Multi-scale Integration of Physics-Based and Data-Driven Models in Power Systems
The major subject of this paper is the introduction and testing of a new modeling paradigm necessary for enabling sustainable performance of electric energy systems. In previous work we have identified major challenges to systematically modeling distributed, non-uniform resources emerging in power g...
Saved in:
Published in | 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems pp. 129 - 137 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
Washington, DC, USA
IEEE Computer Society
17.04.2012
IEEE |
Series | ACM Conferences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The major subject of this paper is the introduction and testing of a new modeling paradigm necessary for enabling sustainable performance of electric energy systems. In previous work we have identified major challenges to systematically modeling distributed, non-uniform resources emerging in power grids. Today's modeling of electric energy systems is either entirely based on first principles which suffers significantly from the ever-increasing complexity of non-uniform devices, or is purely based on computer science data-driven approaches which lose the fundamental physical insights of electric power networks. Therefore, it is very difficult with today's modeling practices to integrate distributed non-uniform resources using both first-principle and data driven approaches in large-scale cyber-physical energy systems. In sharp contrast, this paper presents a holistic multi-scale modeling approach by combing advances from (1) physics based modeling of emerging distributed resources (e.g. wind generation and storage devices), and (2) data-driven modeling of load resources. With both physics-based models of distributed resources and data-driven models of flexible demands, key parameters are abstracted and identified from the detailed dynamical models necessary for the multi-scale power system operations. The proposed modeling framework is tested using realistic phasor measurement unit data obtained from Electric Reliability Council of Texas (ERCOT). |
---|---|
ISBN: | 9780769546957 0769546951 1467315370 9781467315371 |
DOI: | 10.1109/ICCPS.2012.21 |