Toward the Next Generation of Permanently Porous Materials: Halogen-Bonded Organic Frameworks
Halogen bonding has emerged as a reliable and intuitive handle in crystal engineering, providing predictable, noncovalent interactions capable of directing supramolecular assembly into networks with varying degrees of dimensionality. Conceptually similar to hydrogen bonding, halogen bonding represen...
Saved in:
Published in | Crystal growth & design Vol. 24; no. 6; pp. 2304 - 2321 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
20.03.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Halogen bonding has emerged as a reliable and intuitive handle in crystal engineering, providing predictable, noncovalent interactions capable of directing supramolecular assembly into networks with varying degrees of dimensionality. Conceptually similar to hydrogen bonding, halogen bonding represents a virtually untapped space for realizing new low-density porous architectures with large, highly crystalline domains. With the foundational understanding gained from almost two decades of computational and empirical supramolecular investigations, we believe that halogen bonding is on the precipice of enabling a new class of noncovalently linked permanently porous materials, aptly called halogen-bonded organic frameworks (XOFs). This perspective focuses on defining the criteria for the classification of XOFs and highlights seminal works in both halogen and hydrogen bonding that play an integral role toward understanding the key strategies in both synthon and tecton design that will lead to assembly of materials with accessible void space and observable porosity. Finally, solvent activation procedures and desorption mechanisms are discussed toward the goal of achieving permanently porous frameworks and thrusting halogen bonding into the realm of porous materials. |
---|---|
AbstractList | Halogen bonding has emerged as a reliable and intuitive handle in crystal engineering, providing predictable, noncovalent interactions capable of directing supramolecular assembly into networks with varying degrees of dimensionality. Conceptually similar to hydrogen bonding, halogen bonding represents a virtually untapped space for realizing new low-density porous architectures with large, highly crystalline domains. With the foundational understanding gained from almost two decades of computational and empirical supramolecular investigations, we believe that halogen bonding is on the precipice of enabling a new class of noncovalently linked permanently porous materials, aptly called halogen-bonded organic frameworks (XOFs). This perspective focuses on defining the criteria for the classification of XOFs and highlights seminal works in both halogen and hydrogen bonding that play an integral role toward understanding the key strategies in both synthon and tecton design that will lead to assembly of materials with accessible void space and observable porosity. Finally, solvent activation procedures and desorption mechanisms are discussed toward the goal of achieving permanently porous frameworks and thrusting halogen bonding into the realm of porous materials. |
Author | Paredes, Jesus U. Eckstein, Brian J. McGuirk, C. Michael Moghadasnia, Michael P. Martin, Hannah R. |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Michael P. orcidid: 0009-0005-6045-253X surname: Moghadasnia fullname: Moghadasnia, Michael P. – sequence: 2 givenname: Brian J. orcidid: 0000-0001-5966-6892 surname: Eckstein fullname: Eckstein, Brian J. – sequence: 3 givenname: Hannah R. surname: Martin fullname: Martin, Hannah R. – sequence: 4 givenname: Jesus U. surname: Paredes fullname: Paredes, Jesus U. – sequence: 5 givenname: C. Michael orcidid: 0000-0002-7420-1169 surname: McGuirk fullname: McGuirk, C. Michael email: cmmcguirk@mines.edu |
BookMark | eNp1kE1PwkAQhjcGEwE9e927KexH2y3elAiYoHDAo2mm29lahF2zWwL8e0vAo6d5k3neyeTpkY51Fgm552zAmeBD0GGgq3IgNeOxUFekyxORRSphSecvx5m8Ib0Q1owxlUrZJZ8rtwdf0uYL6TseGjpFix6a2lnqDF2i34JF22yOdOm82wX6Bg36Gjbhkc5g4yq00bOzJZZ04SuwtaYTD1vcO_8dbsm1aUm8u8w--Zi8rMazaL6Yvo6f5hEIyZsoYYJlEBdFmY3STKExoHjJNDITK0BVjASAKtKiJVIspAEdgxLCcImJFlz2yfB8V3sXgkeT__h6C_6Yc5af7OStnby1k1_stI2Hc-O0WLudt-1__9K_VeFrug |
Cites_doi | 10.1016/j.ccr.2021.213789 10.1038/nchem.2689 10.1126/science.1120411 10.1002/open.201900337 10.1021/jacs.2c02598 10.1039/b802256a 10.1002/qua.22787 10.1021/jo300279m 10.1055/s-0035-1561448 10.1039/C6CS00135A 10.1039/D0SC02076A 10.1021/acs.cgd.6b00924 10.1107/S056774087300484X 10.1002/cphc.201200799 10.1016/j.xcrp.2020.100024 10.1007/s11224-020-01713-7 10.1039/C5CC09082B 10.1002/open.201100015 10.1021/jp993415j 10.1021/ja200503j 10.1021/acsami.9b03696 10.1021/acs.cgd.9b00879 10.1007/s00894-008-0386-9 10.1016/j.saa.2016.10.038 10.1071/CH10259 10.1021/ic800854y 10.1002/anie.199523111 10.1038/srep09227 10.1039/b809592b 10.1021/acs.cgd.0c01410 10.1021/ja981669x 10.1039/c2cs35157a 10.1021/acs.chemrev.9b00550 10.1021/jacs.3c09001 10.1002/chem.201501206 10.1021/acsomega.1c00462 10.1021/acsami.8b20380 10.1039/D3CS00516J 10.1126/science.aaa8075 10.1002/aenm.202101530 10.1039/C7FD00062F 10.1002/anie.201811263 10.2116/xraystruct.29.13 10.1002/anie.201800354 10.1039/b901473j 10.1002/anie.202115956 10.1126/science.aal1585 10.1021/acs.accounts.8b00233 10.1039/D3TA04647H 10.1021/jp953141+ 10.1039/D1SC00095K 10.1039/C2CE26150B 10.1039/C7CP03570E 10.1016/S0022-1139(98)00228-0 10.1021/jacs.5b10666 10.1039/b515612m 10.1021/jacs.8b03696 10.1039/b512641j 10.1039/C6CE02089E 10.1002/solr.202100986 10.1039/D0CP05039C 10.1039/D2CC03971K 10.1002/ange.202208677 10.1038/ncomms6131 10.1021/ja9057234 10.1021/cg005540m 10.1021/cr200440z 10.1007/s00894-011-1015-6 10.1039/c2cc33682k 10.1021/acs.chemrev.9b00687 10.1021/acs.jctc.9b01248 10.1038/s41467-019-08878-8 10.1021/jacs.9b13094 10.1021/jacs.8b02869 10.1002/chem.202201869 10.1021/acscentsci.9b01006 10.1016/j.jorganchem.2007.02.033 10.1021/jacs.0c03409 10.1038/nature01650 10.1016/j.supflu.2016.05.028 10.1002/anie.202213190 10.1039/C9CS00884E 10.1039/b702512m 10.1351/pac196714010019 10.1351/PAC-REC-12-05-10 10.1021/ja00012a057 10.1021/acs.chemmater.6b02626 10.1021/acs.chemrev.9b00766 10.1007/s00894-006-0130-2 10.1002/anie.200800128 10.1093/nsr/nwaa170 10.1055/s-0039-1698431 10.1039/C2CS35072F 10.1039/b501693b 10.1038/359710a0 10.1021/cen-v086n034.p013 10.1016/j.elecom.2013.04.026 10.1039/9781847557971 10.1016/j.ccr.2015.12.010 10.1021/ja00260a006 10.1021/cr200304e 10.1039/c3ce26732f 10.1021/ja963905e 10.1039/D0CS01569E 10.1021/jo00053a020 10.1038/nature21419 10.1007/s41061-019-0268-x 10.1039/c2sc00997h 10.1002/(SICI)1521-3773(20000515)39:10<1782::AID-ANIE1782>3.0.CO;2-5 10.1021/acs.cgd.5b01770 10.1002/anie.202102813 10.1002/qua.21419 10.1016/j.enchem.2020.100029 10.1021/cr500674c 10.1039/D0CS00997K 10.1007/978-3-319-14163-3_10 10.1039/D3CC02981F 10.1038/s42004-022-00705-4 10.1007/s10847-019-00972-0 10.1039/c3dt50599e 10.1002/anie.201609073 10.1039/b206867b 10.1107/S205252061700292X 10.1038/ncomms5043 10.1038/s41467-021-21091-w 10.1107/S0108768185002129 10.1021/ar1000617 10.1002/chem.201902491 10.1021/acs.cgd.3c00310 10.1021/ja0570032 10.1002/anie.201201174 10.1002/adma.202202290 10.1021/jacs.0c06473 10.1351/pac199466051077 10.1021/acs.jpca.1c05962 10.1038/s41565-020-0673-x 10.1038/s41557-023-01334-7 10.1016/j.polymer.2019.04.060 10.1021/acsami.7b16937 10.1007/s00894-011-1089-1 10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-T 10.1038/nchem.1496 10.1039/c3cp00054k 10.1021/acs.accounts.0c00582 10.1017/S0885715612000863 10.1021/cg0340042 10.1002/9781119683353.ch7 10.1021/jacs.2c02173 10.1002/anie.201805355 10.1002/ejic.200900694 10.1039/b719625c 10.1007/s00894-006-0154-7 10.1021/acscentsci.9b00745 10.1038/s41563-020-00847-7 10.1021/jacs.6b09787 10.1021/cg2009013 10.1201/9781420008265 10.1021/acs.langmuir.1c02915 10.1039/C8NJ00759D 10.1039/D2SC01800D 10.1002/poc.3325 10.1021/acs.inorgchem.1c01232 10.1021/ja00053a020 10.1021/acsmaterialslett.1c00628 10.3390/ijms23084206 10.1021/jacs.9b06445 10.1021/jacs.1c08642 10.1002/ange.201709187 10.1016/S0040-4039(98)01996-0 10.1039/b902330e 10.1021/jacs.5b05644 10.1039/b605958a 10.1021/ol502639x 10.1039/C7SC04340F 10.1039/c004189k 10.1039/D0MH00898B 10.1021/ar0401799 10.1021/acs.organomet.0c00633 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.cgd.3c01427 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1528-7505 |
EndPage | 2321 |
ExternalDocumentID | 10_1021_acs_cgd_3c01427 c318701774 |
GroupedDBID | -~X 4.4 55A 5GY 5VS 6J9 7~N AABXI ABFRP ABJNI ABMVS ABMYL ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL TN5 UI2 VF5 VG9 W1F AAYXX CITATION CUPRZ |
ID | FETCH-LOGICAL-a231t-50208a4bbd89687effa71d0ce0f47ae7b92aa7b6bbbd6eb3fac4a722f13e5c213 |
IEDL.DBID | ACS |
ISSN | 1528-7483 |
IngestDate | Fri Aug 23 01:22:41 EDT 2024 Thu Mar 21 07:02:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a231t-50208a4bbd89687effa71d0ce0f47ae7b92aa7b6bbbd6eb3fac4a722f13e5c213 |
ORCID | 0000-0001-5966-6892 0000-0002-7420-1169 0009-0005-6045-253X |
PageCount | 18 |
ParticipantIDs | crossref_primary_10_1021_acs_cgd_3c01427 acs_journals_10_1021_acs_cgd_3c01427 |
PublicationCentury | 2000 |
PublicationDate | 2024-03-20 |
PublicationDateYYYYMMDD | 2024-03-20 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Crystal growth & design |
PublicationTitleAlternate | Cryst. Growth Des |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref120/cit120 ref178/cit178 ref109/cit109 ref13/cit13 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 Politzer P. (ref105/cit105) 2021 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref11/cit11 ref29/cit29 ref174/cit174 ref76/cit76 ref86/cit86 ref170/cit170 ref32/cit32 ref39/cit39 ref168/cit168 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref167/cit167 ref163/cit163 ref66/cit66 Kerry F. G. (ref14/cit14) 2007 ref179/cit179 ref22/cit22 ref121/cit121 ref175/cit175 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref152/cit152 ref153/cit153 Wright P. A. (ref6/cit6) 2007 ref154/cit154 ref27/cit27 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref159/cit159 ref92/cit92 ref155/cit155 ref156/cit156 ref157/cit157 ref158/cit158 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref160/cit160 ref143/cit143 ref53/cit53 ref145/cit145 ref21/cit21 ref166/cit166 ref149/cit149 ref162/cit162 ref46/cit46 ref164/cit164 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref172/cit172 ref25/cit25 ref173/cit173 Pauling L. (ref102/cit102) 1960 ref103/cit103 ref72/cit72 ref57/cit57 ref169/cit169 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref161/cit161 ref142/cit142 ref73/cit73 ref69/cit69 ref165/cit165 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref177/cit177 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref158/cit158 doi: 10.1016/j.ccr.2021.213789 – ident: ref150/cit150 doi: 10.1038/nchem.2689 – ident: ref22/cit22 doi: 10.1126/science.1120411 – ident: ref115/cit115 doi: 10.1002/open.201900337 – ident: ref152/cit152 doi: 10.1021/jacs.2c02598 – ident: ref11/cit11 doi: 10.1039/b802256a – ident: ref76/cit76 doi: 10.1002/qua.22787 – ident: ref91/cit91 doi: 10.1021/jo300279m – ident: ref126/cit126 doi: 10.1055/s-0035-1561448 – ident: ref13/cit13 doi: 10.1039/C6CS00135A – ident: ref69/cit69 doi: 10.1039/D0SC02076A – ident: ref140/cit140 doi: 10.1021/acs.cgd.6b00924 – ident: ref72/cit72 doi: 10.1107/S056774087300484X – ident: ref83/cit83 doi: 10.1002/cphc.201200799 – ident: ref155/cit155 doi: 10.1016/j.xcrp.2020.100024 – ident: ref104/cit104 doi: 10.1007/s11224-020-01713-7 – ident: ref109/cit109 doi: 10.1039/C5CC09082B – ident: ref70/cit70 doi: 10.1002/open.201100015 – ident: ref77/cit77 doi: 10.1021/jp993415j – ident: ref113/cit113 doi: 10.1021/ja200503j – ident: ref137/cit137 doi: 10.1021/acsami.9b03696 – ident: ref168/cit168 doi: 10.1021/acs.cgd.9b00879 – ident: ref60/cit60 doi: 10.1007/s00894-008-0386-9 – ident: ref121/cit121 doi: 10.1016/j.saa.2016.10.038 – ident: ref65/cit65 doi: 10.1071/CH10259 – ident: ref157/cit157 doi: 10.1021/ic800854y – ident: ref117/cit117 doi: 10.1002/anie.199523111 – ident: ref59/cit59 doi: 10.1038/srep09227 – ident: ref128/cit128 doi: 10.1039/b809592b – ident: ref71/cit71 doi: 10.1021/acs.cgd.0c01410 – ident: ref9/cit9 doi: 10.1021/ja981669x – ident: ref23/cit23 doi: 10.1039/c2cs35157a – ident: ref34/cit34 doi: 10.1021/acs.chemrev.9b00550 – ident: ref40/cit40 doi: 10.1021/jacs.3c09001 – ident: ref48/cit48 doi: 10.1002/chem.201501206 – ident: ref55/cit55 doi: 10.1021/acsomega.1c00462 – ident: ref57/cit57 doi: 10.1021/acsami.8b20380 – ident: ref74/cit74 doi: 10.1039/D3CS00516J – ident: ref1/cit1 doi: 10.1126/science.aaa8075 – ident: ref19/cit19 doi: 10.1002/aenm.202101530 – ident: ref99/cit99 doi: 10.1039/C7FD00062F – ident: ref161/cit161 doi: 10.1002/anie.201811263 – ident: ref148/cit148 doi: 10.2116/xraystruct.29.13 – ident: ref138/cit138 doi: 10.1002/anie.201800354 – ident: ref123/cit123 doi: 10.1039/b901473j – ident: ref164/cit164 doi: 10.1002/anie.202115956 – ident: ref21/cit21 doi: 10.1126/science.aal1585 – ident: ref171/cit171 doi: 10.1021/acs.accounts.8b00233 – ident: ref176/cit176 doi: 10.1039/D3TA04647H – ident: ref103/cit103 doi: 10.1021/jp953141+ – ident: ref30/cit30 doi: 10.1039/D1SC00095K – ident: ref110/cit110 doi: 10.1039/C2CE26150B – ident: ref58/cit58 doi: 10.1039/C7CP03570E – ident: ref78/cit78 doi: 10.1016/S0022-1139(98)00228-0 – ident: ref37/cit37 doi: 10.1021/jacs.5b10666 – ident: ref106/cit106 doi: 10.1039/b515612m – ident: ref45/cit45 doi: 10.1021/jacs.8b03696 – ident: ref4/cit4 doi: 10.1039/b512641j – ident: ref96/cit96 doi: 10.1039/C6CE02089E – ident: ref18/cit18 doi: 10.1002/solr.202100986 – ident: ref154/cit154 doi: 10.1039/D0CP05039C – ident: ref114/cit114 doi: 10.1039/D2CC03971K – ident: ref41/cit41 doi: 10.1002/ange.202208677 – ident: ref135/cit135 doi: 10.1038/ncomms6131 – ident: ref49/cit49 doi: 10.1021/ja9057234 – ident: ref61/cit61 doi: 10.1021/cg005540m – ident: ref5/cit5 doi: 10.1021/cr200440z – ident: ref89/cit89 doi: 10.1007/s00894-011-1015-6 – ident: ref127/cit127 doi: 10.1039/c2cc33682k – ident: ref131/cit131 doi: 10.1039/b512641j – ident: ref156/cit156 doi: 10.1021/acs.chemrev.9b00687 – ident: ref75/cit75 doi: 10.1021/acs.jctc.9b01248 – ident: ref112/cit112 doi: 10.1038/s41467-019-08878-8 – ident: ref50/cit50 doi: 10.1021/jacs.9b13094 – ident: ref134/cit134 doi: 10.1021/jacs.8b02869 – ident: ref162/cit162 doi: 10.1002/chem.202201869 – ident: ref46/cit46 doi: 10.1021/acscentsci.9b01006 – ident: ref94/cit94 doi: 10.1016/j.jorganchem.2007.02.033 – ident: ref20/cit20 doi: 10.1021/jacs.0c03409 – ident: ref36/cit36 doi: 10.1038/nature01650 – ident: ref178/cit178 doi: 10.1016/j.supflu.2016.05.028 – ident: ref180/cit180 doi: 10.1002/anie.202213190 – ident: ref35/cit35 doi: 10.1039/C9CS00884E – ident: ref122/cit122 doi: 10.1039/b702512m – ident: ref118/cit118 doi: 10.1351/pac196714010019 – ident: ref66/cit66 doi: 10.1351/PAC-REC-12-05-10 – ident: ref116/cit116 doi: 10.1021/ja00012a057 – ident: ref177/cit177 doi: 10.1021/acs.chemmater.6b02626 – ident: ref44/cit44 doi: 10.1021/acs.chemrev.9b00766 – ident: ref73/cit73 doi: 10.1007/s00894-006-0130-2 – ident: ref81/cit81 doi: 10.1002/anie.200800128 – ident: ref166/cit166 doi: 10.1093/nsr/nwaa170 – ident: ref165/cit165 doi: 10.1055/s-0039-1698431 – ident: ref24/cit24 doi: 10.1039/C2CS35072F – ident: ref86/cit86 doi: 10.1039/b501693b – ident: ref17/cit17 doi: 10.1038/359710a0 – ident: ref15/cit15 doi: 10.1021/cen-v086n034.p013 – ident: ref54/cit54 doi: 10.1016/j.elecom.2013.04.026 – volume-title: Microporous framework solids year: 2007 ident: ref6/cit6 doi: 10.1039/9781847557971 contributor: fullname: Wright P. A. – ident: ref25/cit25 doi: 10.1016/j.ccr.2015.12.010 – ident: ref93/cit93 doi: 10.1021/ja00260a006 – ident: ref12/cit12 doi: 10.1021/cr200304e – ident: ref129/cit129 doi: 10.1039/c3ce26732f – ident: ref2/cit2 doi: 10.1021/ja963905e – ident: ref42/cit42 doi: 10.1039/D0CS01569E – ident: ref132/cit132 doi: 10.1021/jo00053a020 – ident: ref145/cit145 doi: 10.1038/nature21419 – ident: ref159/cit159 doi: 10.1007/s41061-019-0268-x – ident: ref107/cit107 doi: 10.1039/c2sc00997h – ident: ref87/cit87 doi: 10.1002/(SICI)1521-3773(20000515)39:10<1782::AID-ANIE1782>3.0.CO;2-5 – ident: ref88/cit88 doi: 10.1021/acs.cgd.5b01770 – ident: ref125/cit125 doi: 10.1002/anie.202102813 – ident: ref90/cit90 doi: 10.1002/qua.21419 – ident: ref28/cit28 doi: 10.1016/j.enchem.2020.100029 – ident: ref92/cit92 doi: 10.1021/cr500674c – ident: ref173/cit173 doi: 10.1039/D0CS00997K – ident: ref84/cit84 doi: 10.1007/978-3-319-14163-3_10 – ident: ref130/cit130 doi: 10.1039/D3CC02981F – ident: ref175/cit175 doi: 10.1038/s42004-022-00705-4 – ident: ref33/cit33 doi: 10.1007/s10847-019-00972-0 – ident: ref101/cit101 doi: 10.1039/c3dt50599e – ident: ref142/cit142 doi: 10.1002/anie.201609073 – ident: ref100/cit100 doi: 10.1039/b206867b – ident: ref119/cit119 doi: 10.1107/S205252061700292X – ident: ref167/cit167 doi: 10.1038/ncomms5043 – ident: ref174/cit174 doi: 10.1038/s41467-021-21091-w – ident: ref98/cit98 doi: 10.1107/S0108768185002129 – ident: ref8/cit8 doi: 10.1021/ar1000617 – ident: ref10/cit10 doi: 10.1002/chem.201902491 – ident: ref170/cit170 doi: 10.1021/acs.cgd.3c00310 – ident: ref29/cit29 doi: 10.1021/ja0570032 – ident: ref144/cit144 doi: 10.1002/anie.201201174 – ident: ref163/cit163 doi: 10.1002/adma.202202290 – ident: ref32/cit32 doi: 10.1021/jacs.0c06473 – ident: ref67/cit67 doi: 10.1351/pac199466051077 – ident: ref153/cit153 doi: 10.1021/acs.jpca.1c05962 – ident: ref52/cit52 doi: 10.1038/s41565-020-0673-x – ident: ref39/cit39 doi: 10.1038/s41557-023-01334-7 – ident: ref56/cit56 doi: 10.1016/j.polymer.2019.04.060 – ident: ref27/cit27 doi: 10.1021/acsami.7b16937 – ident: ref64/cit64 doi: 10.1007/s00894-011-1089-1 – ident: ref80/cit80 doi: 10.1002/1521-3765(20010618)7:12<2511::AID-CHEM25110>3.0.CO;2-T – ident: ref120/cit120 doi: 10.1038/nchem.1496 – ident: ref85/cit85 doi: 10.1039/c3cp00054k – ident: ref124/cit124 doi: 10.1021/acs.accounts.0c00582 – ident: ref31/cit31 doi: 10.1017/S0885715612000863 – ident: ref62/cit62 doi: 10.1021/cg0340042 – volume-title: The nature of the chemical bond and the structure of molecules and crystals; an introduction to modern structural chemistry year: 1960 ident: ref102/cit102 contributor: fullname: Pauling L. – start-page: 113 volume-title: Chemical Reactivity in Confined Systems: Theory, Modelling, and Applications year: 2021 ident: ref105/cit105 doi: 10.1002/9781119683353.ch7 contributor: fullname: Politzer P. – ident: ref43/cit43 doi: 10.1021/jacs.2c02173 – ident: ref53/cit53 doi: 10.1002/anie.201805355 – ident: ref136/cit136 doi: 10.1002/ejic.200900694 – ident: ref146/cit146 doi: 10.1039/b719625c – ident: ref82/cit82 doi: 10.1007/s00894-006-0154-7 – ident: ref51/cit51 doi: 10.1021/acscentsci.9b00745 – ident: ref7/cit7 doi: 10.1038/s41563-020-00847-7 – ident: ref38/cit38 doi: 10.1021/jacs.6b09787 – ident: ref172/cit172 doi: 10.1021/cg2009013 – volume-title: Industrial Gas Handbook year: 2007 ident: ref14/cit14 doi: 10.1201/9781420008265 contributor: fullname: Kerry F. G. – ident: ref139/cit139 doi: 10.1021/acs.langmuir.1c02915 – ident: ref149/cit149 doi: 10.1039/C8NJ00759D – ident: ref108/cit108 doi: 10.1039/D2SC01800D – ident: ref68/cit68 doi: 10.1002/poc.3325 – ident: ref95/cit95 doi: 10.1021/acs.inorgchem.1c01232 – ident: ref16/cit16 doi: 10.1021/ja00053a020 – ident: ref47/cit47 doi: 10.1021/acsmaterialslett.1c00628 – ident: ref133/cit133 doi: 10.3390/ijms23084206 – ident: ref160/cit160 doi: 10.1021/jacs.9b06445 – ident: ref169/cit169 doi: 10.1021/jacs.1c08642 – ident: ref179/cit179 doi: 10.1002/ange.201709187 – ident: ref79/cit79 doi: 10.1016/S0040-4039(98)01996-0 – ident: ref97/cit97 doi: 10.1039/b902330e – ident: ref141/cit141 doi: 10.1021/jacs.5b05644 – ident: ref147/cit147 doi: 10.1039/b605958a – ident: ref143/cit143 doi: 10.1021/ol502639x – ident: ref151/cit151 doi: 10.1039/C7SC04340F – ident: ref63/cit63 doi: 10.1039/c004189k – ident: ref26/cit26 doi: 10.1039/D0MH00898B – ident: ref3/cit3 doi: 10.1021/ar0401799 – ident: ref111/cit111 doi: 10.1021/acs.organomet.0c00633 |
SSID | ssj0007633 |
Score | 2.482549 |
Snippet | Halogen bonding has emerged as a reliable and intuitive handle in crystal engineering, providing predictable, noncovalent interactions capable of directing... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 2304 |
Title | Toward the Next Generation of Permanently Porous Materials: Halogen-Bonded Organic Frameworks |
URI | http://dx.doi.org/10.1021/acs.cgd.3c01427 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagDMDAo4AoL3nowJKSOA_bbFVFVSG1qkQrdUGR7dgMoAQ16QC_nnOSlooKwRqdrOh8vvsu_vIdQm3iqYhyaHK4K6gTgJUjeCgc6UrKuCCJUbZRHI6iwTR4nIWzb7Honzf4xLsTCpz_knR8BWie0G20Q6jL7ZSGbu9plXThmJRc-pCU8pj-SsVnYwFbhlS-VobW6kn_sGJi5aUMoaWRvHYWheyoz02Rxr9f9Qgd1KgSd6swOEZbOm2i3d5ymFsT7a_pDp6g50lJlsUA_vAIsjOuxKftHuHM4LHN1ilUo7cPPM7m2SLHQ1FUoXqPB_Zzj04dO5BYJ7j6mVPh_pLllZ-iaf9h0hs49ZwFRwC6K5zQDuoUgZQJ4xGj2hhBvcRV2jUBFZpKToSgMpJgEUHzbYQKBCXEeL4OFfH8M9RIs1SfIwzghrgyYkwYFoAdY9BucebqxCQ88cIWaoOT4vqc5HF5BU682D4Ez8W151rodrk78XuluvGb6cX_VrxEewTgiGWPEfcKNYr5Ql8DnCjkTRlIX255xfQ |
link.rule.ids | 315,783,787,2774,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED4VGICBN-KNBwaWFMdNYoetqqjKoxWIIrGgyHZsBlCKmnSAX885aUsFQoLVOp1O9tn3nX3-DuCE-TriMSY5MZXcC1DKk3EoPUUVF7FkqdUuUez2os5DcPUYPtaATv7CoBE5asrLR_wvdgH_zI3p57Te0AjqGZ-DhZBT7noWNFv307MXd0tZUh-ykiWzMSXz-aHARSOdz0SjmbDSXoW7qUFlNclLfVSouv74xtX4H4vXYGWMMUmzcop1qJlsAxZbk9ZuG7A8w0K4CU_9snSWIBQkPTyrSUVF7VaMDCy5dWd3hrHp9Z3cDoaDUU66sqgc95x03OWPyTzXntikpPraqUl7UvOVb8FD-6Lf6njjrgueRKxXeKFr2ykDpVIRR4IbayX3U6oNtQGXhquYSclVpFAiwlTcSh1Izpj1GybUzG9sw3w2yMwOEIQ6jKpICGlFgHJCYPIVC2pSm8apH-7CCU5SMt41eVI-iDM_cYM4c8l45nbhdLJIyVvFwfGb6N7fNB7DYqffvUluLnvX-7DEEKi4ujJGD2C-GI7MIQKNQh2VvvUJCdLOXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4SDwOvBFvcuDApaPN2iblhgbTeE2TYBIXVOXJAdRNtDvAr8dpu2kCIcE1sqzIiePPifMZ4IQGKmYJJjmJL5gXopQnkkh40peMJ4Jqq1yieN-NO_3w5il6qj-Fub8wOIkcNeXlI77z6qG2NcNAcObG1YtuNBUCe8pmYT5iAXV9Cy5aD5PzFz2mLKuPaMmU2ZwQ-vxQ4CKSyqci0lRoaa9CfzKpsqLktTEqZEN9fuNr_O-s12Clxprkotoc6zBjsg1YbI1bvG3A8hQb4SY8P5YltAQhIenimU0qSmq3cmRgSc-d4RnGqLcP0hu8D0Y5uRdFtYHPScddApnMc22KjSbVF09F2uPar3wL-u2rx1bHq7sveAIxX-FFrn2nCKXUPIk5M9YKFmhfGd-GTBgmEyoEk7FEiRhTcitUKBilNmiaSNGguQ1z2SAzO0AQ8lBfxpwLy0OU4xyTsIT7Rlud6CDahRM0Ulp7T56WD-M0SN0gWi6tLbcLp-OFSocVF8dvont_03gMC73Ldnp33b3dhyWKeMWVl1H_AOaK95E5RLxRyKNye30Bw23Q1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+the+Next+Generation+of+Permanently+Porous+Materials%3A+Halogen-Bonded+Organic+Frameworks&rft.jtitle=Crystal+growth+%26+design&rft.au=Moghadasnia%2C+Michael+P.&rft.au=Eckstein%2C+Brian+J.&rft.au=Martin%2C+Hannah+R.&rft.au=Paredes%2C+Jesus+U.&rft.date=2024-03-20&rft.pub=American+Chemical+Society&rft.issn=1528-7483&rft.eissn=1528-7505&rft.volume=24&rft.issue=6&rft.spage=2304&rft.epage=2321&rft_id=info:doi/10.1021%2Facs.cgd.3c01427&rft.externalDocID=c318701774 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1528-7483&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1528-7483&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1528-7483&client=summon |