MaskedMimic: Unified Physics-Based Character Control Through Masked Motion Inpainting
Crafting a single, versatile physics-based controller that can breathe life into interactive characters across a wide spectrum of scenarios represents an exciting frontier in character animation. An ideal controller should support diverse control modalities, such as sparse target keyframes, text ins...
Saved in:
Published in | ACM transactions on graphics Vol. 43; no. 6; pp. 1 - 21 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY, USA
ACM
19.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0730-0301 1557-7368 |
DOI | 10.1145/3687951 |
Cover
Abstract | Crafting a single, versatile physics-based controller that can breathe life into interactive characters across a wide spectrum of scenarios represents an exciting frontier in character animation. An ideal controller should support diverse control modalities, such as sparse target keyframes, text instructions, and scene information. While previous works have proposed physically simulated, scene-aware control models, these systems have predominantly focused on developing controllers that each specializes in a narrow set of tasks and control modalities. This work presents MaskedMimic, a novel approach that formulates physics-based character control as a general motion inpainting problem. Our key insight is to train a single unified model to synthesize motions from partial (masked) motion descriptions, such as masked keyframes, objects, text descriptions, or any combination thereof. This is achieved by leveraging motion tracking data and designing a scalable training method that can effectively utilize diverse motion descriptions to produce coherent animations. Through this process, our approach learns a physics-based controller that provides an intuitive control interface without requiring tedious reward engineering for all behaviors of interest. The resulting controller supports a wide range of control modalities and enables seamless transitions between disparate tasks. By unifying character control through motion inpainting, MaskedMimic creates versatile virtual characters. These characters can dynamically adapt to complex scenes and compose diverse motions on demand, enabling more interactive and immersive experiences. |
---|---|
AbstractList | Crafting a single, versatile physics-based controller that can breathe life into interactive characters across a wide spectrum of scenarios represents an exciting frontier in character animation. An ideal controller should support diverse control modalities, such as sparse target keyframes, text instructions, and scene information. While previous works have proposed physically simulated, scene-aware control models, these systems have predominantly focused on developing controllers that each specializes in a narrow set of tasks and control modalities. This work presents MaskedMimic, a novel approach that formulates physics-based character control as a general motion inpainting problem. Our key insight is to train a single unified model to synthesize motions from partial (masked) motion descriptions, such as masked keyframes, objects, text descriptions, or any combination thereof. This is achieved by leveraging motion tracking data and designing a scalable training method that can effectively utilize diverse motion descriptions to produce coherent animations. Through this process, our approach learns a physics-based controller that provides an intuitive control interface without requiring tedious reward engineering for all behaviors of interest. The resulting controller supports a wide range of control modalities and enables seamless transitions between disparate tasks. By unifying character control through motion inpainting, MaskedMimic creates versatile virtual characters. These characters can dynamically adapt to complex scenes and compose diverse motions on demand, enabling more interactive and immersive experiences. |
ArticleNumber | 209 |
Author | Tessler, Chen Peng, Xue Bin Guo, Yunrong Nabati, Ofir Chechik, Gal |
Author_xml | – sequence: 1 givenname: Chen orcidid: 0000-0001-6447-9864 surname: Tessler fullname: Tessler, Chen email: ctessler@nvidia.com organization: NVIDIA Research, Tel Aviv, Israel – sequence: 2 givenname: Yunrong orcidid: 0000-0001-7468-6162 surname: Guo fullname: Guo, Yunrong email: kellyg@nvidia.com organization: NVIDIA, Santa Clara, United States of America – sequence: 3 givenname: Ofir orcidid: 0009-0008-1435-3399 surname: Nabati fullname: Nabati, Ofir email: ofirnabati@gmail.com organization: NVIDIA Research, Tel Aviv, Israel – sequence: 4 givenname: Gal orcidid: 0000-0001-9164-5303 surname: Chechik fullname: Chechik, Gal email: gchechik@nvidia.com organization: NVIDIA Research, Tel Aviv, Israel – sequence: 5 givenname: Xue Bin orcidid: 0000-0002-3677-5655 surname: Peng fullname: Peng, Xue Bin email: japeng@nvidia.com organization: NVIDIA, Vancouver, Canada |
BookMark | eNo9kD1PwzAURS1UJNKC2Jm8MRns2k5sNoj4qNQIhmaObMdpDI1d2WHovyeohenq6J73hjsHMx-8BeCa4DtCGL-nuSgkJ2cgI5wXqJh4BjJcUIwwxeQCzFP6xBjnjOUZqCuVvmxbucGZB1h71znbwo_-kJxJ6EmlicpeRWVGG2EZ_BjDDm76GL63PTwewyqMLni48nvl_Oj89hKcd2qX7NUpF6B-ed6Ub2j9_roqH9dILakckWC8ZQVtKTWSYyaXUjHChNBKkAm0pDnRinGrJbNYtEZbzTSVlJuc5ILTBbg9_jUxpBRt1-yjG1Q8NAQ3v2s0pzUm8-ZoKjP8S3_lD8C_Wqs |
Cites_doi | 10.1109/ICCV48922.2021.01080 10.1145/1778765.1781157 10.1109/CVPR52729.2023.01322 10.1109/CVPR52733.2024.00075 10.1007/978-3-031-19772-7_1 10.1109/CVPR52688.2022.00509 10.1109/ICCV48922.2021.01148 10.1145/3610548.3618205 10.1109/ICCV51070.2023.01371 10.1145/3550082.3564186 10.1145/2508363.2508399 10.1145/3528223.3530067 10.1145/3618342 10.1080/10867651.1998.10487493 10.1145/1778765.1781155 10.1109/3DV62453.2024.00149 10.1145/3550454.3555434 10.1145/3588432.3591525 10.1109/CVPR46437.2021.01203 10.1145/3272127.3275108 10.1145/3588432.3591504 10.1145/3450626.3459670 10.1109/ICCV48922.2021.01118 10.1145/3528223.3530110 10.1145/3550469.3555391 10.1109/ICCV51070.2023.01354 10.1145/3618397 10.1109/ICCV51070.2023.01349 10.1145/3550469.3555411 10.1111/j.1467-8659.2008.01134.x 10.1109/ICCV51070.2023.01000 10.1109/CVPR52688.2022.01981 10.1145/3588432.3591541 10.1109/CVPR52729.2023.00054 10.1145/3197517.3201311 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1145/3687951 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1557-7368 |
EndPage | 21 |
ExternalDocumentID | 10_1145_3687951 3687951 |
GroupedDBID | --Z -DZ -~X .DC 23M 2FS 4.4 5GY 5VS 6J9 85S 8US AAKMM AALFJ AAYFX ABPPZ ACGFO ACGOD ACM ADBCU ADL ADMLS ADPZR AEBYY AENEX AENSD AETEA AFWIH AFWXC AIKLT AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CS3 F5P FEDTE GUFHI HGAVV I07 LHSKQ P1C P2P PQQKQ RNS ROL TWZ UHB UPT WH7 XSW ZCA ~02 AAYXX AEFXT AEJOY CITATION |
ID | FETCH-LOGICAL-a239t-845d473d33c9504929a41488ba81929b9361ba45eb94e08dcbeb4b3935c616853 |
ISSN | 0730-0301 |
IngestDate | Thu Jul 03 08:39:19 EDT 2025 Mon Apr 21 16:40:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | motion tracking animated character control motion capture data reinforcement learning |
Language | English |
License | This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a239t-845d473d33c9504929a41488ba81929b9361ba45eb94e08dcbeb4b3935c616853 |
ORCID | 0000-0002-3677-5655 0000-0001-9164-5303 0000-0001-6447-9864 0009-0008-1435-3399 0000-0001-7468-6162 |
OpenAccessLink | https://dl.acm.org/doi/10.1145/3687951 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1145_3687951 acm_primary_3687951 |
PublicationCentury | 2000 |
PublicationDate | 2024-12-19 |
PublicationDateYYYYMMDD | 2024-12-19 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY, USA |
PublicationPlace_xml | – name: New York, NY, USA |
PublicationTitle | ACM transactions on graphics |
PublicationTitleAbbrev | ACM TOG |
PublicationYear | 2024 |
Publisher | ACM |
Publisher_xml | – name: ACM |
References | Heyuan Yao, Zhenhua Song, Baoquan Chen, and Libin Liu. 2022. ControlVAE: Model-Based Learning of Generative Controllers for Physics-Based Characters. ACM Transactions on Graphics (TOG) 41, 6 (2022), 1--16. Martin de Lasa, Igor Mordatch, and Aaron Hertzmann. 2010. Feature-Based Locomotion Controllers. ACM Trans. Graph. 29, 4, Article 131 (jul 2010), 10 pages. 10.1145/1778765.1781157 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. 2022. Generating Diverse and Natural 3D Human Motions From Text. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 5152--5161. Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano. 2023a. Human Motion Diffusion Model. In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=SJ1kSyO2jwu Zhiyang Dou, Xuelin Chen, Qingnan Fan, Taku Komura, and Wenping Wang. 2023. C· ASE: Learning conditional adversarial skill embeddings for physics-based characters. In SIGGRAPH Asia 2023 Conference Papers. 1--11. Mathis Petrovich, Michael J. Black, and Gül Varol. 2021. Action-Conditioned 3D Human Motion Synthesis with Transformer VAE. In International Conference on Computer Vision (ICCV). Zhengyi Luo, Jinkun Cao, Kris Kitani, Weipeng Xu, et al. 2023. Perpetual humanoid control for real-time simulated avatars. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 10895--10904. Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. 2018. Deepmimic: Example-guided deep reinforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG) 37, 4 (2018), 1--14. Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris Kitani, Karsten Kreis, Sanja Fidler, and Or Litany. 2023. Trace and Pace: Controllable Pedestrian Animation via Guided Trajectory Diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 13756--13766. Jingbo Wang, Sijie Yan, Bo Dai, and Dahua Lin. 2021. Scene-aware generative network for human motion synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 12206--12215. Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010. Sampling-based Contact-rich Motion Control. ACM Transctions on Graphics 29, 4 (2010), Article 128. Kaifeng Zhao, Yan Zhang, Shaofei Wang, Thabo Beeler, and Siyu Tang. 2023. Synthesizing diverse human motions in 3d indoor scenes. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 14738--14749. Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, and Michael J Black. 2021. Stochastic scene-aware motion prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 11374--11384. Yinhuai Wang, Jing Lin, Ailing Zeng, Zhengyi Luo, Jian Zhang, and Lei Zhang. 2023. Physhoi: Physics-based imitation of dynamic human-object interaction. arXiv preprint arXiv:2312.04393 (2023). Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2022. Physics-based character controllers using conditional VAEs. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1--12. Zeqi Xiao, Tai Wang, Jingbo Wang, Jinkun Cao, Wenwei Zhang, Bo Dai, Dahua Lin, and Jiangmiao Pang. 2024. Unified Human-Scene Interaction via Prompted Chain-of-Contacts. In The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=1vCnDyQkjg Dongseok Yang, Doyeon Kim, and Sung-Hee Lee. 2021. Lobstr: Real-time lower-body pose prediction from sparse upper-body tracking signals. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 265--275. Zhengyi Luo, Shun Iwase, Ye Yuan, and Kris Kitani. 2022a. Embodied scene-aware human pose estimation. Advances in Neural Information Processing Systems 35 (2022), 6815--6828. Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 627--635. Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022. ASE: Large-scale Reusable Adversarial Skill Embeddings for Physically Simulated Characters. ACM Trans. Graph. 41, 4, Article 94 (July 2022). Andrea Dittadi, Sebastian Dziadzio, Darren Cosker, Ben Lundell, Thomas J Cashman, and Jamie Shotton. 2021. Full-body motion from a single head-mounted device: Generating smpl poses from partial observations. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 11687--11697. Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2016. beta-vae: Learning basic visual concepts with a constrained variational framework. In International conference on learning representations. Yinghao Huang, Manuel Kaufmann, Emre Aksan, Michael J Black, Otmar Hilliges, and Gerard Pons-Moll. 2018. Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--15. Jingbo Wang, Zhengyi Luo, Ye Yuan, Yixuan Li, and Bo Dai. 2024a. PACER+: On-Demand Pedestrian Animation Controller in Driving Scenarios. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 718--728. Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010a. Data-Driven Biped Control. ACM Trans. Graph. 29, 4, Article 129 (jul 2010), 8 pages. 10.1145/1778765.1781155 Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. 2024. SuperPADL: Scaling Language-Directed Physics-Based Control with Progressive Supervised Distillation. In ACM SIGGRAPH 2024 Conference Papers. 1--11. Alexander Winkler, Jungdam Won, and Yuting Ye. 2022. Questsim: Human motion tracking from sparse sensors with simulated avatars. In SIGGRAPH Asia 2022 Conference Papers. 1--8. Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. 2022. PADL: Language-Directed Physics-Based Character Control. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of Korea) (SA '22). Association for Computing Machinery, New York, NY, USA, Article 19, 9 pages. 10.1145/3550469.3555391 Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. 2021. Isaac Gym: High Performance GPU Based Physics Simulation For Robot Learning. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). https://openreview.net/forum?id=fgFBtYgJQX Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano. 2023b. Human Motion Diffusion Model. In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=SJ1kSyO2jwu Haotian Zhang, Ye Yuan, Viktor Makoviychuk, Yunrong Guo, Sanja Fidler, Xue Bin Peng, and Kayvon Fatahalian. 2023. Learning physically simulated tennis skills from broadcast videos. ACM Transactions On Graphics (TOG) 42, 4 (2023), 1--14. Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandkumar. 2024b. Voyager: An Open-Ended Embodied Agent with Large Language Models. Transactions on Machine Learning Research (2024). https://openreview.net/forum?id=ehfRiF0R3a Zhengyi Luo, Jinkun Cao, Josh Merel, Alexander Winkler, Jing Huang, Kris M. Kitani, and Weipeng Xu. 2024. Universal Humanoid Motion Representations for Physics-Based Control. In The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=OrOd8PxOO2 Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng. 2023. Calm: Conditional adversarial latent models for directable virtual characters. In ACM SIGGRAPH 2023 Conference Proceedings. 1--9. F Sebastian Grassia. 1998. Practical parameterization of rotations using the exponential map. Journal of graphics tools 3, 3 (1998), 29--48. Tingwu Wang, Yunrong Guo, Maria Shugrina, and Sanja Fidler. 2020. Unicon: Universal neural controller for physics-based character motion. arXiv preprint arXiv:2011.15119 (2020). Sirui Xu, Zhengyuan Li, Yu-Xiong Wang, and Liang-Yan Gui. 2023. Interdiff: Generating 3d human-object interactions with physics-informed diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 14928--14940. Ye Yuan and Kris Kitani. 2020. Residual force control for agile human behavior imitation and extended motion synthesis. Advances in Neural Information Processing Systems 33 (2020), 21763--21774. Abhinanda R. Punnakkal, Arjun Chandrasekaran, Nikos Athanasiou, Alejandra Quiros-Ramirez, and Michael J. Black. 2021. BABEL: Bodies, Action and Behavior with English Labels. In Proceedings IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 722--731. Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. 2023. Eureka: Human-Level Reward Design via Coding Large Language Models. In The Twelfth International Conference on Learning Representations. Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and Huaizu Jiang. 2024. Omni-Control: Control Any Joint at Any Time for Human Motion Generation. In The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=gd0lAEtWso Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010b. Data-driven biped control. ACM Trans. Graph. 29, 4, Article 129 (jul 2010), 8 pages. 10.1145/1778765.1781155 Qingxu Zhu, He Zhang, Mengting Lan, and Lei Han. 2023. Neural Categorical Priors for Physics-Based Character Control. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1--16. Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, and Artsiom Sanakoyeu. 2023. Avatars grow legs: Generating smooth human motion from sparse tracki Kingma Diederik P (e_1_2_1_16_1) 2014 e_1_2_1_60_1 e_1_2_1_41_1 e_1_2_1_45_1 Luo Zhengyi (e_1_2_1_23_1) 2021; 34 Luo Zhengyi (e_1_2_1_25_1) 2022 Xiao Zeqi (e_1_2_1_52_1) 2024 e_1_2_1_28_1 Yang Dongseok (e_1_2_1_55_1) 2021 e_1_2_1_47_1 Juravsky Jordan (e_1_2_1_15_1) 2024 Wang Yinhuai (e_1_2_1_49_1) 2023 Ross Stéphane (e_1_2_1_38_1) 2011 Schulman John (e_1_2_1_39_1) 2015 Wang Tingwu (e_1_2_1_48_1) 2020 Luo Zhengyi (e_1_2_1_22_1) 2024 Tevet Guy (e_1_2_1_42_1) 2023 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_8_1 e_1_2_1_56_1 e_1_2_1_6_1 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_33_1 Xie Yiming (e_1_2_1_53_1) 2024 e_1_2_1_14_1 e_1_2_1_37_1 e_1_2_1_58_1 e_1_2_1_18_1 Ma Yecheng Jason (e_1_2_1_26_1) 2023 Punnakkal Abhinanda R. (e_1_2_1_36_1) Wang Guanzhi (e_1_2_1_44_1) 2024 Yuan Ye (e_1_2_1_57_1) 2020; 33 e_1_2_1_40_1 Tevet Guy (e_1_2_1_43_1) 2023 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_21_1 Mnih Volodymyr (e_1_2_1_29_1) 2016 Liu Libin (e_1_2_1_20_1) 2010 Mahmood Naureen (e_1_2_1_27_1) Higgins Irina (e_1_2_1_12_1) 2016 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_5_1 e_1_2_1_3_1 Huang Yinghao (e_1_2_1_13_1) 2018; 37 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_1_1 e_1_2_1_11_1 e_1_2_1_32_1 Luo Zhengyi (e_1_2_1_24_1) 2022; 35 e_1_2_1_17_1 e_1_2_1_59_1 e_1_2_1_9_1 e_1_2_1_19_1 |
References_xml | – reference: Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black. 2019. AMASS: Archive of Motion Capture as Surface Shapes. In International Conference on Computer Vision. 5442--5451. – reference: Yiming Xie, Varun Jampani, Lei Zhong, Deqing Sun, and Huaizu Jiang. 2024. Omni-Control: Control Any Joint at Any Time for Human Motion Generation. In The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=gd0lAEtWso – reference: Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. 2022. Generating Diverse and Natural 3D Human Motions From Text. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 5152--5161. – reference: Chen Tessler, Yoni Kasten, Yunrong Guo, Shie Mannor, Gal Chechik, and Xue Bin Peng. 2023. Calm: Conditional adversarial latent models for directable virtual characters. In ACM SIGGRAPH 2023 Conference Proceedings. 1--9. – reference: Yuming Du, Robin Kips, Albert Pumarola, Sebastian Starke, Ali Thabet, and Artsiom Sanakoyeu. 2023. Avatars grow legs: Generating smooth human motion from sparse tracking inputs with diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 481--490. – reference: Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021. Amp: Adversarial motion priors for stylized physics-based character control. ACM Transactions on Graphics (TOG) 40, 4 (2021), 1--20. – reference: Zhengyi Luo, Ryo Hachiuma, Ye Yuan, and Kris Kitani. 2021. Dynamics-regulated kinematic policy for egocentric pose estimation. Advances in Neural Information Processing Systems 34 (2021), 25019--25032. – reference: Yinghao Huang, Manuel Kaufmann, Emre Aksan, Michael J Black, Otmar Hilliges, and Gerard Pons-Moll. 2018. Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1--15. – reference: Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen. 2013. Flexible Muscle-Based Locomotion for Bipedal Creatures. ACM Transactions on Graphics 32, 6 (2013). – reference: Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 2016. beta-vae: Learning basic visual concepts with a constrained variational framework. In International conference on learning representations. – reference: Zhiyang Dou, Xuelin Chen, Qingnan Fan, Taku Komura, and Wenping Wang. 2023. C· ASE: Learning conditional adversarial skill embeddings for physics-based characters. In SIGGRAPH Asia 2023 Conference Papers. 1--11. – reference: Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2022. Physics-based character controllers using conditional VAEs. ACM Transactions on Graphics (TOG) 41, 4 (2022), 1--12. – reference: Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano. 2023b. Human Motion Diffusion Model. In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=SJ1kSyO2jwu – reference: Mohamed Hassan, Yunrong Guo, Tingwu Wang, Michael Black, Sanja Fidler, and Xue Bin Peng. 2023. Synthesizing physical character-scene interactions. In ACM SIGGRAPH 2023 Conference Proceedings. 1--9. – reference: Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. 2021. Isaac Gym: High Performance GPU Based Physics Simulation For Robot Learning. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). https://openreview.net/forum?id=fgFBtYgJQX_ – reference: Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, and Haibin Ling. 2022. Expanding language-image pretrained models for general video recognition. In European Conference on Computer Vision. Springer, 1--18. – reference: Xiaozheng Zheng, Zhuo Su, Chao Wen, Zhou Xue, and Xiaojie Jin. 2023. Realistic Full-Body Tracking from Sparse Observations via Joint-Level Modeling. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 14678--14688. – reference: Zhengyi Luo, Jinkun Cao, Josh Merel, Alexander Winkler, Jing Huang, Kris M. Kitani, and Weipeng Xu. 2024. Universal Humanoid Motion Representations for Physics-Based Control. In The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=OrOd8PxOO2 – reference: Jingbo Wang, Zhengyi Luo, Ye Yuan, Yixuan Li, and Bo Dai. 2024a. PACER+: On-Demand Pedestrian Animation Controller in Driving Scenarios. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 718--728. – reference: Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010a. Data-Driven Biped Control. ACM Trans. Graph. 29, 4, Article 129 (jul 2010), 8 pages. 10.1145/1778765.1781155 – reference: Xue Bin Peng, Yunrong Guo, Lina Halper, Sergey Levine, and Sanja Fidler. 2022. ASE: Large-scale Reusable Adversarial Skill Embeddings for Physically Simulated Characters. ACM Trans. Graph. 41, 4, Article 94 (July 2022). – reference: Guy Tevet, Sigal Raab, Brian Gordon, Yoni Shafir, Daniel Cohen-or, and Amit Haim Bermano. 2023a. Human Motion Diffusion Model. In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=SJ1kSyO2jwu – reference: Mathis Petrovich, Michael J. Black, and Gül Varol. 2021. Action-Conditioned 3D Human Motion Synthesis with Transformer VAE. In International Conference on Computer Vision (ICCV). – reference: Yinhuai Wang, Jing Lin, Ailing Zeng, Zhengyi Luo, Jian Zhang, and Lei Zhang. 2023. Physhoi: Physics-based imitation of dynamic human-object interaction. arXiv preprint arXiv:2312.04393 (2023). – reference: Kaifeng Zhao, Yan Zhang, Shaofei Wang, Thabo Beeler, and Siyu Tang. 2023. Synthesizing diverse human motions in 3d indoor scenes. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 14738--14749. – reference: Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010b. Data-driven biped control. ACM Trans. Graph. 29, 4, Article 129 (jul 2010), 8 pages. 10.1145/1778765.1781155 – reference: Jingbo Wang, Yu Rong, Jingyuan Liu, Sijie Yan, Dahua Lin, and Bo Dai. 2022. Towards diverse and natural scene-aware 3d human motion synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 20460--20469. – reference: Andrea Dittadi, Sebastian Dziadzio, Darren Cosker, Ben Lundell, Thomas J Cashman, and Jamie Shotton. 2021. Full-body motion from a single head-mounted device: Generating smpl poses from partial observations. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 11687--11697. – reference: Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. 2022. PADL: Language-Directed Physics-Based Character Control. In SIGGRAPH Asia 2022 Conference Papers (Daegu, Republic of Korea) (SA '22). Association for Computing Machinery, New York, NY, USA, Article 19, 9 pages. 10.1145/3550469.3555391 – reference: Tingwu Wang, Yunrong Guo, Maria Shugrina, and Sanja Fidler. 2020. Unicon: Universal neural controller for physics-based character motion. arXiv preprint arXiv:2011.15119 (2020). – reference: Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014). – reference: Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. 2018. Deepmimic: Example-guided deep reinforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG) 37, 4 (2018), 1--14. – reference: Zhengyi Luo, Ye Yuan, and Kris M Kitani. 2022b. From Universal Humanoid Control to Automatic Physically Valid Character Creation. arXiv preprint arXiv:2206.09286 (2022). – reference: Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 627--635. – reference: Dongseok Yang, Doyeon Kim, and Sung-Hee Lee. 2021. Lobstr: Real-time lower-body pose prediction from sparse upper-body tracking signals. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 265--275. – reference: Jingbo Wang, Sijie Yan, Bo Dai, and Dahua Lin. 2021. Scene-aware generative network for human motion synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 12206--12215. – reference: Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. 2023. Eureka: Human-Level Reward Design via Coding Large Language Models. In The Twelfth International Conference on Learning Representations. – reference: Heyuan Yao, Zhenhua Song, Baoquan Chen, and Libin Liu. 2022. ControlVAE: Model-Based Learning of Generative Controllers for Physics-Based Characters. ACM Transactions on Graphics (TOG) 41, 6 (2022), 1--16. – reference: Mohamed Hassan, Duygu Ceylan, Ruben Villegas, Jun Saito, Jimei Yang, Yi Zhou, and Michael J Black. 2021. Stochastic scene-aware motion prediction. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 11374--11384. – reference: Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchronous methods for deep reinforcement learning. In International conference on machine learning. PMLR, 1928--1937. – reference: Qingxu Zhu, He Zhang, Mengting Lan, and Lei Han. 2023. Neural Categorical Priors for Physics-Based Character Control. ACM Transactions on Graphics (TOG) 42, 6 (2023), 1--16. – reference: Mohamad Diab, Julian Herrera, Bob Chernow, and Coco Mao. 2022. Stable Diffusion Prompt Book. Technical Report. – reference: Liang Pan, Jingbo Wang, Buzhen Huang, Junyu Zhang, Haofan Wang, Xu Tang, and Yangang Wang. 2024. Synthesizing physically plausible human motions in 3d scenes. In 2024 International Conference on 3D Vision (3DV). IEEE, 1498--1507. – reference: Sunmin Lee, Sebastian Starke, Yuting Ye, Jungdam Won, and Alexander Winkler. 2023. Questenvsim: Environment-aware simulated motion tracking from sparse sensors. In ACM SIGGRAPH 2023 Conference Proceedings. 1--9. – reference: Zhengyi Luo, Shun Iwase, Ye Yuan, and Kris Kitani. 2022a. Embodied scene-aware human pose estimation. Advances in Neural Information Processing Systems 35 (2022), 6815--6828. – reference: Alexander Winkler, Jungdam Won, and Yuting Ye. 2022. Questsim: Human motion tracking from sparse sensors with simulated avatars. In SIGGRAPH Asia 2022 Conference Papers. 1--8. – reference: Zhengyi Luo, Jinkun Cao, Kris Kitani, Weipeng Xu, et al. 2023. Perpetual humanoid control for real-time simulated avatars. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 10895--10904. – reference: Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandkumar. 2024b. Voyager: An Open-Ended Embodied Agent with Large Language Models. Transactions on Machine Learning Research (2024). https://openreview.net/forum?id=ehfRiF0R3a – reference: Marco Silva, Yeuhi Abe, and Jovan Popovic. 2008. Simulation of Human Motion Data using Short-Horizon Model-Predictive Control. Computer Graphics Forum 27 (04 2008), 371 -- 380. 10.1111/j.1467-8659.2008.01134.x – reference: Ye Yuan and Kris Kitani. 2020. Residual force control for agile human behavior imitation and extended motion synthesis. Advances in Neural Information Processing Systems 33 (2020), 21763--21774. – reference: Martin de Lasa, Igor Mordatch, and Aaron Hertzmann. 2010. Feature-Based Locomotion Controllers. ACM Trans. Graph. 29, 4, Article 131 (jul 2010), 10 pages. 10.1145/1778765.1781157 – reference: John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. 2015. High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 (2015). – reference: Abhinanda R. Punnakkal, Arjun Chandrasekaran, Nikos Athanasiou, Alejandra Quiros-Ramirez, and Michael J. Black. 2021. BABEL: Bodies, Action and Behavior with English Labels. In Proceedings IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 722--731. – reference: Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010. Sampling-based Contact-rich Motion Control. ACM Transctions on Graphics 29, 4 (2010), Article 128. – reference: Haotian Zhang, Ye Yuan, Viktor Makoviychuk, Yunrong Guo, Sanja Fidler, Xue Bin Peng, and Kayvon Fatahalian. 2023. Learning physically simulated tennis skills from broadcast videos. ACM Transactions On Graphics (TOG) 42, 4 (2023), 1--14. – reference: Zeqi Xiao, Tai Wang, Jingbo Wang, Jinkun Cao, Wenwei Zhang, Bo Dai, Dahua Lin, and Jiangmiao Pang. 2024. Unified Human-Scene Interaction via Prompted Chain-of-Contacts. In The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=1vCnDyQkjg – reference: Sirui Xu, Zhengyuan Li, Yu-Xiong Wang, and Liang-Yan Gui. 2023. Interdiff: Generating 3d human-object interactions with physics-informed diffusion. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 14928--14940. – reference: Davis Rempe, Zhengyi Luo, Xue Bin Peng, Ye Yuan, Kris Kitani, Karsten Kreis, Sanja Fidler, and Or Litany. 2023. Trace and Pace: Controllable Pedestrian Animation via Guided Trajectory Diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 13756--13766. – reference: Jordan Juravsky, Yunrong Guo, Sanja Fidler, and Xue Bin Peng. 2024. SuperPADL: Scaling Language-Directed Physics-Based Control with Progressive Supervised Distillation. In ACM SIGGRAPH 2024 Conference Papers. 1--11. – reference: F Sebastian Grassia. 1998. Practical parameterization of rotations using the exponential map. Journal of graphics tools 3, 3 (1998), 29--48. – reference: Deepak Gopinath, Hanbyul Joo, and Jungdam Won. 2022. Motion In-betweening for Physically Simulated Characters. In SIGGRAPH Asia 2022 Posters. 1--2. – ident: e_1_2_1_35_1 doi: 10.1109/ICCV48922.2021.01080 – ident: e_1_2_1_1_1 doi: 10.1145/1778765.1781157 – ident: e_1_2_1_37_1 doi: 10.1109/CVPR52729.2023.01322 – ident: e_1_2_1_45_1 doi: 10.1109/CVPR52733.2024.00075 – volume-title: Human Motion Diffusion Model. In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=SJ1kSyO2jwu year: 2023 ident: e_1_2_1_43_1 – volume-title: Universal Humanoid Motion Representations for Physics-Based Control. In The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=OrOd8PxOO2 year: 2024 ident: e_1_2_1_22_1 – volume: 35 start-page: 6815 year: 2022 ident: e_1_2_1_24_1 article-title: Embodied scene-aware human pose estimation publication-title: Advances in Neural Information Processing Systems – volume: 33 start-page: 21763 year: 2020 ident: e_1_2_1_57_1 article-title: Residual force control for agile human behavior imitation and extended motion synthesis publication-title: Advances in Neural Information Processing Systems – volume-title: The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=gd0lAEtWso year: 2024 ident: e_1_2_1_53_1 – ident: e_1_2_1_30_1 doi: 10.1007/978-3-031-19772-7_1 – ident: e_1_2_1_9_1 doi: 10.1109/CVPR52688.2022.00509 – ident: e_1_2_1_3_1 doi: 10.1109/ICCV48922.2021.01148 – ident: e_1_2_1_4_1 doi: 10.1145/3610548.3618205 – volume-title: Proceedings of the fourteenth international conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 627--635 year: 2011 ident: e_1_2_1_38_1 – ident: e_1_2_1_54_1 doi: 10.1109/ICCV51070.2023.01371 – ident: e_1_2_1_7_1 doi: 10.1145/3550082.3564186 – volume-title: Unicon: Universal neural controller for physics-based character motion. arXiv preprint arXiv:2011.15119 year: 2020 ident: e_1_2_1_48_1 – ident: e_1_2_1_6_1 doi: 10.1145/2508363.2508399 – volume-title: The Twelfth International Conference on Learning Representations. https://openreview.net/forum?id=1vCnDyQkjg year: 2024 ident: e_1_2_1_52_1 – ident: e_1_2_1_51_1 doi: 10.1145/3528223.3530067 – volume-title: Sampling-based Contact-rich Motion Control. ACM Transctions on Graphics 29, 4 year: 2010 ident: e_1_2_1_20_1 – ident: e_1_2_1_58_1 doi: 10.1145/3618342 – ident: e_1_2_1_8_1 doi: 10.1080/10867651.1998.10487493 – ident: e_1_2_1_18_1 doi: 10.1145/1778765.1781155 – ident: e_1_2_1_31_1 doi: 10.1109/3DV62453.2024.00149 – volume-title: High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438 year: 2015 ident: e_1_2_1_39_1 – ident: e_1_2_1_56_1 doi: 10.1145/3550454.3555434 – volume-title: Lobstr: Real-time lower-body pose prediction from sparse upper-body tracking signals. In Computer Graphics Forum year: 2021 ident: e_1_2_1_55_1 – volume-title: International Conference on Computer Vision. 5442--5451 ident: e_1_2_1_27_1 – volume-title: International conference on machine learning. PMLR year: 2016 ident: e_1_2_1_29_1 – ident: e_1_2_1_11_1 doi: 10.1145/3588432.3591525 – volume: 34 start-page: 25019 year: 2021 ident: e_1_2_1_23_1 article-title: Dynamics-regulated kinematic policy for egocentric pose estimation publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_1_47_1 doi: 10.1109/CVPR46437.2021.01203 – volume-title: Physhoi: Physics-based imitation of dynamic human-object interaction. arXiv preprint arXiv:2312.04393 year: 2023 ident: e_1_2_1_49_1 – volume: 37 start-page: 1 year: 2018 ident: e_1_2_1_13_1 article-title: Deep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time publication-title: ACM Transactions on Graphics (TOG) doi: 10.1145/3272127.3275108 – ident: e_1_2_1_17_1 doi: 10.1145/3588432.3591504 – ident: e_1_2_1_34_1 doi: 10.1145/3450626.3459670 – volume-title: Proceedings IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR). 722--731 ident: e_1_2_1_36_1 – ident: e_1_2_1_10_1 doi: 10.1109/ICCV48922.2021.01118 – ident: e_1_2_1_33_1 doi: 10.1145/3528223.3530110 – volume-title: International conference on learning representations. year: 2016 ident: e_1_2_1_12_1 – ident: e_1_2_1_14_1 doi: 10.1145/3550469.3555391 – ident: e_1_2_1_59_1 doi: 10.1109/ICCV51070.2023.01354 – ident: e_1_2_1_61_1 doi: 10.1145/3618397 – ident: e_1_2_1_19_1 doi: 10.1145/1778765.1781155 – volume-title: Human Motion Diffusion Model. In The Eleventh International Conference on Learning Representations. https://openreview.net/forum?id=SJ1kSyO2jwu year: 2023 ident: e_1_2_1_42_1 – volume-title: SuperPADL: Scaling Language-Directed Physics-Based Control with Progressive Supervised Distillation. In ACM SIGGRAPH 2024 Conference Papers. 1--11 year: 2024 ident: e_1_2_1_15_1 – volume-title: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 year: 2014 ident: e_1_2_1_16_1 – ident: e_1_2_1_60_1 doi: 10.1109/ICCV51070.2023.01349 – ident: e_1_2_1_50_1 doi: 10.1145/3550469.3555411 – ident: e_1_2_1_40_1 doi: 10.1111/j.1467-8659.2008.01134.x – ident: e_1_2_1_21_1 doi: 10.1109/ICCV51070.2023.01000 – ident: e_1_2_1_46_1 doi: 10.1109/CVPR52688.2022.01981 – ident: e_1_2_1_41_1 doi: 10.1145/3588432.3591541 – ident: e_1_2_1_5_1 doi: 10.1109/CVPR52729.2023.00054 – volume-title: From Universal Humanoid Control to Automatic Physically Valid Character Creation. arXiv preprint arXiv:2206.09286 year: 2022 ident: e_1_2_1_25_1 – volume-title: The Twelfth International Conference on Learning Representations. year: 2023 ident: e_1_2_1_26_1 – ident: e_1_2_1_28_1 – ident: e_1_2_1_32_1 doi: 10.1145/3197517.3201311 – volume-title: Voyager: An Open-Ended Embodied Agent with Large Language Models. Transactions on Machine Learning Research year: 2024 ident: e_1_2_1_44_1 |
SSID | ssj0006446 |
Score | 2.4718323 |
Snippet | Crafting a single, versatile physics-based controller that can breathe life into interactive characters across a wide spectrum of scenarios represents an... |
SourceID | crossref acm |
SourceType | Index Database Publisher |
StartPage | 1 |
SubjectTerms | Animation Computer graphics Computing methodologies Physical simulation Procedural animation |
SubjectTermsDisplay | Computing methodologies -- Computer graphics -- Animation -- Physical simulation Computing methodologies -- Computer graphics -- Animation -- Procedural animation |
Title | MaskedMimic: Unified Physics-Based Character Control Through Masked Motion Inpainting |
URI | https://dl.acm.org/doi/10.1145/3687951 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYKXOBQtVDEo6186NV0N3Ye5ralLbRq4NBdCU7IdhwRIRYEy6W_vjP2JGtUDm0v0SrZsbKeb2c-2_Ng7AO4pEK1phLg7JzAOEKhq9aKkS59pZTJSo_ZyPVpcTJT38_z82Uob8guWdgD9-vZvJL_0SrcA71iluw_aHYYFG7AZ9AvXEHDcP0rHdfm4do3dXfT4Tshf2yRUYaoTvcgPoGHasKBeijJjNl9ISx9Sr15ojj8rQMGvs3vTBf6RqSEdXJUYxuJvqd4OFwIRa6TKPkpslVKKLxappYdP4Zt2AuMN6RBcdfZWBNDCM7abogMBjl31QXLfEy_mrYislDwMDF4EyoMHa0XmA6B663oaMi65qUoZeyj05vfWKWJYJba0nHilGMW9Z_mXmFlDBiw1FS29mntbHqywtayssRT_LXJ5_rHz8FVAxkMh9n9u8asahz2I4kiaXE3CWlJ2Mf0FXtJywY-iRh4zV74-SbbSIpJbrFZgoZDTljgT7DAByxwwgInLPAozCMW-BILb9js65fp0YmgphnCZFIvRKXyRpWykdLpHJZ_mTYKlryVNVj6Tlsti7E1KvdWKz-qGme9VRYTtF0xLoC8bbPV-e3c7zAO5K5qNZJS4JnAG02lpJQj32TtWFond9kmzM3lXSyLckkztst4P1fDo5j9nvdf2XtWcJ-tL0H1lq0u7h_9O2B8C_ue9PYbquxUFg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MaskedMimic%3A+Unified+Physics-Based+Character+Control+Through+Masked+Motion+Inpainting&rft.jtitle=ACM+transactions+on+graphics&rft.au=Tessler%2C+Chen&rft.au=Guo%2C+Yunrong&rft.au=Nabati%2C+Ofir&rft.au=Chechik%2C+Gal&rft.date=2024-12-19&rft.pub=ACM&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=43&rft.issue=6&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1145%2F3687951&rft.externalDocID=3687951 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon |