Elementary Steps, Site Requirements, and Support Effects in Methylcyclohexane Dehydrogenation Reactions on Dispersed Pd Nanoparticles

Hydrogenation-dehydrogenation cycles enable the efficient storage, transport, and release of hydrogen via chemical means. Practical kinetic, thermodynamic, and H-density considerations make cyclic hydrocarbons the preferred organic hydrogen carriers. This study addresses the mechanism of methylcyclo...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 15; no. 2; pp. 676 - 696
Main Authors Zhang, Zhongyao, Chen, Sai, Otto, Trenton, Iglesia, Enrique
Format Journal Article
LanguageEnglish
Published American Chemical Society 17.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogenation-dehydrogenation cycles enable the efficient storage, transport, and release of hydrogen via chemical means. Practical kinetic, thermodynamic, and H-density considerations make cyclic hydrocarbons the preferred organic hydrogen carriers. This study addresses the mechanism of methylcyclohexane (MCH) dehydrogenation to toluene (TOL), through methylcyclohexene (MCHE) intermediates on Pd nanoparticles (2–11 nm diameter) dispersed on Al2O3, SiO2, MgO, and CeO2. Turnovers occur on Pd surfaces densely covered with MCH-derived intermediates differing in isomeric structure and reactivity via sequential C–H activation elementary events, irrespective of nanoparticle size or support. The kinetically relevant step shifts from the second to the first H-abstraction step in MCH as temperature increases (from 453 to 553 K). The reactivity of Pd nanoparticle surfaces is insensitive to their size but supports with more competent Lewis acid–base (LAB) pairs lead to higher rates and stronger rate enhancements (relative to SiO2) with decreasing temperatures, which reflect the lower coverages of less reactive intermediates when supports can scavenge desorbable species. These dense adlayers retain interstices within which dehydrogenation turnovers occur, but no longer expose the most distinctive low-coordination atoms prevalent on small nanoparticles, leading to the observed structure insensitivity of turnover rates. The prevalence of such adlayers leads to surfaces without the saturation hydrogen coverages expected for Pd surfaces devoid of such organic species. These mechanistic insights are consistent with (i) the elimination of support effect by titration of LAB pairs; (ii) initial rate transients that are inhibited by competent supports; (iii) the relative reactivity of metal-free supports for dehydrogenation of MCHE and methylcyclohexadienes (but not MCH); and (iv) measured kinetic effects of MCH, MCHE, and H2 on turnover rates. The support effects provide strategies for maximizing the exposure of bare atom ensembles during dehydrogenation reactions. Its conceptual impact and practical significance are not restricted to the subject reaction in this study.
AbstractList Hydrogenation-dehydrogenation cycles enable the efficient storage, transport, and release of hydrogen via chemical means. Practical kinetic, thermodynamic, and H-density considerations make cyclic hydrocarbons the preferred organic hydrogen carriers. This study addresses the mechanism of methylcyclohexane (MCH) dehydrogenation to toluene (TOL), through methylcyclohexene (MCHE) intermediates on Pd nanoparticles (2–11 nm diameter) dispersed on Al2O3, SiO2, MgO, and CeO2. Turnovers occur on Pd surfaces densely covered with MCH-derived intermediates differing in isomeric structure and reactivity via sequential C–H activation elementary events, irrespective of nanoparticle size or support. The kinetically relevant step shifts from the second to the first H-abstraction step in MCH as temperature increases (from 453 to 553 K). The reactivity of Pd nanoparticle surfaces is insensitive to their size but supports with more competent Lewis acid–base (LAB) pairs lead to higher rates and stronger rate enhancements (relative to SiO2) with decreasing temperatures, which reflect the lower coverages of less reactive intermediates when supports can scavenge desorbable species. These dense adlayers retain interstices within which dehydrogenation turnovers occur, but no longer expose the most distinctive low-coordination atoms prevalent on small nanoparticles, leading to the observed structure insensitivity of turnover rates. The prevalence of such adlayers leads to surfaces without the saturation hydrogen coverages expected for Pd surfaces devoid of such organic species. These mechanistic insights are consistent with (i) the elimination of support effect by titration of LAB pairs; (ii) initial rate transients that are inhibited by competent supports; (iii) the relative reactivity of metal-free supports for dehydrogenation of MCHE and methylcyclohexadienes (but not MCH); and (iv) measured kinetic effects of MCH, MCHE, and H2 on turnover rates. The support effects provide strategies for maximizing the exposure of bare atom ensembles during dehydrogenation reactions. Its conceptual impact and practical significance are not restricted to the subject reaction in this study.
Author Chen, Sai
Iglesia, Enrique
Zhang, Zhongyao
Otto, Trenton
AuthorAffiliation Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology
Chevron Technical Center
Shenzhen University
Purdue University
AuthorAffiliation_xml – name: Chevron Technical Center
– name: Shenzhen University
– name: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology
– name: Purdue University
Author_xml – sequence: 1
  givenname: Zhongyao
  orcidid: 0000-0001-8537-6821
  surname: Zhang
  fullname: Zhang, Zhongyao
  organization: Shenzhen University
– sequence: 2
  givenname: Sai
  surname: Chen
  fullname: Chen, Sai
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology
– sequence: 3
  givenname: Trenton
  surname: Otto
  fullname: Otto, Trenton
  organization: Chevron Technical Center
– sequence: 4
  givenname: Enrique
  orcidid: 0000-0003-4109-1001
  surname: Iglesia
  fullname: Iglesia, Enrique
  email: iglesia@.berkeley.edu, iglesia@purdue.edu
  organization: Purdue University
BookMark eNp1UMtOwzAQtFCRKKV3jv6Atjh27DhH1JaHVB6icI5cZ0NTpXawXYl8AP-NS4vEhb3sY3ZGu3OOesYaQOgyIZOE0ORKaa9VUM0k1SSjKTlBfZpwPuYp470_9Rkaer8hMVIuZEb66GvewBZMUK7DywCtH-FlHQC_wMeudj9QHClT4uWuba0LeF5VoIPHtcEPENZdozvd2DV8KgN4BuuudPYdjAq1NVFG6X3hcWxmtW_BeSjxc4kflbGtcqHWDfgLdFqpxsPwmAfo7Wb-Or0bL55u76fXi7GijIWxyKtMsozkgtI0qZQEIlKqpGQyTzMhlRSUqYoLTkTOmQaxkgmsSppXOckEYwNEDrraWe8dVEXr6m38vUhIsXey-HWyODoZKaMDJSLFxu6ciQf-v_4NI0p6yw
Cites_doi 10.1016/j.apcata.2012.03.001
10.1021/ja405004m
10.1021/acscatal.6b03299
10.1038/s41467-021-27785-5
10.1007/BF00844406
10.1021/acs.accounts.6b00474
10.1016/j.apcata.2004.08.033
10.1021/ja4093743
10.1016/j.jcat.2022.11.013
10.1252/jcej.17.39
10.1016/j.ijhydene.2019.04.068
10.1021/ef049959o
10.1016/S0021-9517(66)80013-1
10.1021/ef200829x
10.1007/BF02066954
10.1021/ja110073u
10.1016/j.fuel.2021.123063
10.1016/0021-9517(90)90297-W
10.1021/acs.jpca.6b05395
10.1016/0021-9517(74)90080-3
10.1021/ie201539v
10.1016/j.ijhydene.2016.07.167
10.1021/ja5037429
10.1021/acs.jpcc.8b10877
10.1016/j.apsusc.2020.148769
10.1016/0304-5102(88)85005-3
10.1016/S0926-860X(97)00186-5
10.1039/b805644g
10.1021/cr200346z
10.1016/j.fuproc.2007.11.010
10.1021/acs.energyfuels.0c03085
10.1016/j.energy.2019.01.103
10.1007/BF00764669
10.1039/D0CP03194A
10.1016/j.matchemphys.2022.125728
10.1016/S0926-860X(02)00539-2
10.1016/j.ijhydene.2011.03.007
10.1016/j.ijhydene.2019.04.112
10.1021/acs.jpcc.7b05987
10.1006/jcat.1998.2173
10.1038/s41929-022-00842-y
10.1002/recl.19821011003
10.1016/j.apcata.2005.05.040
10.1021/acs.jpcc.5b06677
10.1016/0021-9517(73)90309-6
10.1016/j.rser.2021.111180
10.1021/j100839a054
10.1016/j.jcat.2016.11.006
10.1016/j.rser.2020.110171
10.1016/j.ijhydene.2016.05.139
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acscatal.4c07240
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 696
ExternalDocumentID 10_1021_acscatal_4c07240
a514304041
GroupedDBID .K2
55A
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
GGK
GNL
IH9
JG~
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABLBI
CITATION
ID FETCH-LOGICAL-a233t-69f78370962241fa8e0642a883894768a8623af56506953ce6b81ebd29f907633
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Tue Jul 01 05:29:27 EDT 2025
Mon Jan 20 14:52:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cycloalkane dehydrogenation
C−H activation
nanoparticle size effect
palladium catalysts
nanoparticle-support synergy
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a233t-69f78370962241fa8e0642a883894768a8623af56506953ce6b81ebd29f907633
ORCID 0000-0001-8537-6821
0000-0003-4109-1001
PageCount 21
ParticipantIDs crossref_primary_10_1021_acscatal_4c07240
acs_journals_10_1021_acscatal_4c07240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-17
PublicationDateYYYYMMDD 2025-01-17
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-17
  day: 17
PublicationDecade 2020
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
Anslyn E. (ref53/cit53) 2006
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
Bergeret G. (ref44/cit44) 2008
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref7/cit7
References_xml – ident: ref36/cit36
  doi: 10.1016/j.apcata.2012.03.001
– ident: ref42/cit42
  doi: 10.1021/ja405004m
– ident: ref21/cit21
  doi: 10.1021/acscatal.6b03299
– ident: ref37/cit37
  doi: 10.1038/s41467-021-27785-5
– ident: ref16/cit16
  doi: 10.1007/BF00844406
– ident: ref4/cit4
  doi: 10.1021/acs.accounts.6b00474
– ident: ref28/cit28
  doi: 10.1016/j.apcata.2004.08.033
– ident: ref32/cit32
  doi: 10.1021/ja4093743
– ident: ref35/cit35
  doi: 10.1016/j.jcat.2022.11.013
– ident: ref43/cit43
  doi: 10.1252/jcej.17.39
– ident: ref3/cit3
  doi: 10.1016/j.ijhydene.2019.04.068
– ident: ref11/cit11
  doi: 10.1021/ef049959o
– ident: ref38/cit38
  doi: 10.1016/S0021-9517(66)80013-1
– ident: ref14/cit14
  doi: 10.1021/ef200829x
– ident: ref17/cit17
  doi: 10.1007/BF02066954
– ident: ref30/cit30
  doi: 10.1021/ja110073u
– ident: ref10/cit10
  doi: 10.1016/j.fuel.2021.123063
– ident: ref24/cit24
  doi: 10.1016/0021-9517(90)90297-W
– ident: ref46/cit46
  doi: 10.1021/acs.jpca.6b05395
– ident: ref39/cit39
  doi: 10.1016/0021-9517(74)90080-3
– ident: ref20/cit20
  doi: 10.1021/ie201539v
– start-page: 439
  volume-title: Handbook of Heterogeneous Catalysis
  year: 2008
  ident: ref44/cit44
– ident: ref1/cit1
  doi: 10.1016/j.ijhydene.2016.07.167
– ident: ref33/cit33
  doi: 10.1021/ja5037429
– ident: ref34/cit34
  doi: 10.1021/acs.jpcc.8b10877
– ident: ref23/cit23
  doi: 10.1016/j.apsusc.2020.148769
– ident: ref27/cit27
  doi: 10.1016/0304-5102(88)85005-3
– ident: ref31/cit31
  doi: 10.1016/S0926-860X(97)00186-5
– ident: ref7/cit7
  doi: 10.1039/b805644g
– ident: ref40/cit40
  doi: 10.1021/cr200346z
– ident: ref18/cit18
  doi: 10.1016/j.fuproc.2007.11.010
– ident: ref26/cit26
  doi: 10.1021/acs.energyfuels.0c03085
– ident: ref15/cit15
  doi: 10.1016/j.energy.2019.01.103
– ident: ref52/cit52
  doi: 10.1007/BF00764669
– ident: ref25/cit25
  doi: 10.1039/D0CP03194A
– ident: ref9/cit9
  doi: 10.1016/j.matchemphys.2022.125728
– volume-title: Modern Physical Organic Chemistry
  year: 2006
  ident: ref53/cit53
– ident: ref47/cit47
  doi: 10.1016/S0926-860X(02)00539-2
– ident: ref6/cit6
  doi: 10.1016/j.ijhydene.2011.03.007
– ident: ref13/cit13
  doi: 10.1016/j.ijhydene.2019.04.112
– ident: ref49/cit49
  doi: 10.1021/acs.jpcc.7b05987
– ident: ref29/cit29
  doi: 10.1006/jcat.1998.2173
– ident: ref51/cit51
  doi: 10.1038/s41929-022-00842-y
– ident: ref45/cit45
– ident: ref50/cit50
  doi: 10.1002/recl.19821011003
– ident: ref5/cit5
  doi: 10.1016/j.apcata.2005.05.040
– ident: ref41/cit41
  doi: 10.1021/acs.jpcc.5b06677
– ident: ref22/cit22
  doi: 10.1016/0021-9517(73)90309-6
– ident: ref2/cit2
  doi: 10.1016/j.rser.2021.111180
– ident: ref19/cit19
  doi: 10.1021/j100839a054
– ident: ref48/cit48
  doi: 10.1016/j.jcat.2016.11.006
– ident: ref8/cit8
  doi: 10.1016/j.rser.2020.110171
– ident: ref12/cit12
  doi: 10.1016/j.ijhydene.2016.05.139
SSID ssj0000456870
Score 2.4414704
Snippet Hydrogenation-dehydrogenation cycles enable the efficient storage, transport, and release of hydrogen via chemical means. Practical kinetic, thermodynamic, and...
SourceID crossref
acs
SourceType Index Database
Publisher
StartPage 676
Title Elementary Steps, Site Requirements, and Support Effects in Methylcyclohexane Dehydrogenation Reactions on Dispersed Pd Nanoparticles
URI http://dx.doi.org/10.1021/acscatal.4c07240
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA46D3rxW5xf5KAHwcy2SdP0OLbJEBRxDnYraZqw4ehk7Q7z7v_2Tdvp8AN27AehJG_zPE_y5nkRujSAIkaahIQs9glMeJzEUvsQy5RSqZ04kEW2xSPv9tn9wB982-T83MH33FupsmIlo8GUEwD-rKMNj4vACq1mq_e1nmKpiShqwwGI-cQHGlDtSv7ViMUilS1h0RKo3O2U1YmywovQ5pK8NmZ53FDvv50aV_jeXbRdcUvcLINhD63pdB9tthYl3Q7QR6dKFp_OsU3vym5wDygnftY2H7h4BLdkmmBb7BOIOS7NjTM8SvGDhjEdq7kaT4b2UIzGbT2cJ9MJhGAxvNBMeUoiw3DRHlkP8kwn-CnBMIeDOK9y8A5R_67z0uqSqg4DkR6lOeGhCaxHTsgt3hsptFUtUgggOwzkigRVRKUBaujw0KdK81i4Ok680ID05pQeoVo6SfUxwgkLtCM5Zy6TTMlAgJryqVGaMUBrIevoCvovqv6jLCq2yD03WnRqVHVqHV0vRi56K205_n33ZMU2T9GWZ4v7Oi5xgzNUy6czfQ6MI48vilD7BLYp0pg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGOMCFN-JNDnBAoqNt0rQ9ThtoPIYQGxK3Kk0TgUAdWrfDuPO_cbJuTAgkODatrCh2832OHRvgSCOKaKEzJ2Zp4OCGx51UqABtmVIqlJuGwmZb3PLWA7t6DB4r4E3uwuAkCpRU2CD-V3UB7wzH7IFGjUk3RBiag3nkIr7xt-qNzvRYxTCUyLaIQywLnADZQBmc_EmIgSRZzEDSDLZcLMP9dFY2peSlNhykNfn-rWDjv6a9Aksl0yT1sWmsQkXla7DQmDR4W4eP8zJ1vD8iJtmrOCUdJKDkXpnsYPsKh0SeEdP6E2k6GZc6LshzTtoKNfwqR_K192SuyCjSVE-jrN9Dg7TKRjHjOxMFwYfms6lIXqiM3GUEd3R01cuMvA14uDjvNlpO2ZXBET6lA4fHOjQVc2Ju0F-LSBkfRkQRUh-GzotAH4kKjcpxeRxQqXgaeSrN_FijI84p3YRq3svVFpCMhcoVnDOPCSZFGKFvFVAtFWOI3ZHYhmNcv6T8q4rEBsx9L5ksalIu6jacTBSYvI2LdPz67c4fZR7CQqvbvkluLm-vd2HRN21_Xc_xwj2oDvpDtY9cZJAeWOv7BJT62vk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gJuqL30b87IM-mDjcaNdtjwQkfhIianxbuq0NRDIIgwd89__2WgYhRhN9XLdcmt619_vtrncAZwq9iBIqsQIWuRYeeNyKhHTRlimlQtqRJ0y2RZPfvLC7N_etAO7sLgxOIkNJmQni6109SFReYcC5wnHzU6PMYttDV7QEyzpqpzlXtdae_1rRKMU3beLQn7mWi4ggD1D-JES7pThbcEsL_qWxAa_zmZm0kvfyeBSV449vRRv_PfVNWM8RJ6lOTWQLCjLdhtXarNHbDnxe5ynkwwnRSV_ZJWkjECVPUmcJm1c4JNKE6BagCNfJtORxRropeZSo6V48iXv9jr4qI0lddibJsI-GaZSOYqZ3JzKCD_WurkyeyYS0EoInO1L2PDNvF14a18-1GyvvzmCJCqUjiwfK05VzAq5RgBK-1FxG-D5CIIYkRiBXokKhgmweuDSWPPIdGSWVQCEh55TuQTHtp3IfSMI8aQvOmcMEi4XnI8dyqYolY-jDfVGCc1y_MN9dWWgC5xUnnC1qmC9qCS5mSgwH02Idv3578EeZp7DSqjfCh9vm_SGsVXT3X9uxHO8IiqPhWB4jJBlFJ8YAvwC8mt18
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elementary+Steps%2C+Site+Requirements%2C+and+Support+Effects+in+Methylcyclohexane+Dehydrogenation+Reactions+on+Dispersed+Pd+Nanoparticles&rft.jtitle=ACS+catalysis&rft.au=Zhang%2C+Zhongyao&rft.au=Chen%2C+Sai&rft.au=Otto%2C+Trenton&rft.au=Iglesia%2C+Enrique&rft.date=2025-01-17&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=15&rft.issue=2&rft.spage=676&rft.epage=696&rft_id=info:doi/10.1021%2Facscatal.4c07240&rft.externalDocID=a514304041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon