Personalized Parameter Setting in Musculoskeletal Models Through Multitrajectory Optimization

Musculoskeletal models are indispensable tools in biomechanics, offering insights into muscle dynamics and joint mechanics. However, the parameters of a personalized musculoskeletal model are nonidentifiable when multiple parameters compensate for each other to produce similar force outputs, posing...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanical engineering Vol. 147; no. 8
Main Authors Jiang, Po-Hsien, Lin, Yi-Hsuan, Wang, Shiu-Min, Hsu, Wei-Li, Chan, Kuei-Yuan
Format Journal Article
LanguageEnglish
Published United States 01.08.2025
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Musculoskeletal models are indispensable tools in biomechanics, offering insights into muscle dynamics and joint mechanics. However, the parameters of a personalized musculoskeletal model are nonidentifiable when multiple parameters compensate for each other to produce similar force outputs, posing challenges to model accuracy and reliability. This study introduces a multitrajectory optimization framework integrated with subject-specific modeling to address this issue. By incorporating diverse movement tasks within a simple biceps curl context, the proposed approach narrows the parameter space, introducing constraints that can enhance model identifiability and robustness under specific conditions. Unlike traditional single-task optimization, this framework employs a dual-stage process: a global search using particle swarm optimization (PSO) to explore the solution space, followed by local refinement via Pattern Search to achieve precise parameter estimates. Applied to biceps curl tasks, this method reduced optimization convergence error by 97.9% and validation error by 99.2% on an unseen movement task compared to single-task optimization. These results highlight the framework's effectiveness in improving parameter estimation accuracy and suggest generalizability across the tested movement conditions. The integration of optimization techniques provides a promising approach for addressing challenges in musculoskeletal modeling. By improving model reliability and precision under simplified conditions, this work offers preliminary insights for potential applications in clinical rehabilitation, sports science, and ergonomic design. Future efforts will refine neuromuscular control representations and integrate dynamic subject-specific data to extend this framework's applicability beyond joint angle estimation to more complex movements and musculoskeletal outputs.
AbstractList Musculoskeletal models are indispensable tools in biomechanics, offering insights into muscle dynamics and joint mechanics. However, the parameters of a personalized musculoskeletal model are nonidentifiable when multiple parameters compensate for each other to produce similar force outputs, posing challenges to model accuracy and reliability. This study introduces a multitrajectory optimization framework integrated with subject-specific modeling to address this issue. By incorporating diverse movement tasks within a simple biceps curl context, the proposed approach narrows the parameter space, introducing constraints that can enhance model identifiability and robustness under specific conditions. Unlike traditional single-task optimization, this framework employs a dual-stage process: a global search using particle swarm optimization (PSO) to explore the solution space, followed by local refinement via Pattern Search to achieve precise parameter estimates. Applied to biceps curl tasks, this method reduced optimization convergence error by 97.9% and validation error by 99.2% on an unseen movement task compared to single-task optimization. These results highlight the framework's effectiveness in improving parameter estimation accuracy and suggest generalizability across the tested movement conditions. The integration of optimization techniques provides a promising approach for addressing challenges in musculoskeletal modeling. By improving model reliability and precision under simplified conditions, this work offers preliminary insights for potential applications in clinical rehabilitation, sports science, and ergonomic design. Future efforts will refine neuromuscular control representations and integrate dynamic subject-specific data to extend this framework's applicability beyond joint angle estimation to more complex movements and musculoskeletal outputs.
Author Jiang, Po-Hsien
Chan, Kuei-Yuan
Hsu, Wei-Li
Wang, Shiu-Min
Lin, Yi-Hsuan
Author_xml – sequence: 1
  givenname: Po-Hsien
  orcidid: 0009-0007-6008-548X
  surname: Jiang
  fullname: Jiang, Po-Hsien
  organization: National Taiwan University
– sequence: 2
  givenname: Yi-Hsuan
  surname: Lin
  fullname: Lin, Yi-Hsuan
  organization: National Taiwan University
– sequence: 3
  givenname: Shiu-Min
  surname: Wang
  fullname: Wang, Shiu-Min
  organization: National Taiwan University
– sequence: 4
  givenname: Wei-Li
  surname: Hsu
  fullname: Hsu, Wei-Li
  organization: National Taiwan University
– sequence: 5
  givenname: Kuei-Yuan
  surname: Chan
  fullname: Chan, Kuei-Yuan
  organization: Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40285492$$D View this record in MEDLINE/PubMed
BookMark eNo1j81KAzEYRYMo9kcXvoDkBaYmmWQms5SiVWhpwbqUkiZf2tTMpCSZRfv0FtTV5XDgwB2h6y50gNADJRNKqXiiE04qKRi_QkMqmCxkI-gAjVI6EEKp5OQWDThhUvCGDdHXCmIKnfLuDAavVFQtZIj4A3J23Q67Di_6pHsf0jd4yMrjRTDgE17vY-h3-4v22eWoDqBziCe8PGbXurPKLnR36MYqn-D-b8fo8_VlPX0r5svZ-_R5XihWilyUpeWaWG2FsYw1DdeGyW0DZV3V1nDOrQKpiYEL04oYWm8rTbRksqZWU83G6PG3e-y3LZjNMbpWxdPm_yf7AQdpVec
ContentType Journal Article
Copyright Copyright © 2025 by ASME.
Copyright_xml – notice: Copyright © 2025 by ASME.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1115/1.4068524
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Engineering
Forestry
EISSN 1528-8951
ExternalDocumentID 40285492
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Council
  grantid: MOST-111-2223-E-002-004-MY3
– fundername: National Taiwan University
  grantid: NTU-SPIR-114L8403
GroupedDBID ---
-~X
.DC
29J
4.4
5AI
5GY
ABJNI
ACBEA
ACGFO
ACGFS
ACKMT
ADPDT
AGNGV
ALMA_UNASSIGNED_HOLDINGS
CGR
CS3
CUY
CVF
EBS
ECM
EIF
F5P
H~9
L7B
NPM
P2P
RAI
RNS
RXW
TAE
TN5
UKR
ID FETCH-LOGICAL-a235t-33f4c0fcf5df22994cd28b9e3767fd444fae8c0de767160d17b6c0c82871fc1c2
IngestDate Wed Jun 25 03:22:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords subject-specific modeling
muscle activation
multi-trajectory optimization
parameter estimation
biomechanics
musculoskeletal modeling
non-identifiability
Language English
License Copyright © 2025 by ASME.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a235t-33f4c0fcf5df22994cd28b9e3767fd444fae8c0de767160d17b6c0c82871fc1c2
ORCID 0009-0007-6008-548X
PMID 40285492
ParticipantIDs pubmed_primary_40285492
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomechanical engineering
PublicationTitleAlternate J Biomech Eng
PublicationYear 2025
SSID ssj0011840
Score 2.4528792
Snippet Musculoskeletal models are indispensable tools in biomechanics, offering insights into muscle dynamics and joint mechanics. However, the parameters of a...
SourceID pubmed
SourceType Index Database
SubjectTerms Biomechanical Phenomena
Humans
Male
Mechanical Phenomena
Models, Biological
Movement
Muscle, Skeletal - physiology
Title Personalized Parameter Setting in Musculoskeletal Models Through Multitrajectory Optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/40285492
Volume 147
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9swFLXKJiF4mBgfgwGTH3irDPlwivM4TaAK0VGJIuABocQfwttIEW2F4Nfv3thJo4pqg5cotdsqyjl1rm_vOZeQvViHUqWxZjISsEExWrE0jyOmdSxNhgFzhnnI3s9O94KfXCVXrdZTU10yzvfly6u6kvegCmOAK6pk34Bs_aUwAOeALxwBYTj-F8b9KpJ-gbCxn2GdFXoenmtXzGyLdm-ChabD0W94uqDsEVuf_Rm1B747j5PfPma_ytz9c_sMFpB7r8ycE7aWen2UC5fo6qmdYV2LY30Kuj9k3ZGdSs1OnV3BtYXhyZSUl1XG-s5OWM_W4_CmsgBQW3Zqm8mJKKlL4-DZ4hfUSDCRelPZasV1JpueWmLOSo6mF-E-BBwicTLrBqIP9yWksPkVaDH379kZU-1qaoEswPYC-6Viksf_-YSbXm9CBVdxUF_DElmsPjezCSmDkcEK-eThoN8dJT6Tli5WyXLDW3KVLGLTVezkB6c9X0CxRm6alKE1ZainDLUFnaEMdZShnjJ0hjK0SZl1cnF8NPjRZb7DBsuiOBmzODZcBkaaRJkIAhMuVSTyVKPFj1Gcc5NpIQOl4XXYCVR4mHdkILFJQmhkKKMN8qEYFnqT0Ixz1RFZngpjsGtBzsP8UAWpDmKIkQK1Rb64O3b74GxUbqt7-XXuzDZZmpJqh3w08LvVuxAEjvNvJWR_AXUcYTU
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Parameter+Setting+in+Musculoskeletal+Models+Through+Multitrajectory+Optimization&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Jiang%2C+Po-Hsien&rft.au=Lin%2C+Yi-Hsuan&rft.au=Wang%2C+Shiu-Min&rft.au=Hsu%2C+Wei-Li&rft.date=2025-08-01&rft.eissn=1528-8951&rft.volume=147&rft.issue=8&rft_id=info:doi/10.1115%2F1.4068524&rft_id=info%3Apmid%2F40285492&rft_id=info%3Apmid%2F40285492&rft.externalDocID=40285492