Elementary Steps, Site Requirements, and Support Effects in Methylcyclohexane Dehydrogenation Reactions on Dispersed Pd Nanoparticles
Hydrogenation-dehydrogenation cycles enable the efficient storage, transport, and release of hydrogen via chemical means. Practical kinetic, thermodynamic, and H-density considerations make cyclic hydrocarbons the preferred organic hydrogen carriers. This study addresses the mechanism of methylcyclo...
Saved in:
Published in | ACS catalysis Vol. 15; no. 2; pp. 676 - 696 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
17.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogenation-dehydrogenation cycles enable the efficient storage, transport, and release of hydrogen via chemical means. Practical kinetic, thermodynamic, and H-density considerations make cyclic hydrocarbons the preferred organic hydrogen carriers. This study addresses the mechanism of methylcyclohexane (MCH) dehydrogenation to toluene (TOL), through methylcyclohexene (MCHE) intermediates on Pd nanoparticles (2–11 nm diameter) dispersed on Al2O3, SiO2, MgO, and CeO2. Turnovers occur on Pd surfaces densely covered with MCH-derived intermediates differing in isomeric structure and reactivity via sequential C–H activation elementary events, irrespective of nanoparticle size or support. The kinetically relevant step shifts from the second to the first H-abstraction step in MCH as temperature increases (from 453 to 553 K). The reactivity of Pd nanoparticle surfaces is insensitive to their size but supports with more competent Lewis acid–base (LAB) pairs lead to higher rates and stronger rate enhancements (relative to SiO2) with decreasing temperatures, which reflect the lower coverages of less reactive intermediates when supports can scavenge desorbable species. These dense adlayers retain interstices within which dehydrogenation turnovers occur, but no longer expose the most distinctive low-coordination atoms prevalent on small nanoparticles, leading to the observed structure insensitivity of turnover rates. The prevalence of such adlayers leads to surfaces without the saturation hydrogen coverages expected for Pd surfaces devoid of such organic species. These mechanistic insights are consistent with (i) the elimination of support effect by titration of LAB pairs; (ii) initial rate transients that are inhibited by competent supports; (iii) the relative reactivity of metal-free supports for dehydrogenation of MCHE and methylcyclohexadienes (but not MCH); and (iv) measured kinetic effects of MCH, MCHE, and H2 on turnover rates. The support effects provide strategies for maximizing the exposure of bare atom ensembles during dehydrogenation reactions. Its conceptual impact and practical significance are not restricted to the subject reaction in this study. |
---|---|
AbstractList | Hydrogenation-dehydrogenation cycles enable the efficient storage, transport, and release of hydrogen via chemical means. Practical kinetic, thermodynamic, and H-density considerations make cyclic hydrocarbons the preferred organic hydrogen carriers. This study addresses the mechanism of methylcyclohexane (MCH) dehydrogenation to toluene (TOL), through methylcyclohexene (MCHE) intermediates on Pd nanoparticles (2–11 nm diameter) dispersed on Al2O3, SiO2, MgO, and CeO2. Turnovers occur on Pd surfaces densely covered with MCH-derived intermediates differing in isomeric structure and reactivity via sequential C–H activation elementary events, irrespective of nanoparticle size or support. The kinetically relevant step shifts from the second to the first H-abstraction step in MCH as temperature increases (from 453 to 553 K). The reactivity of Pd nanoparticle surfaces is insensitive to their size but supports with more competent Lewis acid–base (LAB) pairs lead to higher rates and stronger rate enhancements (relative to SiO2) with decreasing temperatures, which reflect the lower coverages of less reactive intermediates when supports can scavenge desorbable species. These dense adlayers retain interstices within which dehydrogenation turnovers occur, but no longer expose the most distinctive low-coordination atoms prevalent on small nanoparticles, leading to the observed structure insensitivity of turnover rates. The prevalence of such adlayers leads to surfaces without the saturation hydrogen coverages expected for Pd surfaces devoid of such organic species. These mechanistic insights are consistent with (i) the elimination of support effect by titration of LAB pairs; (ii) initial rate transients that are inhibited by competent supports; (iii) the relative reactivity of metal-free supports for dehydrogenation of MCHE and methylcyclohexadienes (but not MCH); and (iv) measured kinetic effects of MCH, MCHE, and H2 on turnover rates. The support effects provide strategies for maximizing the exposure of bare atom ensembles during dehydrogenation reactions. Its conceptual impact and practical significance are not restricted to the subject reaction in this study. |
Author | Chen, Sai Iglesia, Enrique Zhang, Zhongyao Otto, Trenton |
AuthorAffiliation | Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology Chevron Technical Center Shenzhen University Purdue University |
AuthorAffiliation_xml | – name: Chevron Technical Center – name: Shenzhen University – name: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology – name: Purdue University |
Author_xml | – sequence: 1 givenname: Zhongyao orcidid: 0000-0001-8537-6821 surname: Zhang fullname: Zhang, Zhongyao organization: Shenzhen University – sequence: 2 givenname: Sai surname: Chen fullname: Chen, Sai organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology – sequence: 3 givenname: Trenton surname: Otto fullname: Otto, Trenton organization: Chevron Technical Center – sequence: 4 givenname: Enrique orcidid: 0000-0003-4109-1001 surname: Iglesia fullname: Iglesia, Enrique email: iglesia@.berkeley.edu, iglesia@purdue.edu organization: Purdue University |
BookMark | eNp1UMtOwzAQtFCRKKV3jv6Atjh27DhH1JaHVB6icI5cZ0NTpXawXYl8AP-NS4vEhb3sY3ZGu3OOesYaQOgyIZOE0ORKaa9VUM0k1SSjKTlBfZpwPuYp470_9Rkaer8hMVIuZEb66GvewBZMUK7DywCtH-FlHQC_wMeudj9QHClT4uWuba0LeF5VoIPHtcEPENZdozvd2DV8KgN4BuuudPYdjAq1NVFG6X3hcWxmtW_BeSjxc4kflbGtcqHWDfgLdFqpxsPwmAfo7Wb-Or0bL55u76fXi7GijIWxyKtMsozkgtI0qZQEIlKqpGQyTzMhlRSUqYoLTkTOmQaxkgmsSppXOckEYwNEDrraWe8dVEXr6m38vUhIsXey-HWyODoZKaMDJSLFxu6ciQf-v_4NI0p6yw |
Cites_doi | 10.1016/j.apcata.2012.03.001 10.1021/ja405004m 10.1021/acscatal.6b03299 10.1038/s41467-021-27785-5 10.1007/BF00844406 10.1021/acs.accounts.6b00474 10.1016/j.apcata.2004.08.033 10.1021/ja4093743 10.1016/j.jcat.2022.11.013 10.1252/jcej.17.39 10.1016/j.ijhydene.2019.04.068 10.1021/ef049959o 10.1016/S0021-9517(66)80013-1 10.1021/ef200829x 10.1007/BF02066954 10.1021/ja110073u 10.1016/j.fuel.2021.123063 10.1016/0021-9517(90)90297-W 10.1021/acs.jpca.6b05395 10.1016/0021-9517(74)90080-3 10.1021/ie201539v 10.1016/j.ijhydene.2016.07.167 10.1021/ja5037429 10.1021/acs.jpcc.8b10877 10.1016/j.apsusc.2020.148769 10.1016/0304-5102(88)85005-3 10.1016/S0926-860X(97)00186-5 10.1039/b805644g 10.1021/cr200346z 10.1016/j.fuproc.2007.11.010 10.1021/acs.energyfuels.0c03085 10.1016/j.energy.2019.01.103 10.1007/BF00764669 10.1039/D0CP03194A 10.1016/j.matchemphys.2022.125728 10.1016/S0926-860X(02)00539-2 10.1016/j.ijhydene.2011.03.007 10.1016/j.ijhydene.2019.04.112 10.1021/acs.jpcc.7b05987 10.1006/jcat.1998.2173 10.1038/s41929-022-00842-y 10.1002/recl.19821011003 10.1016/j.apcata.2005.05.040 10.1021/acs.jpcc.5b06677 10.1016/0021-9517(73)90309-6 10.1016/j.rser.2021.111180 10.1021/j100839a054 10.1016/j.jcat.2016.11.006 10.1016/j.rser.2020.110171 10.1016/j.ijhydene.2016.05.139 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acscatal.4c07240 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 696 |
