Personalized Parameter Setting in Musculoskeletal Models Through Multitrajectory Optimization
Musculoskeletal models are indispensable tools in biomechanics, offering insights into muscle dynamics and joint mechanics. However, the parameters of a personalized musculoskeletal model are nonidentifiable when multiple parameters compensate for each other to produce similar force outputs, posing...
Saved in:
Published in | Journal of biomechanical engineering Vol. 147; no. 8 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.08.2025
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Musculoskeletal models are indispensable tools in biomechanics, offering insights into muscle dynamics and joint mechanics. However, the parameters of a personalized musculoskeletal model are nonidentifiable when multiple parameters compensate for each other to produce similar force outputs, posing challenges to model accuracy and reliability. This study introduces a multitrajectory optimization framework integrated with subject-specific modeling to address this issue. By incorporating diverse movement tasks within a simple biceps curl context, the proposed approach narrows the parameter space, introducing constraints that can enhance model identifiability and robustness under specific conditions. Unlike traditional single-task optimization, this framework employs a dual-stage process: a global search using particle swarm optimization (PSO) to explore the solution space, followed by local refinement via Pattern Search to achieve precise parameter estimates. Applied to biceps curl tasks, this method reduced optimization convergence error by 97.9% and validation error by 99.2% on an unseen movement task compared to single-task optimization. These results highlight the framework's effectiveness in improving parameter estimation accuracy and suggest generalizability across the tested movement conditions. The integration of optimization techniques provides a promising approach for addressing challenges in musculoskeletal modeling. By improving model reliability and precision under simplified conditions, this work offers preliminary insights for potential applications in clinical rehabilitation, sports science, and ergonomic design. Future efforts will refine neuromuscular control representations and integrate dynamic subject-specific data to extend this framework's applicability beyond joint angle estimation to more complex movements and musculoskeletal outputs. |
---|---|
AbstractList | Musculoskeletal models are indispensable tools in biomechanics, offering insights into muscle dynamics and joint mechanics. However, the parameters of a personalized musculoskeletal model are nonidentifiable when multiple parameters compensate for each other to produce similar force outputs, posing challenges to model accuracy and reliability. This study introduces a multitrajectory optimization framework integrated with subject-specific modeling to address this issue. By incorporating diverse movement tasks within a simple biceps curl context, the proposed approach narrows the parameter space, introducing constraints that can enhance model identifiability and robustness under specific conditions. Unlike traditional single-task optimization, this framework employs a dual-stage process: a global search using particle swarm optimization (PSO) to explore the solution space, followed by local refinement via Pattern Search to achieve precise parameter estimates. Applied to biceps curl tasks, this method reduced optimization convergence error by 97.9% and validation error by 99.2% on an unseen movement task compared to single-task optimization. These results highlight the framework's effectiveness in improving parameter estimation accuracy and suggest generalizability across the tested movement conditions. The integration of optimization techniques provides a promising approach for addressing challenges in musculoskeletal modeling. By improving model reliability and precision under simplified conditions, this work offers preliminary insights for potential applications in clinical rehabilitation, sports science, and ergonomic design. Future efforts will refine neuromuscular control representations and integrate dynamic subject-specific data to extend this framework's applicability beyond joint angle estimation to more complex movements and musculoskeletal outputs. |
Author | Jiang, Po-Hsien Chan, Kuei-Yuan Hsu, Wei-Li Wang, Shiu-Min Lin, Yi-Hsuan |
Author_xml | – sequence: 1 givenname: Po-Hsien orcidid: 0009-0007-6008-548X surname: Jiang fullname: Jiang, Po-Hsien organization: National Taiwan University – sequence: 2 givenname: Yi-Hsuan surname: Lin fullname: Lin, Yi-Hsuan organization: National Taiwan University – sequence: 3 givenname: Shiu-Min surname: Wang fullname: Wang, Shiu-Min organization: National Taiwan University – sequence: 4 givenname: Wei-Li surname: Hsu fullname: Hsu, Wei-Li organization: National Taiwan University – sequence: 5 givenname: Kuei-Yuan surname: Chan fullname: Chan, Kuei-Yuan organization: Department of Mechanical Engineering, National Taiwan University, Taipei 10617, Taiwan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40285492$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j81KAzEYRYMo9kcXvoDkBaYmmWQms5SiVWhpwbqUkiZf2tTMpCSZRfv0FtTV5XDgwB2h6y50gNADJRNKqXiiE04qKRi_QkMqmCxkI-gAjVI6EEKp5OQWDThhUvCGDdHXCmIKnfLuDAavVFQtZIj4A3J23Q67Di_6pHsf0jd4yMrjRTDgE17vY-h3-4v22eWoDqBziCe8PGbXurPKLnR36MYqn-D-b8fo8_VlPX0r5svZ-_R5XihWilyUpeWaWG2FsYw1DdeGyW0DZV3V1nDOrQKpiYEL04oYWm8rTbRksqZWU83G6PG3e-y3LZjNMbpWxdPm_yf7AQdpVec |
ContentType | Journal Article |
Copyright | Copyright © 2025 by ASME. |
Copyright_xml | – notice: Copyright © 2025 by ASME. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1115/1.4068524 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Medicine Engineering Forestry |
EISSN | 1528-8951 |
ExternalDocumentID | 40285492 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Council grantid: MOST-111-2223-E-002-004-MY3 – fundername: National Taiwan University grantid: NTU-SPIR-114L8403 |
GroupedDBID | --- -~X .DC 29J 4.4 5AI 5GY ABJNI ACBEA ACGFO ACGFS ACKMT ADPDT AGNGV ALMA_UNASSIGNED_HOLDINGS CGR CS3 CUY CVF EBS ECM EIF F5P H~9 L7B NPM P2P RAI RNS RXW TAE TN5 UKR |
ID | FETCH-LOGICAL-a235t-33f4c0fcf5df22994cd28b9e3767fd444fae8c0de767160d17b6c0c82871fc1c2 |
IngestDate | Wed Jun 25 03:22:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | subject-specific modeling muscle activation multi-trajectory optimization parameter estimation biomechanics musculoskeletal modeling non-identifiability |
Language | English |
License | Copyright © 2025 by ASME. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a235t-33f4c0fcf5df22994cd28b9e3767fd444fae8c0de767160d17b6c0c82871fc1c2 |
ORCID | 0009-0007-6008-548X |
PMID | 40285492 |
ParticipantIDs | pubmed_primary_40285492 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomechanical engineering |
PublicationTitleAlternate | J Biomech Eng |
PublicationYear | 2025 |
SSID | ssj0011840 |
Score | 2.4528792 |
Snippet | Musculoskeletal models are indispensable tools in biomechanics, offering insights into muscle dynamics and joint mechanics. However, the parameters of a... |
SourceID | pubmed |
SourceType | Index Database |
SubjectTerms | Biomechanical Phenomena Humans Male Mechanical Phenomena Models, Biological Movement Muscle, Skeletal - physiology |
Title | Personalized Parameter Setting in Musculoskeletal Models Through Multitrajectory Optimization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40285492 |
Volume | 147 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dT9swFLXKJiF4mBgfgwGTH3irDPlwivM4TaAK0VGJIuABocQfwttIEW2F4Nfv3thJo4pqg5cotdsqyjl1rm_vOZeQvViHUqWxZjISsEExWrE0jyOmdSxNhgFzhnnI3s9O94KfXCVXrdZTU10yzvfly6u6kvegCmOAK6pk34Bs_aUwAOeALxwBYTj-F8b9KpJ-gbCxn2GdFXoenmtXzGyLdm-ChabD0W94uqDsEVuf_Rm1B747j5PfPma_ytz9c_sMFpB7r8ycE7aWen2UC5fo6qmdYV2LY30Kuj9k3ZGdSs1OnV3BtYXhyZSUl1XG-s5OWM_W4_CmsgBQW3Zqm8mJKKlL4-DZ4hfUSDCRelPZasV1JpueWmLOSo6mF-E-BBwicTLrBqIP9yWksPkVaDH379kZU-1qaoEswPYC-6Viksf_-YSbXm9CBVdxUF_DElmsPjezCSmDkcEK-eThoN8dJT6Tli5WyXLDW3KVLGLTVezkB6c9X0CxRm6alKE1ZainDLUFnaEMdZShnjJ0hjK0SZl1cnF8NPjRZb7DBsuiOBmzODZcBkaaRJkIAhMuVSTyVKPFj1Gcc5NpIQOl4XXYCVR4mHdkILFJQmhkKKMN8qEYFnqT0Ixz1RFZngpjsGtBzsP8UAWpDmKIkQK1Rb64O3b74GxUbqt7-XXuzDZZmpJqh3w08LvVuxAEjvNvJWR_AXUcYTU |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Personalized+Parameter+Setting+in+Musculoskeletal+Models+Through+Multitrajectory+Optimization&rft.jtitle=Journal+of+biomechanical+engineering&rft.au=Jiang%2C+Po-Hsien&rft.au=Lin%2C+Yi-Hsuan&rft.au=Wang%2C+Shiu-Min&rft.au=Hsu%2C+Wei-Li&rft.date=2025-08-01&rft.eissn=1528-8951&rft.volume=147&rft.issue=8&rft_id=info:doi/10.1115%2F1.4068524&rft_id=info%3Apmid%2F40285492&rft_id=info%3Apmid%2F40285492&rft.externalDocID=40285492 |