_1
  doi: 10.1145/1141911.1142012
– ident: e_1_2_2_51_1
  doi: 10.1109/CVPR52729.2023.01224
– volume-title: Jean Luc Lévêque, and Marie-Paule Cani
  year: 2005
  ident: e_1_2_2_4_1
– ident: e_1_2_2_18_1
  doi: 10.1145/2766931
– ident: e_1_2_2_25_1
  doi: 10.1145/3272127.3275020
– volume: 70
  volume-title: Wasserstein Generative Adversarial Networks. In ICML
  year: 2017
  ident: e_1_2_2_1_1
– ident: e_1_2_2_28_1
  doi: 10.1109/TVCG.2020.3029823
– ident: e_1_2_2_15_1
  doi: 10.1145/2366145.2366165
– ident: e_1_2_2_36_1
  doi: 10.1007/978-3-030-87361-5_44
– ident: e_1_2_2_48_1
  doi: 10.1145/3355089.3356511
– ident: e_1_2_2_42_1
  doi: 10.1145/1531326.1531362
– volume: 2020
  start-page: 7444
  year: 2020
  ident: e_1_2_2_32_1
  article-title: Intuitive
  publication-title: Interactive Beard and Hair Synthesis With Generative Models. In CVPR
– ident: e_1_2_2_43_1
  doi: 10.1109/CVPR52688.2022.00605
– volume-title: CVPR
  year: 2012
  ident: e_1_2_2_26_1
– ident: e_1_2_2_20_1
  doi: 10.1145/1618452.1618510
– volume-title: SIGGRAPH Asia
  year: 2022
  ident: e_1_2_2_24_1
– volume-title: Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. In ICLR
  year: 2016
  ident: e_1_2_2_35_1
– ident: e_1_2_2_10_1
  doi: 10.1109/TVCG.2016.2551242
– ident: e_1_2_2_33_1
  doi: 10.1145/1015706.1015784
– ident: e_1_2_2_21_1
  doi: 10.1109/CVPR.2019.00453
– ident: e_1_2_2_16_1
  doi: 10.5555/3128975.3129002
– ident: e_1_2_2_17_1
  doi: 10.1145/2601097.2601194
– ident: e_1_2_2_2_1
  doi: 10.1145/2185520.2185613
– ident: e_1_2_2_27_1
  doi: 10.1145/2461912.2462026
– ident: e_1_2_2_30_1
  doi: 10.1007/978-3-030-58452-8_24
– volume-title: Kingma and Jimmy Ba
  year: 2015
  ident: e_1_2_2_22_1
– ident: e_1_2_2_9_1
  doi: 10.1145/2601097.2601211
– ident: e_1_2_2_38_1
  doi: 10.1145/3272127.3275019
– ident: e_1_2_2_11_1
  doi: 10.1523/JNEUROSCI.05-07-01688.1985
– volume-title: Multi-linear Data-Driven Dynamic Hair Model with Efficient Hair-Body Collision Handling. In SCA
  year: 2012
  ident: e_1_2_2_13_1
– ident: e_1_2_2_8_1
  doi: 10.1145/2185520.2185612
– volume-title: EGSR
  year: 2021
  ident: e_1_2_2_40_1
– ident: e_1_2_2_46_1
  doi: 10.1109/CVPR52688.2022.00158
– ident: e_1_2_2_49_1
  doi: 10.1145/3072959.3073627
– volume-title: Lempitsky
  year: 2016
  ident: e_1_2_2_41_1
– volume-title: Strand-Accurate Multi-View Hair Capture. In CVPR
  year: 2019
  ident: e_1_2_2_31_1
– ident: e_1_2_2_44_1
  doi: 10.1145/1073204.1073267
– ident: e_1_2_2_7_1
  doi: 10.1145/2461912.2461990
– volume-title: Auto-Encoding Variational Bayes. In ICLR
  year: 2014
  ident: e_1_2_2_23_1
SSID ssj0006446
Score 2.4774377
Snippet Despite recent successes in hair acquisition that fits a high-dimensional hair model to a specific input subject, generative hair models, which establish...
SourceID crossref
acm
SourceType Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Computer graphics
Computing methodologies
Parametric curve and surface models
Shape modeling
SubjectTermsDisplay Computing methodologies -- Computer graphics -- Shape modeling -- Parametric curve and surface models
Title GroomGen: A High-Quality Generative Hair Model Using Hierarchical Latent Representations
URI https://dl.acm.org/doi/10.1145/3618309
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4HDNDYQ3RjyYdoFGeI4iRNu1YBV08qBbVLFpbIdR1Qq7bSl0sZfz_OvxhQk2C5RFNmW6vf187P9vfcQOiqqOityXhHNREGyukmIbIqGUKFqzjIua3umO_5SjK6ys0k-6fXuItXSqpXv1M-_xpU8xqrwDexqomQfYNn1oPAB3sG-8AQLw_O_bHxq3N5TvXDh5UayQVxOjHufTtrqgkZidmNrns3fOoHAaGaijm0RFHOK3Ro5wFeriPWBSP4ELySnPRmbShKhrLi9X7B5riOh_Lfvy5Vl89XdTCwjzYAVCxjp7FzPOhq-1j645vZWmIwJnQrIF3E3IUS_H0mkzMo7soi5gDaI2Wu5RcYza84JZ66GTqDeLI0gFvMojRZkF4v5J9VnJisGK4CTkqpbzcIN_sYit5YeukDsfOo7PkFbKWww0j7aGn4cn1-sV3HwE-09d_gpLuDadH3vuxp_Rv2I_JnIMbncQdt-R4GHDh7PUU8vdtGzKM_kHpoEoHzAQxzDBHcwwQYm2MIEW5jgGCbYwQRvwOQFuvr86fJkRHxJDSLAj2tJqRJZalFQlaZVXUrJVdlUZS55QrWSmqdlrSvNi1ynOpECXktB65yrXChwB9lL1F8sF_oVwpQ1sLdglIpaAPFTaf7YLAN_FobVmg_QLkzP9NolTQnzPUDHYbqmymehN8VQ5tMNwwwQXjcMY2w02f93kwP0tAPoa9Rvb1b6ELzIVr7xBv8FK3RyWg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GroomGen%3A+A+High-Quality+Generative+Hair+Model+Using+Hierarchical+Latent+Representations&rft.jtitle=ACM+transactions+on+graphics&rft.au=Zhou%2C+Yuxiao&rft.au=Chai%2C+Menglei&rft.au=Pepe%2C+Alessandro&rft.au=Gross%2C+Markus&rft.date=2023-12-04&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=42&rft.issue=6&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1145%2F3618309&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3618309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon