Inference of Calmodulin’s Ca2+-Dependent Free Energy Landscapes via Gaussian Mixture Model Validation

A free energy landscape estimation method based on the well-known Gaussian mixture model (GMM) is used to compare the efficiencies of thermally enhanced sampling methods with respect to regular molecular dynamics. The simulations are carried out on two binding states of calmodulin, and the free ener...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 14; no. 1; pp. 63 - 71
Main Authors Westerlund, Annie M, Harpole, Tyler J, Blau, Christian, Delemotte, Lucie
Format Journal Article
LanguageEnglish
Published American Chemical Society 01.01.2018
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.7b00346

Cover

Loading…
Abstract A free energy landscape estimation method based on the well-known Gaussian mixture model (GMM) is used to compare the efficiencies of thermally enhanced sampling methods with respect to regular molecular dynamics. The simulations are carried out on two binding states of calmodulin, and the free energy estimation method is compared with other estimators using a toy model. We show that GMM with cross-validation provides a robust estimate that is not subject to overfitting. The continuous nature of Gaussians provides better estimates on sparse data than canonical histogramming. We find that diffusion properties determine the sampling method effectiveness, such that diffusion-dominated apo calmodulin is most efficiently sampled by regular molecular dynamics, while holo calmodulin, with its rugged free energy landscape, is better sampled by enhanced sampling methods.
AbstractList A free energy landscape estimation method based on the well-known Gaussian mixture model (GMM) is used to compare the efficiencies of thermally enhanced sampling methods with respect to regular molecular dynamics. The simulations are carried out on two binding states of calmodulin, and the free energy estimation method is compared with other estimators using a toy model. We show that GMM with cross-validation provides a robust estimate that is not subject to overfitting. The continuous nature of Gaussians provides better estimates on sparse data than canonical histogramming. We find that diffusion properties determine the sampling method effectiveness, such that diffusion-dominated apo calmodulin is most efficiently sampled by regular molecular dynamics, while holo calmodulin, with its rugged free energy landscape, is better sampled by enhanced sampling methods.
A free energy landscape estimation method based on the well-known Gaussian mixture model (GMM) is used to compare the efficiencies of thermally enhanced sampling methods with respect to regular molecular dynamics. The simulations are carried out on two binding states of calmodulin, and the free energy estimation method is compared with other estimators using a toy model. We show that GMM with cross-validation provides a robust estimate that is not subject to overfitting. The continuous nature of Gaussians provides better estimates on sparse data than canonical histogramming. We find that diffusion properties determine the sampling method effectiveness, such that diffusion-dominated apo calmodulin is most efficiently sampled by regular molecular dynamics, while holo calmodulin, with its rugged free energy landscape, is better sampled by enhanced sampling methods.A free energy landscape estimation method based on the well-known Gaussian mixture model (GMM) is used to compare the efficiencies of thermally enhanced sampling methods with respect to regular molecular dynamics. The simulations are carried out on two binding states of calmodulin, and the free energy estimation method is compared with other estimators using a toy model. We show that GMM with cross-validation provides a robust estimate that is not subject to overfitting. The continuous nature of Gaussians provides better estimates on sparse data than canonical histogramming. We find that diffusion properties determine the sampling method effectiveness, such that diffusion-dominated apo calmodulin is most efficiently sampled by regular molecular dynamics, while holo calmodulin, with its rugged free energy landscape, is better sampled by enhanced sampling methods.
Author Blau, Christian
Delemotte, Lucie
Westerlund, Annie M
Harpole, Tyler J
AuthorAffiliation KTH Royal Institute of Technology
Science for Life Laboratory, Department of Biochemistry and Biophysics
Science for Life Laboratory, Department of Physics
Stockholm University
AuthorAffiliation_xml – name: Stockholm University
– name: KTH Royal Institute of Technology
– name: Science for Life Laboratory, Department of Biochemistry and Biophysics
– name: Science for Life Laboratory, Department of Physics
Author_xml – sequence: 1
  givenname: Annie M
  surname: Westerlund
  fullname: Westerlund, Annie M
  organization: KTH Royal Institute of Technology
– sequence: 2
  givenname: Tyler J
  surname: Harpole
  fullname: Harpole, Tyler J
  organization: KTH Royal Institute of Technology
– sequence: 3
  givenname: Christian
  surname: Blau
  fullname: Blau, Christian
  email: christian.blau@scilifelab.se
  organization: Stockholm University
– sequence: 4
  givenname: Lucie
  orcidid: 0000-0002-0828-3899
  surname: Delemotte
  fullname: Delemotte, Lucie
  email: lucie.delemotte@scilifelab.se
  organization: KTH Royal Institute of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221690$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-152581$$DView record from Swedish Publication Index
BookMark eNqFkbtOwzAUhi0EErSwM3pEghRfYrcZUQulUisWYLUc56S4pHawE6Abr8Hr8SSEUrEynYs-HZ1fXw_tO-8AoVNKBpQweqlNHKxMYwbDnBCeyj10REWaJZlkcv-vp6ND1Itx1SE8ZfwILWeuhADOAPYlHutq7Yu2su7r4zN2IztPJlCDK8A1-CYA4GsHYbnBc-2KaHQNEb9ajae6jdFqhxf2vWkD4IUvoMKPurKFbqx3x-ig1FWEk13to4eb6_vxbTK_m87GV_NEM06aBFINUpJU0IwPSZZLChQ0MxnpUsksZyYXKSmZEXw44iynJgUhypEppSxMKXgfXfzejW9Qt7mqg13rsFFeWzWxj1fKh6WKraKCiRHt8OR__Ll5UoxRmZGOP_vl6-BfWoiNWttooKq0A99GRTMpGadsi-4-6cyolW-D63IrStSPLrVddrrUThf_BvUwjNc
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID 7X8
ADTPV
AOWAS
D8V
DG7
DOI 10.1021/acs.jctc.7b00346
DatabaseName MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Stockholms universitet
DatabaseTitle MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 71
ExternalDocumentID oai_DiVA_org_su_152581
oai_DiVA_org_kth_221690
c273128641
GroupedDBID 53G
55A
5GY
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACIWK
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
J9A
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
4.4
5VS
7X8
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
BAANH
CUPRZ
GGK
ADTPV
AOWAS
D8V
IHE
LG6
DG7
ID FETCH-LOGICAL-a230t-e4ae66045193709b61e1ea2c90b0069b2cb540f2c537832b1c4e55f8cf66dcf53
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Thu Aug 21 06:27:00 EDT 2025
Thu Aug 21 06:21:20 EDT 2025
Fri Jul 11 11:03:04 EDT 2025
Thu Aug 27 13:50:16 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a230t-e4ae66045193709b61e1ea2c90b0069b2cb540f2c537832b1c4e55f8cf66dcf53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0828-3899
PQID 1966231290
PQPubID 23479
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_su_152581
swepub_primary_oai_DiVA_org_kth_221690
proquest_miscellaneous_1966231290
acs_journals_10_1021_acs_jctc_7b00346
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0033423
Score 2.3314779
Snippet A free energy landscape estimation method based on the well-known Gaussian mixture model (GMM) is used to compare the efficiencies of thermally enhanced...
SourceID swepub
proquest
acs
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 63
SubjectTerms Algorithm
Biological-Systems
Calculating Free-Energies
Efficient
Exchange Molecular-Dynamics
Mechanism
Proteins
Replica-Exchange
Simulations
Transitions
Title Inference of Calmodulin’s Ca2+-Dependent Free Energy Landscapes via Gaussian Mixture Model Validation
URI http://dx.doi.org/10.1021/acs.jctc.7b00346
https://www.proquest.com/docview/1966231290
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-221690
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-152581
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKPcAF2gJioa2MVLigLGuv10mOq_3ogoAL7IqbZTsOLB-7iCQI9dS_0b_HL2HGyaqUIkRuieLEmrGd58zMe4T80E4ak9goEM2wEQjGbKBD0wisEVJoAYfzWb7HcjAUB2ets780OS8j-JztaZvVL21u6yGOQCHnyEcuYQ4jDOqczFbdJjLZeW5UgYyTLKpCkq89AT9ENvsXUj6nCfWflv5yqVGUeUZCzCi5qhe5qdtf__M1vqPXn8hShTBpuxwSn8kHN_lCFjozYbcVcr4_K_Kj05R29PXNNMF89MfffzI45btBt1LGzWn_zjna8_WB9BCrgjFfKqP3Y01_6iLDCkx6NH7AMARFWbVrOgJgX-o0rZJhv3faGQSV3kKgYSOSB06A56QnnAHHxUYyx5zmNm7g3IwNtwbwXcptqxnCQmCYBUe20simUiY2bTXXyPxkOnHrhApo71IdmySJRCITnYaxsTrEDXcScVsj22AhVc2XTPlQOGfKXwSzqcpsNbI1c5ICK2EwQ0_ctIAWsE8DbMrjRo3slN5TtyVBh0LK7O541FbgEXWVXyjOMRoIL33rxqxQKAYVsY13dm6TLAJ8isofMl_JfH5XuG8AUXLz3Y_NJ8Hu4-Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VcmgvQAuIhZa6EnBBWdZer5McV9suW9j2AG3Vm2U7Tru07KImQRUnXqOvx5Mw4yT8CaGSW6LYGc2M7c8ZzzcAz4xX1mYuiWQ_7kWScxeZ2PYiZ6WSRuLlwynfAzU5km9OBidLwNtcGBSiwJ6KEMT_yS7AX9GzD6503ZgcUapbcBuxiCCnHo7et5NvnwjtAkWqJOJJnjSRyb_1QOuRK35Hlr-yhYYVZnwX3v2QLRwsOe9Wpe26L3_QNv6X8PfgToM32bB2kDVY8vN1WBm1Zd7uw-lem_LHFjkbmYuPi4xOp3_7el3grXgZ7TR1cks2vvSe7YZsQTalHGE6PVWwzzPDXpuqoHxMtj-7oqAEoyJrF-wYYX5dtekBHI13D0eTqKm-EBnclpSRl2hHFehn0IypVdxzb4RLezRSUyucRbSXCzfoxzgtWO7QrIM8cblSmcsH_YewPF_M_SNgEtv73KQ2yxKZqczkcWqdiWn7nSXCdeA5akg3o6fQITAuuA4PUW26UVsHtltbadQShTbM3C8qbIG7NkSqIu114EVtRP2ppuvQRKC9MzsearSKPi_PtBAUG8SP_uvFotJUGirhj28o3BasTA73p3q6d_D2CawisErqXzUbsFxeVn4TwUtpnwZ3_Q54C-xF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIkEvvFGXp5GAC8qy9jpOclztdmmhVEjQVW-WX4GlZbdqEoQ48Tf4e_wSZpwEAUIIcosVO87M2J7JzHwD8NAEZa13eSLH2SiRnLvEZHaUOCuVNBKvEKN8D9TuoXx-lB5tQNrnwuAkKhypik58WtWnvuwQBvhTan_vajfMSBilOgfnyWtHgj2Zvu434DGB2kWYVEngkzzvvJN_GoHOJFf9ql3-jBgaT5n5ZVj8mF8MLjkeNrUdus-_QTf-9wdcgUud3skmraBchY2wugYXp325t-vwdq9P_WPrkk3NyYe1pyj1b1--VngrniSzrl5uzeZnIbCdmDXI9ilXmKKoKvZxadgz01SUl8leLj-Rc4JRsbUTtkB1v63edAMO5ztvprtJV4UhMWie1EmQyE8VYWiQnYVVPPBghCtGtGILK5xFra8ULh1nuD1Y7pC9aZm7UinvynR8EzZX61XYBiaxfyhNYb3PpVfelFlhncnIDPe5cAN4hBTS3SqqdHSQC65jI5JNd2QbwIOeXxqpRC4OswrrBnug9YYaqyhGA3jcMlKftrAdmoC0Z8vFRCNn9HH9TgtBPkJ86d8erBpNJaJyfusfJ3cfLryazfX-3sGL27CF-lXe_rG5A5v1WRPuog5T23tRYr8DGW7uyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inference+of+Calmodulin%27s+Ca2%2B-Dependent+Free+Energy+Landscapes+via+Gaussian+Mixture+Model+Validation&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Westerlund%2C+Annie+M.&rft.au=Harpole%2C+Tyler&rft.au=Blau%2C+C.&rft.au=Delemotte%2C+Lucie&rft.date=2018-01-01&rft.issn=1549-9626&rft.volume=14&rft.issue=1&rft.spage=63&rft_id=info:doi/10.1021%2Facs.jctc.7b00346&rft.externalDocID=oai_DiVA_org_kth_221690
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon