Boundary Estimates for Bergman Polynomials in Domains with Corners

Let The asymptotic behaviour of

Saved in:
Bibliographic Details
Published inModern Trends in Constructive Function Theory Vol. 661; pp. 187 - 198
Main Author Stylianopoulos, N.
Format Book Chapter
LanguageEnglish
Published Providence, Rhode Island American Mathematical Society 31.03.2016
SeriesContemporary Mathematics
Online AccessGet full text
ISBN1470425343
9781470425340
ISSN0271-4132
1098-3627
DOI10.1090/conm/661/13282

Cover

Abstract Let The asymptotic behaviour of
AbstractList Let The asymptotic behaviour of
Author Stylianopoulos, N.
Author_xml – sequence: 1
  givenname: N.
  surname: Stylianopoulos
  fullname: Stylianopoulos, N.
  email: nikos@ucy.ac.cy
  organization: Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, 1678 Nicosia, Cyprus
BookMark eNotkD1PwzAQhg0URFq6MntkCfX52yMt5UOqBAPMlpM4NNDYJU6F-u9JKbfc8L7P6fSM0SjE4BG6BnILxJBZGUM7kxJmwKimJ2hqlAauCKeGcX2KsqGlcyapOkPjYyAYZyOUEaog5wN2gTJjmJIUtL5E05Q-yTCcUC4gQ_N53IXKdXu8TH3Tut4nXMcOz3330bqAX-NmH2LbuE3CTcD3sXVNSPin6dd4Ebvgu3SFzush9tP_PUHvD8u3xVO-enl8XtytckcZ7XMnRaGVNMQzpl0piCqZ03VVAYiKgXS18UJWHKDgUjojaqBiqHMqi1qIgk0QO97ddvF751NvfRHjV-lD37lNuXbbfvjGckNAGWIVs2D0QN0cKdemI5AsEHuwaw927WDX_tllv3d8Zzk
ContentType Book Chapter
DBID FFUUA
DEWEY 511.3/26
DOI 10.1090/conm/661/13282
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9781470429348
1470429349
EISSN 1098-3627
Editor Lubinsky, Doron S.
Simanek, Brian Z.
Hardin, Douglas P.
Editor_xml – sequence: 1
  givenname: Douglas P.
  surname: Hardin
  fullname: Hardin, Douglas P.
  organization: Vanderbilt University, Nashville, TN
– sequence: 2
  givenname: Doron S.
  surname: Lubinsky
  fullname: Lubinsky, Doron S.
  organization: Georgia Institute of Technology, Atlanta, GA
– sequence: 3
  givenname: Brian Z.
  surname: Simanek
  fullname: Simanek, Brian Z.
  organization: Vanderbilt University, Nashville, TN
EndPage 198
ExternalDocumentID EBC4901790_73_198
10_1090_conm_661_13282
GroupedDBID AABBV
AAWPO
ABARN
ABQPQ
ACLGV
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
AZZ
BBABE
CZZ
GEOUK
S5T
FFUUA
ID FETCH-LOGICAL-a232t-a65b87690e338ac507c3a8fdd115d316af9e56d411b466a95f125690426bf55b3
ISBN 1470425343
9781470425340
ISSN 0271-4132
IngestDate Thu May 29 01:14:36 EDT 2025
Thu Aug 14 15:25:12 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA331.M677 2016
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a232t-a65b87690e338ac507c3a8fdd115d316af9e56d411b466a95f125690426bf55b3
OCLC 993762188
PQID EBC4901790_73_198
PageCount 12
ParticipantIDs proquest_ebookcentralchapters_4901790_73_198
ams_ebooks_10_1090_conm_661_13282
PublicationCentury 2000
PublicationDate 20160331
2016
PublicationDateYYYYMMDD 2016-03-31
2016-01-01
PublicationDate_xml – month: 3
  year: 2016
  text: 20160331
  day: 31
PublicationDecade 2010
PublicationPlace Providence, Rhode Island
PublicationPlace_xml – name: Providence, Rhode Island
– name: United States
PublicationSeriesTitle Contemporary Mathematics
PublicationTitle Modern Trends in Constructive Function Theory
PublicationYear 2016
Publisher American Mathematical Society
Publisher_xml – name: American Mathematical Society
References Vladimir V. Andrievskii and Hans-Peter Blatt, Discrepancy of signed measures and polynomial approximation, Springer Monographs in Mathematics, Springer-Verlag, New York, 2002. MR 1871219 (2002k:30001), DOI 10.1007/978-1-4757-4999-1
G. Szegö, Über einen Satz von A. Markoff, Math. Z. 23 (1925), no. 1, 45–61 (German). MR 1544730, DOI 10.1007/BF01506220
V. V. Andrievskii, V. I. Belyi, and V. K. Dzjadyk, Conformal invariants in constructive theory of functions of complex variable, Advanced Series in Mathematical Science and Engineering, vol. 1, World Federation Publishers Company, Atlanta, GA, 1995. Translated from the Russian by D. N. Kravchuk. MR 1421773 (98j:30041)
Nikos Stylianopoulos, Strong asymptotics for Bergman polynomials over domains with corners and applications, Constr. Approx. 38 (2013), no. 1, 59–100. MR 3078274, DOI 10.1007/s00365-012-9174-y
Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706 (95b:30008), DOI 10.1007/978-3-662-02770-7
A. C. Schaeffer and G. Szegö, Polynomials whose real part is bounded on a given curve in the complex plane, Amer. J. Math. 62 (1940), 868–876. MR 0002604 (2,83a)
Dieter Gaier, The Faber operator and its boundedness, J. Approx. Theory 101 (1999), no. 2, 265–277. MR 1726457 (2000i:41028), DOI 10.1006/jath.1999.3400
V. I. Belyĭ, Conformal mappings and approximation of analytic functions in domains with quasiconformal boundary, Mat. Sb. (N.S.) 102(144) (1977), no. 3, 331–361 (Russian). MR 0460648 (57 \#641)
Igor E. Pritsker, Derivatives of Faber polynomials and Markov inequalities, J. Approx. Theory 118 (2002), no. 2, 163–174. MR 1932572 (2003g:30007), DOI 10.1006/jath.2002.3713
E. B. Saff and N. Stylianopoulos, On the zeros of asymptotically extremal polynomial sequences in the plane, J. Approx. Theory 191 (2015), 118–127. MR 3306314, DOI 10.1016/j.jat.2014.10.003
F. G. Abdullaev, On some properties of polynomials, orthogonal with respect to area, in domains of the complex plane. I, Ukraïn. Mat. Zh. 52 (2000), no. 12, 1587–1595 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 52 (2000), no. 12, 1807–1817 (2001). MR 1834619 (2002c:30005), DOI 10.1023/A:1010491406926
P. K. Suetin, Polynomials orthogonal over a region and Bieberbach polynomials, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by R. P. Boas. MR 0463793 (57 \#3732b)
R. Sherman Lehman, Development of the mapping function at an analytic corner, Pacific J. Math. 7 (1957), 1437–1449. MR 0095259 (20 \#1765)
Vilmos Totik, Christoffel functions on curves and domains, Trans. Amer. Math. Soc. 362 (2010), no. 4, 2053–2087. MR 2574887 (2011b:30006), DOI 10.1090/S0002-9947-09-05059-4
Igor E. Pritsker, Comparing norms of polynomials in one and several variables, J. Math. Anal. Appl. 216 (1997), no. 2, 685–695. MR 1489606 (98j:30002), DOI 10.1006/jmaa.1997.5699
Dieter Gaier, On a polynomial lemma of Andrievskiĭ, Arch. Math. (Basel) 49 (1987), no. 2, 119–123. MR 901822 (89d:30005), DOI 10.1007/BF01200474
References_xml – reference: Vladimir V. Andrievskii and Hans-Peter Blatt, Discrepancy of signed measures and polynomial approximation, Springer Monographs in Mathematics, Springer-Verlag, New York, 2002. MR 1871219 (2002k:30001), DOI 10.1007/978-1-4757-4999-1
– reference: Dieter Gaier, The Faber operator and its boundedness, J. Approx. Theory 101 (1999), no. 2, 265–277. MR 1726457 (2000i:41028), DOI 10.1006/jath.1999.3400
– reference: E. B. Saff and N. Stylianopoulos, On the zeros of asymptotically extremal polynomial sequences in the plane, J. Approx. Theory 191 (2015), 118–127. MR 3306314, DOI 10.1016/j.jat.2014.10.003
– reference: G. Szegö, Über einen Satz von A. Markoff, Math. Z. 23 (1925), no. 1, 45–61 (German). MR 1544730, DOI 10.1007/BF01506220
– reference: F. G. Abdullaev, On some properties of polynomials, orthogonal with respect to area, in domains of the complex plane. I, Ukraïn. Mat. Zh. 52 (2000), no. 12, 1587–1595 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 52 (2000), no. 12, 1807–1817 (2001). MR 1834619 (2002c:30005), DOI 10.1023/A:1010491406926
– reference: R. Sherman Lehman, Development of the mapping function at an analytic corner, Pacific J. Math. 7 (1957), 1437–1449. MR 0095259 (20 \#1765)
– reference: Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299, Springer-Verlag, Berlin, 1992. MR 1217706 (95b:30008), DOI 10.1007/978-3-662-02770-7
– reference: A. C. Schaeffer and G. Szegö, Polynomials whose real part is bounded on a given curve in the complex plane, Amer. J. Math. 62 (1940), 868–876. MR 0002604 (2,83a)
– reference: Vilmos Totik, Christoffel functions on curves and domains, Trans. Amer. Math. Soc. 362 (2010), no. 4, 2053–2087. MR 2574887 (2011b:30006), DOI 10.1090/S0002-9947-09-05059-4
– reference: Igor E. Pritsker, Derivatives of Faber polynomials and Markov inequalities, J. Approx. Theory 118 (2002), no. 2, 163–174. MR 1932572 (2003g:30007), DOI 10.1006/jath.2002.3713
– reference: V. V. Andrievskii, V. I. Belyi, and V. K. Dzjadyk, Conformal invariants in constructive theory of functions of complex variable, Advanced Series in Mathematical Science and Engineering, vol. 1, World Federation Publishers Company, Atlanta, GA, 1995. Translated from the Russian by D. N. Kravchuk. MR 1421773 (98j:30041)
– reference: Dieter Gaier, On a polynomial lemma of Andrievskiĭ, Arch. Math. (Basel) 49 (1987), no. 2, 119–123. MR 901822 (89d:30005), DOI 10.1007/BF01200474
– reference: V. I. Belyĭ, Conformal mappings and approximation of analytic functions in domains with quasiconformal boundary, Mat. Sb. (N.S.) 102(144) (1977), no. 3, 331–361 (Russian). MR 0460648 (57 \#641)
– reference: P. K. Suetin, Polynomials orthogonal over a region and Bieberbach polynomials, American Mathematical Society, Providence, R.I., 1974. Translated from the Russian by R. P. Boas. MR 0463793 (57 \#3732b)
– reference: Nikos Stylianopoulos, Strong asymptotics for Bergman polynomials over domains with corners and applications, Constr. Approx. 38 (2013), no. 1, 59–100. MR 3078274, DOI 10.1007/s00365-012-9174-y
– reference: Igor E. Pritsker, Comparing norms of polynomials in one and several variables, J. Math. Anal. Appl. 216 (1997), no. 2, 685–695. MR 1489606 (98j:30002), DOI 10.1006/jmaa.1997.5699
SSID ssj0000402451
ssj0001648940
ssib056838744
Score 1.8141421
Snippet Let The asymptotic behaviour of
SourceID proquest
ams
SourceType Publisher
StartPage 187
Title Boundary Estimates for Bergman Polynomials in Domains with Corners
URI https://www.ams.org/conm/661/13282/
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=4901790&ppg=198
Volume 661
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF4c99L20idN-kCF3lLZkvch6dCLU5tQSOghgdzE7mpVCrEUbKfg_Mb8qM7srtZy40NbMLIQ-0A7387MjuZByCepU6kZ17GoJzRmSlex5MbEiaIg72StlTXon52L00v27YpfDQb3Pa-l27Ua6bu9cSX_Q1V4BnTFKNl_oGwYFB7APdAXrkBhuP6h_O6aWV2FIVfFbOvUirU3XTbYX-Z4DvLKkjYE33v33Q3aNdqb9vbaOdidj_qomdoqS8vN8Qy2_gL1UOuHODXLH2js_95ebzCOGXMuw4xf24VEFxtrzD1pl413p7dvb1ZfdlJfnYUEsTumhlR0sXcdOMI3pNABM5a0IWVJOJemLENmQF0mJs_OJhmcVlNvzTSO3WI2UxChWZ8fC5ed3XPU1MtjJ5xTV7L6Ad9PCnSU1G0Dm2gOA6A9gk7yyVbKdV_2bdAVkBFawA-9eOVihS4je_t3_6Obqt4dK5ygYOoSO5bQrbSND8hBlrMheQSaxSzYjrjIaag1YPUEhp-9061FULC8YM4o6JfKRiL6paRdgrJuaUMK0mSM849h_rGd3yYNXj1QLqzGdPGMPMUomgjDW-BVnpOBaV6QJz0MvCTTDmxRAFsEYIs82KIe2KKfTeTBFiHYIg-2V-RyPrs4OY19SY9Yguq-jqXgCuRvkRhKc6nhMKKpzOuqgoNJRVMh68JwUbE0VUwIWfAaFHBoDnqkqjlX9DUZNm1j3pCI8gp4idCGm4JVKld1xVmdGw0jsYJWh-QjrEJpfQ5W5X5KHZLP3Rq5ht4jWrvFWZWsQImVlBktAXpHfzHkW_J4u3XekSHse_Me9Na1-uAB8Rt274-0
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Modern+Trends+in+Constructive+Function+Theory&rft.au=Stylianopoulos%2C+N.&rft.atitle=Boundary+Estimates+for+Bergman+Polynomials+in+Domains+with+Corners&rft.series=Contemporary+Mathematics&rft.date=2016-03-31&rft.pub=American+Mathematical+Society&rft.isbn=9781470425340&rft.issn=0271-4132&rft.eissn=1098-3627&rft.volume=661&rft.spage=187&rft.epage=198&rft_id=info:doi/10.1090%2Fconm%2F661%2F13282&rft.externalDBID=https%3A%2F%2Fwww.ams.org%2Fconm%2F661%2F13282%2F13282.pdf&rft.externalDocID=10_1090_conm_661_13282
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F4901790-l.jpg