ExternalDocumentID | 10_1021_acscatal_4c07240 a514304041 |
GroupedDBID | .K2 55A 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ GGK GNL IH9 JG~ RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABLBI CITATION |
ID | FETCH-LOGICAL-a233t-69f78370962241fa8e0642a883894768a8623af56506953ce6b81ebd29f907633 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Tue Jul 01 05:29:27 EDT 2025 Mon Jan 20 14:52:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | cycloalkane dehydrogenation C−H activation nanoparticle size effect palladium catalysts nanoparticle-support synergy |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a233t-69f78370962241fa8e0642a883894768a8623af56506953ce6b81ebd29f907633 |
ORCID | 0000-0001-8537-6821 0000-0003-4109-1001 |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_1021_acscatal_4c07240 acs_journals_10_1021_acscatal_4c07240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-17 |
PublicationDateYYYYMMDD | 2025-01-17 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 Anslyn E. (ref53/cit53) 2006 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 Bergeret G. (ref44/cit44) 2008 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref36/cit36 doi: 10.1016/j.apcata.2012.03.001 – ident: ref42/cit42 doi: 10.1021/ja405004m – ident: ref21/cit21 doi: 10.1021/acscatal.6b03299 – ident: ref37/cit37 doi: 10.1038/s41467-021-27785-5 – ident: ref16/cit16 doi: 10.1007/BF00844406 – ident: ref4/cit4 doi: 10.1021/acs.accounts.6b00474 – ident: ref28/cit28 doi: 10.1016/j.apcata.2004.08.033 – ident: ref32/cit32 doi: 10.1021/ja4093743 – ident: ref35/cit35 doi: 10.1016/j.jcat.2022.11.013 – ident: ref43/cit43 doi: 10.1252/jcej.17.39 – ident: ref3/cit3 doi: 10.1016/j.ijhydene.2019.04.068 – ident: ref11/cit11 doi: 10.1021/ef049959o – ident: ref38/cit38 doi: 10.1016/S0021-9517(66)80013-1 – ident: ref14/cit14 doi: 10.1021/ef200829x – ident: ref17/cit17 doi: 10.1007/BF02066954 – ident: ref30/cit30 doi: 10.1021/ja110073u – ident: ref10/cit10 doi: 10.1016/j.fuel.2021.123063 – ident: ref24/cit24 doi: 10.1016/0021-9517(90)90297-W – ident: ref46/cit46 doi: 10.1021/acs.jpca.6b05395 – ident: ref39/cit39 doi: 10.1016/0021-9517(74)90080-3 – ident: ref20/cit20 doi: 10.1021/ie201539v – start-page: 439 volume-title: Handbook of Heterogeneous Catalysis year: 2008 ident: ref44/cit44 – ident: ref1/cit1 doi: 10.1016/j.ijhydene.2016.07.167 – ident: ref33/cit33 doi: 10.1021/ja5037429 – ident: ref34/cit34 doi: 10.1021/acs.jpcc.8b10877 – ident: ref23/cit23 doi: 10.1016/j.apsusc.2020.148769 – ident: ref27/cit27 doi: 10.1016/0304-5102(88)85005-3 – ident: ref31/cit31 doi: 10.1016/S0926-860X(97)00186-5 – ident: ref7/cit7 doi: 10.1039/b805644g – ident: ref40/cit40 doi: 10.1021/cr200346z – ident: ref18/cit18 doi: 10.1016/j.fuproc.2007.11.010 – ident: ref26/cit26 doi: 10.1021/acs.energyfuels.0c03085 – ident: ref15/cit15 doi: 10.1016/j.energy.2019.01.103 – ident: ref52/cit52 doi: 10.1007/BF00764669 – ident: ref25/cit25 doi: 10.1039/D0CP03194A – ident: ref9/cit9 doi: 10.1016/j.matchemphys.2022.125728 – volume-title: Modern Physical Organic Chemistry year: 2006 ident: ref53/cit53 – ident: ref47/cit47 doi: 10.1016/S0926-860X(02)00539-2 – ident: ref6/cit6 doi: 10.1016/j.ijhydene.2011.03.007 – ident: ref13/cit13 doi: 10.1016/j.ijhydene.2019.04.112 – ident: ref49/cit49 doi: 10.1021/acs.jpcc.7b05987 – ident: ref29/cit29 doi: 10.1006/jcat.1998.2173 – ident: ref51/cit51 doi: 10.1038/s41929-022-00842-y – ident: ref45/cit45 – ident: ref50/cit50 doi: 10.1002/recl.19821011003 – ident: ref5/cit5 doi: 10.1016/j.apcata.2005.05.040 – ident: ref41/cit41 doi: 10.1021/acs.jpcc.5b06677 – ident: ref22/cit22 doi: 10.1016/0021-9517(73)90309-6 – ident: ref2/cit2 doi: 10.1016/j.rser.2021.111180 – ident: ref19/cit19 doi: 10.1021/j100839a054 – ident: ref48/cit48 doi: 10.1016/j.jcat.2016.11.006 – ident: ref8/cit8 doi: 10.1016/j.rser.2020.110171 – ident: ref12/cit12 doi: 10.1016/j.ijhydene.2016.05.139 |
SSID | ssj0000456870 |
Score | 2.4414704 |
Snippet | Hydrogenation-dehydrogenation cycles enable the efficient storage, transport, and release of hydrogen via chemical means. Practical kinetic, thermodynamic, and... |
SourceID | crossref acs |
SourceType | Index Database Publisher |
StartPage | 676 |
Title | Elementary Steps, Site Requirements, and Support Effects in Methylcyclohexane Dehydrogenation Reactions on Dispersed Pd Nanoparticles |
URI | http://dx.doi.org/10.1021/acscatal.4c07240 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA46D3rxW5xf5KAHwcy2SdP0OLbJEBRxDnYraZqw4ehk7Q7z7v_2Tdvp8AN27AehJG_zPE_y5nkRujSAIkaahIQs9glMeJzEUvsQy5RSqZ04kEW2xSPv9tn9wB982-T83MH33FupsmIlo8GUEwD-rKMNj4vACq1mq_e1nmKpiShqwwGI-cQHGlDtSv7ViMUilS1h0RKo3O2U1YmywovQ5pK8NmZ53FDvv50aV_jeXbRdcUvcLINhD63pdB9tthYl3Q7QR6dKFp_OsU3vym5wDygnftY2H7h4BLdkmmBb7BOIOS7NjTM8SvGDhjEdq7kaT4b2UIzGbT2cJ9MJhGAxvNBMeUoiw3DRHlkP8kwn-CnBMIeDOK9y8A5R_67z0uqSqg4DkR6lOeGhCaxHTsgt3hsptFUtUgggOwzkigRVRKUBaujw0KdK81i4Ok680ID05pQeoVo6SfUxwgkLtCM5Zy6TTMlAgJryqVGaMUBrIevoCvovqv6jLCq2yD03WnRqVHVqHV0vRi56K205_n33ZMU2T9GWZ4v7Oi5xgzNUy6czfQ6MI48vilD7BLYp0pg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGOMCFN-JNDnBAoqNt0rQ9ThtoPIYQGxK3Kk0TgUAdWrfDuPO_cbJuTAgkODatrCh2832OHRvgSCOKaKEzJ2Zp4OCGx51UqABtmVIqlJuGwmZb3PLWA7t6DB4r4E3uwuAkCpRU2CD-V3UB7wzH7IFGjUk3RBiag3nkIr7xt-qNzvRYxTCUyLaIQywLnADZQBmc_EmIgSRZzEDSDLZcLMP9dFY2peSlNhykNfn-rWDjv6a9Aksl0yT1sWmsQkXla7DQmDR4W4eP8zJ1vD8iJtmrOCUdJKDkXpnsYPsKh0SeEdP6E2k6GZc6LshzTtoKNfwqR_K192SuyCjSVE-jrN9Dg7TKRjHjOxMFwYfms6lIXqiM3GUEd3R01cuMvA14uDjvNlpO2ZXBET6lA4fHOjQVc2Ju0F-LSBkfRkQRUh-GzotAH4kKjcpxeRxQqXgaeSrN_FijI84p3YRq3svVFpCMhcoVnDOPCSZFGKFvFVAtFWOI3ZHYhmNcv6T8q4rEBsx9L5ksalIu6jacTBSYvI2LdPz67c4fZR7CQqvbvkluLm-vd2HRN21_Xc_xwj2oDvpDtY9cZJAeWOv7BJT62vk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gJuqL30b87IM-mDjcaNdtjwQkfhIianxbuq0NRDIIgwd89__2WgYhRhN9XLdcmt619_vtrncAZwq9iBIqsQIWuRYeeNyKhHTRlimlQtqRJ0y2RZPfvLC7N_etAO7sLgxOIkNJmQni6109SFReYcC5wnHzU6PMYttDV7QEyzpqpzlXtdae_1rRKMU3beLQn7mWi4ggD1D-JES7pThbcEsL_qWxAa_zmZm0kvfyeBSV449vRRv_PfVNWM8RJ6lOTWQLCjLdhtXarNHbDnxe5ynkwwnRSV_ZJWkjECVPUmcJm1c4JNKE6BagCNfJtORxRropeZSo6V48iXv9jr4qI0lddibJsI-GaZSOYqZ3JzKCD_WurkyeyYS0EoInO1L2PDNvF14a18-1GyvvzmCJCqUjiwfK05VzAq5RgBK-1FxG-D5CIIYkRiBXokKhgmweuDSWPPIdGSWVQCEh55TuQTHtp3IfSMI8aQvOmcMEi4XnI8dyqYolY-jDfVGCc1y_MN9dWWgC5xUnnC1qmC9qCS5mSgwH02Idv3578EeZp7DSqjfCh9vm_SGsVXT3X9uxHO8IiqPhWB4jJBlFJ8YAvwC8mt18 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elementary+Steps%2C+Site+Requirements%2C+and+Support+Effects+in+Methylcyclohexane+Dehydrogenation+Reactions+on+Dispersed+Pd+Nanoparticles&rft.jtitle=ACS+catalysis&rft.au=Zhang%2C+Zhongyao&rft.au=Chen%2C+Sai&rft.au=Otto%2C+Trenton&rft.au=Iglesia%2C+Enrique&rft.date=2025-01-17&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=15&rft.issue=2&rft.spage=676&rft.epage=696&rft_id=info:doi/10.1021%2Facscatal.4c07240&rft.externalDocID=a514304041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |