リョクトウ (Vigna radiata Wilczek L.) の耐塩性に及ぼす窒素肥料の影響

土壌の塩類化により, リョクトウの生長, 水分状態, 養分吸収は大きな影響を受ける.本研究は, リョクトウの耐塩性に及ぼす窒素肥料の影響を明らかにすることを目的として行った.2001年夏, 自然光下のビニルハウス内で, 品種“BARI mug3”の土耕鉢植え個体に, 3種の窒素肥料処理 (13.3, 40, 60kgha-1) と2種の塩処理 (0, 75mM NaCl) を行った.塩処理により, 植物体の水分状態は顕著に悪化し, 相対水分含量 (RWC) , 木部液溢泌速度, 水ポテンシャルとも大きく低下した.しかし, 塩処理による水分状態の悪化は, 高濃度の窒素肥料により軽減した.収量及び...

Full description

Saved in:
Bibliographic Details
Published inNettai nōgyō Vol. 49; no. 2; pp. 119 - 125
Main Authors 縄田, 栄治, ハミッド, アブドゥール, カビール, エマル, ハックェ, モイヌール, コリム, アブドゥール
Format Journal Article
LanguageEnglish
Japanese
Published 日本熱帯農業学会 01.06.2005
Subjects
Online AccessGet full text
ISSN0021-5260
2185-0259
DOI10.11248/jsta1957.49.119

Cover

Abstract 土壌の塩類化により, リョクトウの生長, 水分状態, 養分吸収は大きな影響を受ける.本研究は, リョクトウの耐塩性に及ぼす窒素肥料の影響を明らかにすることを目的として行った.2001年夏, 自然光下のビニルハウス内で, 品種“BARI mug3”の土耕鉢植え個体に, 3種の窒素肥料処理 (13.3, 40, 60kgha-1) と2種の塩処理 (0, 75mM NaCl) を行った.塩処理により, 植物体の水分状態は顕著に悪化し, 相対水分含量 (RWC) , 木部液溢泌速度, 水ポテンシャルとも大きく低下した.しかし, 塩処理による水分状態の悪化は, 高濃度の窒素肥料により軽減した.収量及び収量構成要素も, 莢当たり種子数を除き, 塩処理により低下したが, 高濃度窒素肥料によりこれらの低下が軽減した.N, P, K, Ca含量は, 塩処理により低下し, Na含量は大きく上昇した.高濃度窒素肥料処理により, 前4者の含量は増加する傾向に, Na含量は減少する傾向にあった.これらの窒素肥料の影響は, 濃度の上昇とともに大きくなる傾向があった.以上の結果から, 高濃度窒素肥料の施与は, 塩分ストレス下において, 植物体の水分状態や養分吸収を改善させ, 収量を向上させることが明らかとなった.
AbstractList 土壌の塩類化により, リョクトウの生長, 水分状態, 養分吸収は大きな影響を受ける.本研究は, リョクトウの耐塩性に及ぼす窒素肥料の影響を明らかにすることを目的として行った.2001年夏, 自然光下のビニルハウス内で, 品種“BARI mug3”の土耕鉢植え個体に, 3種の窒素肥料処理 (13.3, 40, 60kgha-1) と2種の塩処理 (0, 75mM NaCl) を行った.塩処理により, 植物体の水分状態は顕著に悪化し, 相対水分含量 (RWC) , 木部液溢泌速度, 水ポテンシャルとも大きく低下した.しかし, 塩処理による水分状態の悪化は, 高濃度の窒素肥料により軽減した.収量及び収量構成要素も, 莢当たり種子数を除き, 塩処理により低下したが, 高濃度窒素肥料によりこれらの低下が軽減した.N, P, K, Ca含量は, 塩処理により低下し, Na含量は大きく上昇した.高濃度窒素肥料処理により, 前4者の含量は増加する傾向に, Na含量は減少する傾向にあった.これらの窒素肥料の影響は, 濃度の上昇とともに大きくなる傾向があった.以上の結果から, 高濃度窒素肥料の施与は, 塩分ストレス下において, 植物体の水分状態や養分吸収を改善させ, 収量を向上させることが明らかとなった.
土壌の塩類化により、リョクトウの生長、水分状態、養分吸収は大きな影響を受ける。本研究はリョクトウの耐塩性に及ぼす窒素肥料の影響を明らかにすることを目的として行った。2001年夏、自然光下のビニルハウス内で、品種“BARI mug 3””の土耕鉢植え個体に、3種の窒素肥料処理(13.3、40、60 kg ha(?1))と2種の塩処理(0、75mM NaCl)を行った。塩処理により、植物体の水分状態は顕著に悪化し、相対水分含量(RWC)、木部液溢泌速度、水ポテンシャルとも大きく低下した。しかし、塩処理による水分状態の悪化は、高濃度の窒素肥料により軽減した。収量及び収量構成要素も、莢当たり種子数を除き、塩処理により低下したが、高濃度窒素肥料によりこれらの低下が軽減した。N、P、K、Ca含量は、塩処理により低下し、Na含量は大きく上昇した。高濃度窒素肥料処理により、前4者の含量は増加する傾向に、Na含量は減少する傾向にあった。これらの窒素肥料の影響は、濃度の上昇とともに大きくなる傾向があった。以上の結果から、高濃度窒素肥料の施与は、塩分ストレス下において、植物体の水分状態や養分吸収を改善させ、収量を向上させることが明らかとなった。
Author ハミッド, アブドゥール
縄田, 栄治
カビール, エマル
ハックェ, モイヌール
コリム, アブドゥール
Author_xml – sequence: 1
  fullname: 縄田, 栄治
  organization: 京都大学農学研究科
– sequence: 1
  fullname: ハミッド, アブドゥール
  organization: バンガバンドゥ農業大学農学部
– sequence: 1
  fullname: カビール, エマル
  organization: クルナ大学農業技術学科
– sequence: 1
  fullname: ハックェ, モイヌール
  organization: バンガバンドゥ農業大学農学部
– sequence: 1
  fullname: コリム, アブドゥール
  organization: バンガバンドゥ農業大学農学部
BackLink https://agriknowledge.affrc.go.jp/RN/2010720026$$DView record in AgriKnowledge
BookMark eNo9kDlLA0EUxweJYIzpLbfUYuPM7MzuTinxhICNVze83czGTWISNgHRKkcjNoqFkEotNBhBESwVP8yQw2_hhqiveA_e_yh-8yhRqVYUQosEZwihzF0p1htABHcyTMQfMYOSlLjcxJSLBEpiTInJqY3nULpeL-J4bGE7nCTRoe70daen26-6c67bj8bSfliogBFBPoQGGAdh2T9TJSOXWTZ062XcvBrcPw2bPd16Hlxe6NaHbnVH_evR-924_TC86caewefb9-3XApoNoFxX6d-bQnsb67vZLTO3s7mdXc2ZQC0KpmNRQQU4xGPYy3ObWS7YXEDAQWFlWQKU6yhieV7APdsTLuY-cxVllPkO9aiVQs60F4IgChsSClFYqlRPyipfULIKoZwIvixUZbEmMZEYc0YJE3FybZqcwIu9tSg8huhUQtQI_bKSf0wlE5JOV4z2X_aPIJJFsH4ArmyIpQ
ContentType Journal Article
Copyright 日本熱帯農業学会
Copyright_xml – notice: 日本熱帯農業学会
DBID ABELO
DOI 10.11248/jsta1957.49.119
DatabaseName AgriKnowledge (アグリナレッジ) JASI
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2185-0259
EndPage 125
ExternalDocumentID oai_affrc_go_jp_01_00542149
article_jsta1957_49_2_49_2_119_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
OK1
P2P
RJT
ABELO
ID FETCH-LOGICAL-a232a-732929a71b40bd56438a659af5ae0e339ae87e13bbf5b6b9805c48e2424c72b23
ISSN 0021-5260
IngestDate Fri Aug 15 12:25:37 EDT 2025
Wed Sep 03 06:26:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a232a-732929a71b40bd56438a659af5ae0e339ae87e13bbf5b6b9805c48e2424c72b23
Notes 720026
ZZ00014546
OpenAccessLink https://www.jstage.jst.go.jp/article/jsta1957/49/2/49_2_119/_article/-char/ja
PageCount 7
ParticipantIDs affrit_agriknowledge_oai_affrc_go_jp_01_00542149
jstage_primary_article_jsta1957_49_2_49_2_119_article_char_ja
PublicationCentury 2000
PublicationDate 2005/06/01
PublicationDateYYYYMMDD 2005-06-01
PublicationDate_xml – month: 06
  year: 2005
  text: 2005/06/01
  day: 01
PublicationDecade 2000
PublicationTitle Nettai nōgyō
PublicationTitleAlternate 熱帯農業
PublicationYear 2005
Publisher 日本熱帯農業学会
Publisher_xml – name: 日本熱帯農業学会
References Coons, J.M. and R.C. Pratt 1988 Physiological and growth responses of Phaseolus vulgaris and Phaseolus acutifolius when grown in field at two levels of salinity. Bean Improv. Coop. Ann. Rep. (Geneva) , 31: 88-89.
Curtin, D., H. Steppuhan and F. Selles 1993 Plant response to sulphate and chloride salinity: growth and ionic relations. Am. J. Soil Sci. 57: 1304-1310.
Papadopoulos, I. and V.V. Rendig 1983 Interactive effects of salinity and nitrogen on growth and yield of tomato plant. Plant Soil. 73: 47-57.
Greenway, H. and R. Munns 1980 Mechanisms of salt tolerance in non-halophytes. Ann. Rev. Plant Physiol. 31: 149-190.
Ravikovitch, S. and D. Yoles 1971 The influence of phosphorus and nitrogen on millets and clover growing in soils affected by salinity. I. Plant development. Plant Soil. 35: 555-567.
Grattan SR. and C.M. Grieve 1992 Mineral element acquisition and growth response of plant in saline environments. Agric. Ecosys. Environ. 38: 275-300.
Raptan, P.K, A. Hamid, Q.A. Khaliq, A.R.M. Solaiman, J.U. Ahmed and M.A. Karim 2001b Salinity tolerance of blackgram and mungbean: II. Mineral ions accumulation in different plant parts. Korean J. Crop Sci. 46: 387-394.
Oertli, J.J. 1994 NaCl on dry matter production and mineral content during early seedling growth of horse gram (Macrotyloma uniflorum Lam. verdc) . Plant Physiol. Biochem.17: 88-91.
Umezawa, T., K. Shimizu, M. Kato and T. Ueda 2001 Effects of non-stomatal components of photosynthesis in soybean under salt stress. Jpn. J. Trop. Agric. 45: 57-63.
Hesketh, J.D., W.L. Ogren, M.E. Hageman and D.B. Peters 1981 Correlations among leaf CO2- exchange rates, areas and enzyme activities among soybean cultivars. Photosynth. Res. 2: 21-30.
Sinclair, T.R. and T Hone 1989 Leaf nitrogen, photosynthesis and crop radiation use efficiency: A review. Crop Sci. 29: 90-98
Orcutt, D.M. and E.T. Nilsen 2000 The physiology of plants under stress. John Wiley and Sons, Inc., 605 Third Avenue, NY 10158-0012, USA, pp.177-235.
Yamakawa, T. 1992 Laboratory Methods for Soil Science and Plant Nutrition. Part-2. Methods of Plant Analysis. JICA-IPSA Project pp.6-14.
Alam, S.M. 1994 Nutrient uptake by plants under stress conditions. pp. 227-245. In: M. Pessarakli (ed.) , Handbook of Plant and Crop Under Stress. Marcel Dekker, Inc. NY.
Gomez, K.A. and A.A. Gomez 1983 Statistical Procedurefor Agricultural Research. John Wiley and Sons. N.Y. pp. 20-215.
Maekawa, T., M. Takahashi and M. Kokubun 2003 Response of a supernodulating soybean genotype, Sakukei 4 to nitrogen fertilizer. Plant Prod. Sci. 6: 206-212.
Helal, H.M. and K. Mengel 1979 Nitrogen metabolism of young barley plants as affected by NaCl-salinity and potassium. Plant Soil. 51: 457-462.
Nandwal, AS., M. Godara, D.V Kamboj, B.S. Kundu, A. Mann, B. Kumar and S.K. Sharma 2000 Nodule functioning in trifoliate and pentafoliate mungbean genotypes as influenced by salinity. Biol. Plant. 43: 459-462.
Pessarakli, M. and T.C. Tucker 1988 Dry matter yield and nitrogen-15 uptake by tomatoes under sodium chloride stress. Soil Sci. Soc. Am. J. 52: 698-700.
Cramer, G.R., A. Lauchli and VS. Polito 1985 Displacement of Ca2+ by Na+ from the plasmalemma of root cells: A primary response to salt stress? Plant Physiol. 79: 207-211.
Linder, R.C. 1944 Rapid analytical method for some of the more common inorganic constituents of the plant tissues. Plant Physiol. 19: 76-89.
Nakamura, Y., K. Tanaka, E. Ohta and M. Sakata 1990 Protective effect of external Ca2+ on elongation and intracellular concentration of K+ in intact mungbean roots under high NaCl stress. Plant Cell Physiol. 31: 814-821.
Patil, S.L., C.S. Hunshal, D.P. Vishwanath and V.P. Chinnand 1995 Effect of use of saline water to supplement good water on the uptake of nutrients by greengram on black soil. Indian J. Agric. Res. 29: 181-187.
Shen, Z.G., Q.R. Shen, Y.C. Liang and Y.L. Liu 1994 Effect of nitrogen on the growth and photosynthetic activity of salt-stressed barley. J. Plant Nutr. 17: 787-799.
Tyree, M.T. and H.T. Hammel 1972 The measurement of the turgor pressure and the water relation of plants by the pressure bomb technique. J. Exp. Bot. 23: 267-282.
Boon-Long, P., D.B. Egli and J.E. Legett 1983 Leaf N and photosynthesis during reproductive growth in soybeans. Crop Sci. 23: 617-620.
Kramer, D., A. Lauchli, AR. Yeo and J. Gullasch 1977. Transfer cells in roots of Phaseolus coccineus: ultrastructure and possible function in exclusion of sodium from the shoot. Ann. Bot., 41: 1031-1041.
Mohanty, N., A.K. Rath and D.N. Nayak 1999 Reclamation of salt amended soil for enhancement of growth and yield of rice. Oryza. 36: 318-321.
Hafeez, FY., J. Aslam and K.A. Malik 1988 Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vigna radiata (L.) . Wilczek. Plant Soil. 106: 3-8.
Raptan, P.K., A. Hamid, Q.A. Khaliq, A.R.M. Solaiman, J.U. Ahmed and M.A. Karim 2001a Salinity tolerance of blackgram and mungbean: I. Dry matter accumulation in different plant parts. Korean J. Crop Sci. 46: 380-386.
References_xml – reference: Maekawa, T., M. Takahashi and M. Kokubun 2003 Response of a supernodulating soybean genotype, Sakukei 4 to nitrogen fertilizer. Plant Prod. Sci. 6: 206-212.
– reference: Kramer, D., A. Lauchli, AR. Yeo and J. Gullasch 1977. Transfer cells in roots of Phaseolus coccineus: ultrastructure and possible function in exclusion of sodium from the shoot. Ann. Bot., 41: 1031-1041.
– reference: Mohanty, N., A.K. Rath and D.N. Nayak 1999 Reclamation of salt amended soil for enhancement of growth and yield of rice. Oryza. 36: 318-321.
– reference: Sinclair, T.R. and T Hone 1989 Leaf nitrogen, photosynthesis and crop radiation use efficiency: A review. Crop Sci. 29: 90-98
– reference: Pessarakli, M. and T.C. Tucker 1988 Dry matter yield and nitrogen-15 uptake by tomatoes under sodium chloride stress. Soil Sci. Soc. Am. J. 52: 698-700.
– reference: Hafeez, FY., J. Aslam and K.A. Malik 1988 Effect of salinity and inoculation on growth, nitrogen fixation and nutrient uptake of Vigna radiata (L.) . Wilczek. Plant Soil. 106: 3-8.
– reference: Ravikovitch, S. and D. Yoles 1971 The influence of phosphorus and nitrogen on millets and clover growing in soils affected by salinity. I. Plant development. Plant Soil. 35: 555-567.
– reference: Linder, R.C. 1944 Rapid analytical method for some of the more common inorganic constituents of the plant tissues. Plant Physiol. 19: 76-89.
– reference: Nakamura, Y., K. Tanaka, E. Ohta and M. Sakata 1990 Protective effect of external Ca2+ on elongation and intracellular concentration of K+ in intact mungbean roots under high NaCl stress. Plant Cell Physiol. 31: 814-821.
– reference: Hesketh, J.D., W.L. Ogren, M.E. Hageman and D.B. Peters 1981 Correlations among leaf CO2- exchange rates, areas and enzyme activities among soybean cultivars. Photosynth. Res. 2: 21-30.
– reference: Grattan SR. and C.M. Grieve 1992 Mineral element acquisition and growth response of plant in saline environments. Agric. Ecosys. Environ. 38: 275-300.
– reference: Orcutt, D.M. and E.T. Nilsen 2000 The physiology of plants under stress. John Wiley and Sons, Inc., 605 Third Avenue, NY 10158-0012, USA, pp.177-235.
– reference: Patil, S.L., C.S. Hunshal, D.P. Vishwanath and V.P. Chinnand 1995 Effect of use of saline water to supplement good water on the uptake of nutrients by greengram on black soil. Indian J. Agric. Res. 29: 181-187.
– reference: Nandwal, AS., M. Godara, D.V Kamboj, B.S. Kundu, A. Mann, B. Kumar and S.K. Sharma 2000 Nodule functioning in trifoliate and pentafoliate mungbean genotypes as influenced by salinity. Biol. Plant. 43: 459-462.
– reference: Boon-Long, P., D.B. Egli and J.E. Legett 1983 Leaf N and photosynthesis during reproductive growth in soybeans. Crop Sci. 23: 617-620.
– reference: Cramer, G.R., A. Lauchli and VS. Polito 1985 Displacement of Ca2+ by Na+ from the plasmalemma of root cells: A primary response to salt stress? Plant Physiol. 79: 207-211.
– reference: Curtin, D., H. Steppuhan and F. Selles 1993 Plant response to sulphate and chloride salinity: growth and ionic relations. Am. J. Soil Sci. 57: 1304-1310.
– reference: Gomez, K.A. and A.A. Gomez 1983 Statistical Procedurefor Agricultural Research. John Wiley and Sons. N.Y. pp. 20-215.
– reference: Raptan, P.K., A. Hamid, Q.A. Khaliq, A.R.M. Solaiman, J.U. Ahmed and M.A. Karim 2001a Salinity tolerance of blackgram and mungbean: I. Dry matter accumulation in different plant parts. Korean J. Crop Sci. 46: 380-386.
– reference: Shen, Z.G., Q.R. Shen, Y.C. Liang and Y.L. Liu 1994 Effect of nitrogen on the growth and photosynthetic activity of salt-stressed barley. J. Plant Nutr. 17: 787-799.
– reference: Yamakawa, T. 1992 Laboratory Methods for Soil Science and Plant Nutrition. Part-2. Methods of Plant Analysis. JICA-IPSA Project pp.6-14.
– reference: Coons, J.M. and R.C. Pratt 1988 Physiological and growth responses of Phaseolus vulgaris and Phaseolus acutifolius when grown in field at two levels of salinity. Bean Improv. Coop. Ann. Rep. (Geneva) , 31: 88-89.
– reference: Helal, H.M. and K. Mengel 1979 Nitrogen metabolism of young barley plants as affected by NaCl-salinity and potassium. Plant Soil. 51: 457-462.
– reference: Greenway, H. and R. Munns 1980 Mechanisms of salt tolerance in non-halophytes. Ann. Rev. Plant Physiol. 31: 149-190.
– reference: Tyree, M.T. and H.T. Hammel 1972 The measurement of the turgor pressure and the water relation of plants by the pressure bomb technique. J. Exp. Bot. 23: 267-282.
– reference: Raptan, P.K, A. Hamid, Q.A. Khaliq, A.R.M. Solaiman, J.U. Ahmed and M.A. Karim 2001b Salinity tolerance of blackgram and mungbean: II. Mineral ions accumulation in different plant parts. Korean J. Crop Sci. 46: 387-394.
– reference: Papadopoulos, I. and V.V. Rendig 1983 Interactive effects of salinity and nitrogen on growth and yield of tomato plant. Plant Soil. 73: 47-57.
– reference: Umezawa, T., K. Shimizu, M. Kato and T. Ueda 2001 Effects of non-stomatal components of photosynthesis in soybean under salt stress. Jpn. J. Trop. Agric. 45: 57-63.
– reference: Alam, S.M. 1994 Nutrient uptake by plants under stress conditions. pp. 227-245. In: M. Pessarakli (ed.) , Handbook of Plant and Crop Under Stress. Marcel Dekker, Inc. NY.
– reference: Oertli, J.J. 1994 NaCl on dry matter production and mineral content during early seedling growth of horse gram (Macrotyloma uniflorum Lam. verdc) . Plant Physiol. Biochem.17: 88-91.
SSID ssj0000696751
ssib000955090
ssib023160893
Score 1.405839
Snippet 土壌の塩類化により, リョクトウの生長, 水分状態, 養分吸収は大きな影響を受ける.本研究は, リョクトウの耐塩性に及ぼす窒素肥料の影響を明らかにすることを目的として行った.2001年夏, 自然光下のビニルハウス内で, 品種“BARI mug3”の土耕鉢植え個体に, 3種の窒素肥料処理 (13.3, 40,...
土壌の塩類化により、リョクトウの生長、水分状態、養分吸収は大きな影響を受ける。本研究はリョクトウの耐塩性に及ぼす窒素肥料の影響を明らかにすることを目的として行った。2001年夏、自然光下のビニルハウス内で、品種“BARI mug 3””の土耕鉢植え個体に、3種の窒素肥料処理(13.3、40、60 kg...
SourceID affrit
jstage
SourceType Open Access Repository
Publisher
StartPage 119
SubjectTerms 収量
塩ストレス
水分状態
Title リョクトウ (Vigna radiata Wilczek L.) の耐塩性に及ぼす窒素肥料の影響
URI https://www.jstage.jst.go.jp/article/jsta1957/49/2/49_2_119/_article/-char/ja
https://agriknowledge.affrc.go.jp/RN/2010720026
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 熱帯農業, 2005/06/01, Vol.49(2), pp.119-125
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1CrjAgfEpxhf6gFLoKklcewkPnBItlQTbJOQtmm3yG6SqkV0U9Ud2GndLogLiAPSTsABJoYEQuII4sdE3ca_4Dlx0o0hxHZxnp5d-8Xv1X7Pee8Zodu0KQwpiVmDrcQAA8W0axK2yZqTWC7wPEqczBlzds6eXqAPlthSpTI84LW02pf15tpf40pOwlXAAV9VlOwxOFt2CgiAgb9QAoeh_C8e48DCroU9rwCcDCDYa2iM6xYYMJ7dxXarKyZ6Kh1BX6gFobkWP56YUaFWWTMTewEO3Nz7AQcMe4CBKlthdOeA8VWV28CupzH-pAY4NHYUPZwowKfYM7IOgQCm-uF21qYci2F_CvsmDjjmDewfcjKci_t90Z7o4kkYbar1NH-WO4SQ7UzaZqN6MFpHn7SjQye00wI2Pt2sPGTKaAOqqAI4xb6hWij6gFyFtbFPsO8fOhJhI9etMkTBBAs7v6igWObzzKhanMmBNdvUa3a-_Zt5HPbRnYVQFS7RAZ3d5MypU14vf3g0X3eS9JphaznsrISGGSq9mIApegqdJo6TeRM8fHRAC-ZgJo4-VoLGbRtFSqBcoeBg1uV3P-oXKz64A1H3_iAJVCk1fFsZSqqq8E7MFKb58-ictnSqXi62F1ClIy6is16rp7O9xJfQYrq5k25upxtf0s1n6caHO5mAVrWAVrWAVmfqd9PB5_31l8N3H3fXt9PBp-GL5-ngezrY2tt5tfft7f7G-93XW9Bm-OPrrzc_L6OFRjA_OV3TF33UBCj0ouZYBLR04ZiSGjJioCS7wmZcJEzERmxZXMSuE5uWlAmTtuSwijSpG6vIpqZDJLGuoLHucje-iqoiAYGIXIPGklOWUEmIINyA_iWLooiNIyOfnVDA-5bn1uE_uDaO7ufzGK7kCWBC_YcPi5kPKQ9JXgADymoVNxl2xLXjD3kdnRnJ9Q001u-txjdB-e3LW5no_AYnrJ55
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%83%AA%E3%83%A7%E3%82%AF%E3%83%88%E3%82%A6%28Vigna+radiata+Wilczek+L.%29%E3%81%AE%E8%80%90%E5%A1%A9%E6%80%A7%E3%81%AB%E5%8F%8A%E3%81%BC%E3%81%99%E7%AA%92%E7%B4%A0%E8%82%A5%E6%96%99%E3%81%AE%E5%BD%B1%E9%9F%BF&rft.jtitle=Nettai+n%C5%8Dgy%C5%8D&rft.au=Kabir%2C+Md.E&rft.au=Hamid%2C+A&rft.au=Haque%2C+Md.M&rft.au=%E7%B8%84%E7%94%B0%2C+%E6%A0%84%E6%B2%BB&rft.date=2005-06-01&rft.issn=0021-5260&rft.volume=49&rft.issue=2&rft.spage=119&rft.epage=125&rft_id=info:doi/10.11248%2Fjsta1957.49.119&rft.externalDocID=oai_affrc_go_jp_01_00542149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-5260&client=summon