Bioinspired Photonic Systems Directed by Designer DNA Nanostructures
DNA nanotechnology leverages the programmable and predictable base pairing of DNA molecules to construct self-assembled nanomaterials in a designer fashion. The high programmability, intrinsic addressability, and dynamic reconfiguration of DNA structures make them tailored synthetic templates for gu...
Saved in:
Published in | ACS applied optical materials Vol. 3; no. 3; pp. 552 - 568 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
28.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2771-9855 2771-9855 |
DOI | 10.1021/acsaom.4c00103 |
Cover
Loading…
Abstract | DNA nanotechnology leverages the programmable and predictable base pairing of DNA molecules to construct self-assembled nanomaterials in a designer fashion. The high programmability, intrinsic addressability, and dynamic reconfiguration of DNA structures make them tailored synthetic templates for guiding the construction of high-performance optical nanomaterials and devices. Inspired by protein-scaffolded multichromophore complexes in natural light-harvesting systems, diverse photoactive components can be precisely organized onto DNA templates, forming both weakly and strongly coupled excitonic architectures that enable efficient photon capture and excitation energy transfer. This review discusses lessons learned from natural light-harvesting complexes, guiding the design of artificial optical nanomaterials templated on DNA assemblies. The focus then shifts to the design and construction of DNA-directed efficient energy transfer systems, highlighting advancements in utilizing DNA-based photonic structures and devices for applications in energy, bioimaging, biosensing, and more while also discussing challenges and potential opportunities. |
---|---|
AbstractList | DNA nanotechnology leverages the programmable and predictable base pairing of DNA molecules to construct self-assembled nanomaterials in a designer fashion. The high programmability, intrinsic addressability, and dynamic reconfiguration of DNA structures make them tailored synthetic templates for guiding the construction of high-performance optical nanomaterials and devices. Inspired by protein-scaffolded multichromophore complexes in natural light-harvesting systems, diverse photoactive components can be precisely organized onto DNA templates, forming both weakly and strongly coupled excitonic architectures that enable efficient photon capture and excitation energy transfer. This review discusses lessons learned from natural light-harvesting complexes, guiding the design of artificial optical nanomaterials templated on DNA assemblies. The focus then shifts to the design and construction of DNA-directed efficient energy transfer systems, highlighting advancements in utilizing DNA-based photonic structures and devices for applications in energy, bioimaging, biosensing, and more while also discussing challenges and potential opportunities. |
Author | Yan, Hao Prasad, Abhay Satyabola, Deeksha Zhou, Xu |
AuthorAffiliation | School of Molecular Sciences Center for Molecular Design and Biomimetics at the Biodesign Institute |
AuthorAffiliation_xml | – name: Center for Molecular Design and Biomimetics at the Biodesign Institute – name: School of Molecular Sciences |
Author_xml | – sequence: 1 givenname: Deeksha surname: Satyabola fullname: Satyabola, Deeksha organization: School of Molecular Sciences – sequence: 2 givenname: Abhay surname: Prasad fullname: Prasad, Abhay organization: School of Molecular Sciences – sequence: 3 givenname: Hao orcidid: 0000-0001-7397-9852 surname: Yan fullname: Yan, Hao email: hao.yan@asu.edu organization: School of Molecular Sciences – sequence: 4 givenname: Xu orcidid: 0000-0002-2714-5627 surname: Zhou fullname: Zhou, Xu email: xzhou110@asu.edu organization: Center for Molecular Design and Biomimetics at the Biodesign Institute |
BookMark | eNp1kM1LxDAQxYOs4Lru1XPPQuukTZv0uG79gmUV1HNJ00Sz2GRJ0kP_eyPdgxdhYIbfzHsM7xItjDUSoWsMGYYc33LhuR0yIgAwFGdomVOK05qV5eLPfIHW3h8AoACooSqXqLnTVht_1E72yeuXDdZokbxNPsjBJ03EIsRNNyWN9PrTSJc0-02y58b64EYRRif9FTpX_NvL9amv0MfD_fv2Kd29PD5vN7uU53kdUiW7mlCiGK473ismIyWgRM-ZwFDhiopacJYXRa8ojVUKApKIgkvoWMeLFcpmX-Gs906q9uj0wN3UYmh_Y2jnGNpTDFFwMwsibw92dCa-99_xD6ETYgg |
Cites_doi | 10.1039/C7RA02114C 10.1021/acsnano.6b07097 10.1021/acs.chemrev.0c00749 10.1021/acsnano.1c09143 10.1002/anie.201301439 10.1002/adom.201500554 10.1021/acs.jpcc.0c09258 10.1021/ja902825j 10.1039/D0CS00936A 10.1021/acsnano.2c07749 10.1002/chem.201702780 10.1073/pnas.1003581107 10.1021/acs.jpclett.0c01020 10.1002/cssc.201701390 10.1038/nature04586 10.1021/ja0541938 10.1007/s11120-010-9533-0 10.1021/acs.nanolett.3c03652 10.1021/acs.chemrev.6b00002 10.1126/science.aao2648 10.1002/anie.201002307 10.1021/acs.jpcc.2c04336 10.1021/ar030257c 10.1039/c3lc50629k 10.1021/ja058145z 10.1021/acsanm.0c03474 10.1016/j.chempr.2020.12.020 10.1002/anie.201400323 10.1021/acsnano.2c06936 10.1002/adma.201301141 10.1021/acsaom.3c00459 10.1021/acs.bioconjchem.9b00043 10.1021/acssensors.6b00593 10.1038/nnano.2009.83 10.1021/jacs.3c05578 10.1021/acsnano.8b01510 10.1021/acs.nanolett.0c04502 10.1002/adma.202104678 10.1021/jacs.0c04975 10.1021/acs.accounts.6b00042 10.1021/ar400017u 10.1021/acs.bioconjchem.5b00194 10.1016/j.chempr.2024.03.007 10.1021/acs.jpclett.2c00017 10.1021/acs.chemrev.3c00028 10.1021/acs.jpcb.6b09385 10.1006/jsbi.1995.1042 10.1021/acs.nanolett.5b05139 10.1002/anie.202211200 10.1021/acsabm.2c01045 10.1038/nature09012 10.1021/acsnano.5b04066 10.1021/jacs.0c12522 10.1021/acsnano.7b05631 10.1038/nchem.1145 10.1021/acsnano.0c10259 10.1021/acs.analchem.7b02763 10.1021/acs.jpca.7b04344 10.1002/ange.201912654 10.1021/acs.chemrev.2c00061 10.1126/science.aar8104 10.1039/C4RA10580J 10.1021/ja803407t 10.1038/s41467-020-17995-8 10.1126/science.1202998 10.1002/adfm.202201541 10.1021/nl049660i 10.1021/ja002184n 10.1021/jacs.9b10080 10.1021/acs.nanolett.7b02559 10.1021/acs.jpcc.1c08981 10.1021/ja310596a 10.1002/agt2.460 10.1002/anie.202003427 10.1002/adfm.202100322 10.1038/nnano.2009.227 10.1109/JPHOT.2020.2976489 10.1021/acs.jpca.3c00562 10.1021/nn402468t 10.1016/0022-5193(82)90002-9 10.1038/nature08274 10.1021/acs.chemmater.5b02870 10.1021/acs.chemrev.7b00581 10.1038/natrevmats.2017.68 10.1038/nature14570 10.1038/nnano.2015.190 10.1039/C9CS00776H 10.1126/science.1227268 10.1021/bc034028m 10.1002/adom.201700679 10.1021/acs.jpcb.1c09048 10.1021/acsanm.0c00038 10.1002/anie.201006735 10.1021/acsanm.9b01851 10.1021/ja1105464 10.1088/1367-2630/17/11/115007 10.1021/acs.jpcb.0c06480 10.1021/acsphotonics.5b00052 10.1021/acsphotonics.6b00006 10.1021/jacs.7b01550 10.1073/pnas.95.11.5935 10.1039/c4cc01072h 10.1098/rsif.2013.0901 10.1021/ja993393e 10.1021/acsnano.1c05871 10.1039/C4CS00131A 10.1038/nmat4448 10.1021/acs.accounts.0c00590 10.1002/adom.202100884 10.1021/acs.chemrev.6b00825 10.1021/bi00064a003 10.1038/nature06597 10.1021/nn800727x 10.1038/s41586-018-0332-7 10.1017/S0033583506004434 10.1021/acs.jpcb.8b02134 10.1016/j.chempr.2022.05.017 10.1021/acs.nanolett.7b03425 10.1021/acsami.8b03585 10.1021/jacs.2c11199 10.1103/PhysRev.37.1276 10.1021/acs.jpclett.7b01898 10.1002/anie.202106035 10.1038/nature21425 10.1021/acs.jpclett.9b00404 10.1126/science.1174251 10.1038/s43586-020-00009-8 10.1021/acs.jpcb.1c07602 10.1128/JB.181.13.3869-3879.1999 10.1021/acs.jpca.2c06442 10.1016/j.bpc.2015.01.001 10.1126/sciadv.aau1157 10.1002/adma.201600697 10.1002/anie.201809914 10.1038/nnano.2011.187 10.1021/ja512416n 10.1038/ncomms6615 10.1002/smll.202301811 10.1021/acs.nanolett.1c02584 10.1038/nature07971 10.1038/s41557-018-0016-9 10.1038/s41467-017-02435-x 10.1038/nbt0396-303 10.1039/D0SC01127D 10.1039/D2SC02759C 10.1002/anie.202117735 10.1021/ja505101a 10.1002/anie.202210730 10.1021/jacsau.3c00826 10.1021/bc060143w 10.2307/3571331 10.1021/acs.nanolett.6b04846 10.1007/b100442 10.1038/nmat5033 10.1021/ja066354t 10.1073/pnas.0706861104 10.1021/jacs.9b08797 10.1021/acs.chemrev.7b00225 10.1038/28998 10.1021/ja509018g 10.1021/acsphotonics.2c00445 10.1002/anie.202004221 10.1038/nnano.2015.130 10.1002/anie.201202356 10.1038/s41565-018-0318-5 10.1021/ph500444d 10.1002/cphc.200600260 10.1021/jacs.0c11060 10.1002/anie.201807223 10.1016/j.chempr.2020.10.025 10.1021/ja1115138 10.1021/cm500592j 10.1021/acs.chemrev.8b00570 10.1021/acs.jpclett.1c03848 10.1021/acssensors.6b00778 10.1038/s41557-020-00563-4 10.1038/nchem.957 10.1002/anie.202014466 10.1021/ja106465x 10.1021/acs.chemrev.9b00121 10.1038/35020524 10.1039/D3CC02024J 10.1021/acsnano.0c10922 10.1038/s41565-022-01284-0 10.1021/ja311828v 10.1126/science.1089389 10.1021/jacs.9b01548 10.1038/nature11075 10.1126/science.1200520 10.1021/acs.jpcb.1c04517 10.1038/nchembio.1555 10.1021/nl3004336 10.1038/359859a0 10.1021/acsnano.9b02679 10.1021/acs.jpcb.0c06732 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaom.4c00103 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2771-9855 |
EndPage | 568 |
ExternalDocumentID | 10_1021_acsaom_4c00103 i57098779 |
GroupedDBID | ABJNI ABQRX ACS ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ EBS GGK VF5 VG9 AAYXX ABBLG ABLBI CITATION |
ID | FETCH-LOGICAL-a229t-feb9474f819badf8e22940fcda8c106167c9ca8233df77f775c40e4c3ae0b8ba3 |
IEDL.DBID | ACS |
ISSN | 2771-9855 |
IngestDate | Tue Jul 01 05:18:56 EDT 2025 Mon Mar 31 03:20:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | energy transfer biosensing excitonic system light harvesting DNA Nanotechnology |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a229t-feb9474f819badf8e22940fcda8c106167c9ca8233df77f775c40e4c3ae0b8ba3 |
ORCID | 0000-0002-2714-5627 0000-0001-7397-9852 |
PageCount | 17 |
ParticipantIDs | crossref_primary_10_1021_acsaom_4c00103 acs_journals_10_1021_acsaom_4c00103 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-28 |
PublicationDateYYYYMMDD | 2025-03-28 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied optical materials |
PublicationTitleAlternate | ACS Appl. Opt. Mater |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref187/cit187 ref181/cit181 ref111/cit111 ref113/cit113 ref183/cit183 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref10/cit10 ref35/cit35 ref93/cit93 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref137/cit137 ref11/cit11 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref148/cit148 ref55/cit55 ref144/cit144 ref167/cit167 ref163/cit163 ref66/cit66 ref22/cit22 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref194/cit194 ref98/cit98 ref153/cit153 ref150/cit150 ref63/cit63 ref56/cit56 ref155/cit155 ref156/cit156 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref17/cit17 ref82/cit82 ref147/cit147 ref145/cit145 ref21/cit21 ref166/cit166 ref164/cit164 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref14/cit14 ref57/cit57 ref169/cit169 ref134/cit134 ref40/cit40 ref131/cit131 ref161/cit161 ref142/cit142 ref15/cit15 ref180/cit180 ref62/cit62 ref41/cit41 ref58/cit58 ref104/cit104 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref186/cit186 ref116/cit116 ref110/cit110 ref182/cit182 ref2/cit2 ref112/cit112 ref77/cit77 ref71/cit71 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref107/cit107 ref191/cit191 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref38/cit38 ref90/cit90 ref195/cit195 ref64/cit64 ref6/cit6 ref18/cit18 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref76/cit76 ref32/cit32 ref39/cit39 ref168/cit168 ref132/cit132 ref91/cit91 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref154/cit154 ref27/cit27 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref31/cit31 ref88/cit88 ref160/cit160 ref143/cit143 ref53/cit53 ref149/cit149 ref162/cit162 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref138/cit138 ref100/cit100 ref25/cit25 ref173/cit173 ref103/cit103 ref72/cit72 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref146/cit146 ref26/cit26 ref73/cit73 ref69/cit69 ref165/cit165 ref95/cit95 ref108/cit108 ref192/cit192 ref4/cit4 ref30/cit30 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref117/cit117 doi: 10.1039/C7RA02114C – ident: ref160/cit160 doi: 10.1021/acsnano.6b07097 – ident: ref190/cit190 doi: 10.1021/acs.chemrev.0c00749 – ident: ref78/cit78 doi: 10.1021/acsnano.1c09143 – ident: ref146/cit146 doi: 10.1002/anie.201301439 – ident: ref123/cit123 doi: 10.1002/adom.201500554 – ident: ref68/cit68 doi: 10.1021/acs.jpcc.0c09258 – ident: ref13/cit13 doi: 10.1021/ja902825j – ident: ref57/cit57 doi: 10.1039/D0CS00936A – ident: ref181/cit181 doi: 10.1021/acsnano.2c07749 – ident: ref135/cit135 doi: 10.1002/chem.201702780 – ident: ref144/cit144 doi: 10.1073/pnas.1003581107 – ident: ref124/cit124 doi: 10.1021/acs.jpclett.0c01020 – ident: ref182/cit182 doi: 10.1002/cssc.201701390 – ident: ref49/cit49 doi: 10.1038/nature04586 – ident: ref41/cit41 doi: 10.1021/ja0541938 – ident: ref20/cit20 doi: 10.1007/s11120-010-9533-0 – ident: ref92/cit92 doi: 10.1021/acs.nanolett.3c03652 – ident: ref4/cit4 doi: 10.1021/acs.chemrev.6b00002 – ident: ref56/cit56 doi: 10.1126/science.aao2648 – ident: ref25/cit25 doi: 10.1002/anie.201002307 – ident: ref81/cit81 doi: 10.1021/acs.jpcc.2c04336 – ident: ref100/cit100 doi: 10.1021/ar030257c – ident: ref145/cit145 doi: 10.1039/c3lc50629k – ident: ref42/cit42 doi: 10.1021/ja058145z – ident: ref163/cit163 doi: 10.1021/acsanm.0c03474 – ident: ref65/cit65 doi: 10.1016/j.chempr.2020.12.020 – ident: ref147/cit147 doi: 10.1002/anie.201400323 – ident: ref69/cit69 doi: 10.1021/acsnano.2c06936 – ident: ref141/cit141 doi: 10.1002/adma.201301141 – ident: ref82/cit82 doi: 10.1021/acsaom.3c00459 – ident: ref131/cit131 doi: 10.1021/acs.bioconjchem.9b00043 – ident: ref157/cit157 doi: 10.1021/acssensors.6b00593 – ident: ref158/cit158 doi: 10.1038/nnano.2009.83 – ident: ref171/cit171 doi: 10.1021/jacs.3c05578 – ident: ref155/cit155 doi: 10.1021/acsnano.8b01510 – ident: ref143/cit143 doi: 10.1021/acs.nanolett.0c04502 – ident: ref35/cit35 doi: 10.1002/adma.202104678 – ident: ref33/cit33 doi: 10.1021/jacs.0c04975 – ident: ref88/cit88 doi: 10.1021/acs.accounts.6b00042 – ident: ref27/cit27 doi: 10.1021/ar400017u – ident: ref169/cit169 doi: 10.1021/acs.bioconjchem.5b00194 – ident: ref91/cit91 doi: 10.1016/j.chempr.2024.03.007 – ident: ref80/cit80 doi: 10.1021/acs.jpclett.2c00017 – ident: ref58/cit58 doi: 10.1021/acs.chemrev.3c00028 – ident: ref118/cit118 doi: 10.1021/acs.jpcb.6b09385 – ident: ref9/cit9 doi: 10.1006/jsbi.1995.1042 – ident: ref116/cit116 doi: 10.1021/acs.nanolett.5b05139 – ident: ref133/cit133 doi: 10.1002/anie.202211200 – ident: ref193/cit193 doi: 10.1021/acsabm.2c01045 – ident: ref62/cit62 doi: 10.1038/nature09012 – ident: ref138/cit138 doi: 10.1021/acsnano.5b04066 – ident: ref12/cit12 doi: 10.1021/jacs.0c12522 – ident: ref121/cit121 doi: 10.1021/acsnano.7b05631 – ident: ref2/cit2 doi: 10.1038/nchem.1145 – ident: ref70/cit70 doi: 10.1021/acsnano.0c10259 – ident: ref156/cit156 doi: 10.1021/acs.analchem.7b02763 – ident: ref84/cit84 doi: 10.1021/acs.jpca.7b04344 – ident: ref17/cit17 doi: 10.1002/ange.201912654 – ident: ref1/cit1 doi: 10.1039/D0CS00936A – ident: ref191/cit191 doi: 10.1021/acs.chemrev.2c00061 – ident: ref30/cit30 doi: 10.1126/science.aar8104 – ident: ref168/cit168 doi: 10.1039/C4RA10580J – ident: ref114/cit114 doi: 10.1021/ja803407t – ident: ref189/cit189 doi: 10.1038/s41467-020-17995-8 – ident: ref51/cit51 doi: 10.1126/science.1202998 – ident: ref178/cit178 doi: 10.1002/adfm.202201541 – ident: ref111/cit111 doi: 10.1021/nl049660i – ident: ref99/cit99 doi: 10.1021/ja002184n – ident: ref14/cit14 doi: 10.1021/jacs.9b10080 – ident: ref32/cit32 doi: 10.1021/acs.nanolett.7b02559 – ident: ref77/cit77 doi: 10.1021/acs.jpcc.1c08981 – ident: ref15/cit15 doi: 10.1021/ja310596a – ident: ref10/cit10 doi: 10.1002/agt2.460 – ident: ref19/cit19 doi: 10.1002/anie.202003427 – ident: ref139/cit139 doi: 10.1002/adfm.202100322 – ident: ref26/cit26 doi: 10.1038/nnano.2009.227 – ident: ref140/cit140 doi: 10.1109/JPHOT.2020.2976489 – ident: ref85/cit85 doi: 10.1021/acs.jpca.3c00562 – ident: ref110/cit110 doi: 10.1021/nn402468t – ident: ref37/cit37 doi: 10.1016/0022-5193(82)90002-9 – ident: ref47/cit47 doi: 10.1038/nature08274 – ident: ref179/cit179 doi: 10.1021/acs.chemmater.5b02870 – ident: ref36/cit36 doi: 10.1021/acs.chemrev.7b00581 – ident: ref107/cit107 doi: 10.1038/natrevmats.2017.68 – ident: ref31/cit31 doi: 10.1038/nature14570 – ident: ref136/cit136 doi: 10.1038/nnano.2015.190 – ident: ref67/cit67 doi: 10.1039/C9CS00776H – ident: ref55/cit55 doi: 10.1126/science.1227268 – ident: ref108/cit108 doi: 10.1021/bc034028m – ident: ref126/cit126 doi: 10.1002/adom.201700679 – ident: ref130/cit130 doi: 10.1021/acs.jpcb.1c09048 – ident: ref128/cit128 doi: 10.1021/acsanm.0c00038 – ident: ref113/cit113 doi: 10.1002/anie.201006735 – ident: ref142/cit142 doi: 10.1021/acsanm.9b01851 – ident: ref120/cit120 doi: 10.1021/ja1105464 – ident: ref177/cit177 doi: 10.1088/1367-2630/17/11/115007 – ident: ref87/cit87 doi: 10.1021/acs.jpcb.0c06480 – ident: ref109/cit109 doi: 10.1021/acsphotonics.5b00052 – ident: ref115/cit115 doi: 10.1021/acsphotonics.6b00006 – ident: ref28/cit28 doi: 10.1021/jacs.7b01550 – ident: ref7/cit7 doi: 10.1073/pnas.95.11.5935 – ident: ref112/cit112 doi: 10.1039/c4cc01072h – ident: ref23/cit23 doi: 10.1098/rsif.2013.0901 – ident: ref40/cit40 doi: 10.1021/ja993393e – ident: ref73/cit73 doi: 10.1021/acsnano.1c05871 – ident: ref183/cit183 doi: 10.1039/C4CS00131A – ident: ref16/cit16 doi: 10.1038/nmat4448 – ident: ref29/cit29 doi: 10.1021/acs.accounts.0c00590 – ident: ref125/cit125 doi: 10.1002/adom.202100884 – ident: ref53/cit53 doi: 10.1021/acs.chemrev.6b00825 – ident: ref39/cit39 doi: 10.1021/bi00064a003 – ident: ref44/cit44 doi: 10.1038/nature06597 – ident: ref96/cit96 doi: 10.1021/nn800727x – ident: ref196/cit196 doi: 10.1038/s41586-018-0332-7 – ident: ref5/cit5 doi: 10.1017/S0033583506004434 – ident: ref74/cit74 doi: 10.1021/acs.jpcb.8b02134 – ident: ref101/cit101 doi: 10.1016/j.chempr.2022.05.017 – ident: ref194/cit194 doi: 10.1021/acs.nanolett.7b03425 – ident: ref150/cit150 doi: 10.1021/acsami.8b03585 – ident: ref172/cit172 doi: 10.1021/jacs.2c11199 – ident: ref22/cit22 doi: 10.1103/PhysRev.37.1276 – ident: ref129/cit129 doi: 10.1021/acs.jpclett.7b01898 – ident: ref11/cit11 doi: 10.1002/anie.202106035 – ident: ref24/cit24 doi: 10.1038/nature21425 – ident: ref83/cit83 doi: 10.1021/acs.jpclett.9b00404 – ident: ref50/cit50 doi: 10.1126/science.1174251 – ident: ref52/cit52 doi: 10.1038/s43586-020-00009-8 – ident: ref72/cit72 doi: 10.1021/acs.jpcb.1c07602 – ident: ref8/cit8 doi: 10.1128/JB.181.13.3869-3879.1999 – ident: ref86/cit86 doi: 10.1021/acs.jpca.2c06442 – ident: ref66/cit66 doi: 10.1016/j.bpc.2015.01.001 – ident: ref195/cit195 doi: 10.1126/sciadv.aau1157 – ident: ref185/cit185 doi: 10.1002/adma.201600697 – ident: ref134/cit134 doi: 10.1002/anie.201809914 – ident: ref106/cit106 doi: 10.1038/nnano.2011.187 – ident: ref148/cit148 doi: 10.1021/ja512416n – ident: ref119/cit119 doi: 10.1038/ncomms6615 – ident: ref166/cit166 doi: 10.1002/smll.202301811 – ident: ref161/cit161 doi: 10.1021/acs.nanolett.1c02584 – ident: ref43/cit43 doi: 10.1038/nature07971 – ident: ref175/cit175 doi: 10.1038/s41557-018-0016-9 – ident: ref170/cit170 doi: 10.1038/s41467-017-02435-x – ident: ref154/cit154 doi: 10.1038/nbt0396-303 – ident: ref79/cit79 doi: 10.1039/D0SC01127D – ident: ref90/cit90 doi: 10.1039/D2SC02759C – ident: ref152/cit152 doi: 10.1002/anie.202117735 – ident: ref105/cit105 doi: 10.1021/ja505101a – ident: ref188/cit188 doi: 10.1002/anie.202210730 – ident: ref104/cit104 doi: 10.1021/jacsau.3c00826 – ident: ref174/cit174 doi: 10.1021/bc060143w – ident: ref21/cit21 doi: 10.2307/3571331 – ident: ref149/cit149 doi: 10.1021/acs.nanolett.6b04846 – ident: ref98/cit98 doi: 10.1007/b100442 – ident: ref102/cit102 doi: 10.1038/nmat5033 – ident: ref94/cit94 doi: 10.1021/ja066354t – ident: ref6/cit6 doi: 10.1073/pnas.0706861104 – ident: ref187/cit187 doi: 10.1021/jacs.9b08797 – ident: ref184/cit184 doi: 10.1021/acs.chemrev.7b00225 – ident: ref45/cit45 doi: 10.1038/28998 – ident: ref173/cit173 doi: 10.1021/ja509018g – ident: ref186/cit186 doi: 10.1021/acsphotonics.2c00445 – ident: ref127/cit127 doi: 10.1002/anie.202004221 – ident: ref151/cit151 doi: 10.1038/nnano.2015.130 – ident: ref162/cit162 doi: 10.1002/anie.201202356 – ident: ref159/cit159 doi: 10.1038/s41565-018-0318-5 – ident: ref165/cit165 doi: 10.1021/ph500444d – ident: ref38/cit38 doi: 10.1002/cphc.200600260 – ident: ref18/cit18 doi: 10.1021/jacs.0c11060 – ident: ref48/cit48 doi: 10.1002/anie.201807223 – ident: ref59/cit59 doi: 10.1016/j.chempr.2020.10.025 – ident: ref122/cit122 doi: 10.1021/ja1115138 – ident: ref97/cit97 doi: 10.1021/cm500592j – ident: ref64/cit64 doi: 10.1021/acs.chemrev.8b00570 – ident: ref75/cit75 doi: 10.1021/acs.jpclett.1c03848 – ident: ref167/cit167 doi: 10.1021/acssensors.6b00778 – ident: ref34/cit34 doi: 10.1038/s41557-020-00563-4 – ident: ref60/cit60 doi: 10.1038/nchem.957 – ident: ref103/cit103 doi: 10.1002/anie.202014466 – ident: ref176/cit176 doi: 10.1021/ja106465x – ident: ref153/cit153 doi: 10.1021/acs.chemrev.9b00121 – ident: ref61/cit61 doi: 10.1038/35020524 – ident: ref89/cit89 doi: 10.1039/D3CC02024J – ident: ref137/cit137 doi: 10.1021/acsnano.0c10922 – ident: ref192/cit192 doi: 10.1038/s41565-022-01284-0 – ident: ref95/cit95 doi: 10.1021/ja311828v – ident: ref46/cit46 doi: 10.1126/science.1089389 – ident: ref132/cit132 doi: 10.1021/jacs.9b01548 – ident: ref54/cit54 doi: 10.1038/nature11075 – ident: ref63/cit63 doi: 10.1126/science.1200520 – ident: ref71/cit71 doi: 10.1021/acs.jpcb.1c04517 – ident: ref3/cit3 doi: 10.1038/nchembio.1555 – ident: ref164/cit164 doi: 10.1021/nl3004336 – ident: ref93/cit93 doi: 10.1038/359859a0 – ident: ref180/cit180 doi: 10.1021/acsnano.9b02679 – ident: ref76/cit76 doi: 10.1021/acs.jpcb.0c06732 |
SSID | ssj0003009065 |
Score | 2.3258886 |
SecondaryResourceType | review_article |
Snippet | DNA nanotechnology leverages the programmable and predictable base pairing of DNA molecules to construct self-assembled nanomaterials in a designer fashion.... |
SourceID | crossref acs |
SourceType | Index Database Publisher |
StartPage | 552 |
Title | Bioinspired Photonic Systems Directed by Designer DNA Nanostructures |
URI | http://dx.doi.org/10.1021/acsaom.4c00103 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwFMCDzose_BbnFwEFT5ltkjbJcW6O4WEIOtitJGmCQ9aK7Q7615u0nQ6HKOTUlJA8krz38h6_B8BVyGOrMLbIo1YQjalGQlCODJOSy5ClkaoSZEfxcEzvJ9Hk-73jZwQfhzdSFzKfdaiuShKsgw0cuxPsjaDe49drCnGmQlDVjcSMhUjwKFoQGleG8HpIF0t6aEmhDHZqulFRcQh9HslLZ16qjv5YpTT-OdddsN1YlbBbb4M9sGayfbC1xBo8AP3baT7NfFzdpPDhOS89Exc2wHJY33yuR73DfpXUYd5gf9SF7vbNa8bs3Dnmh2A8uHvqDVFTQgFJjEWJrFGCMmqd3lcytdy4rzSwOpVce2cwZlpoyTEhqWXMtUjTwFBNpAkUV5IcgVaWZ-YYQImJMAExTFlNhXKODo05pooZYhRLVRtcuuUnzREokiq6jcOklknSyKQNrhdiT15rnsYvf578a7xTsIl9Rd6AIMzPQMsJxJw7M6FUF9UO-QQPZ7ea |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mfFAf_BbnZ0HBp2xtkjbp49wcU-cYuMHeSpKmOMRW7Pagf73px-ZQBIU-peW4Htfc73qX3wFcOtyLJMYRyqhWEPWoQr5POdJMCC4cFroyb5Dte90RvRu74wo05mdhjBKpkZTmRfwvdgGnYdZE8lKnKp9MsAKrBongzKWbrcfFTxViEIOdj4_EjDnI5647J2r8ISILRypdCkdLcaWzBYOFRnk7yXN9NpV19fGNrPEfKm_DZokxrWbhFDtQ0fEubCwxD-5B-3qSTOKsyq5Da_CUTDOGXKukL7eKfdDcke9WO2_x0G9Wu9-0zF6cFIyzM5Om78OoczNsdVE5UAEJjP0pirT0KaORQQFShBHXZpXakQoFV1lq6DHlK8ExIWHEmLlcRW1NFRHallwKcgDVOIn1IVgCE1_bRDMZKepLk_ZQj2MqmSZaslDW4MK8flB-EGmQ17qxExQ2CUqb1OBqbv3gtWDX-OXJoz_JO4e17vChF_Ru-_fHsI6zWb02QZifQNUYR58aADGVZ7nTfAII-L_7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfTBb3F-FhR8ymyTtEkf5-qYH4yBG-ytJGmCQ2yH7R70rzdpuzEUQaFPaTgu10vurnf5HQBXHgu0QEhDC7UCSUAkDEPCoKKcM-7RxBdlgWw_6I3Iw9gf1_e47V0Yw0RuKOVlEt_u6mmia4QB78aM8-ytRWTZnWAVrNmcnVXrdud58WMFG6_BLVtIIko9GDLfn4M1_iBhTZLMl0zSkm3pboPhgquypOS1NStES35-A2z8J9s7YKv2NZ12pRy7YEWle2BzCYFwH0S3k2yS2my7SpzBS1ZYpFynhjF3qvPQvBEfTlSWeqh3J-q3HXMmZxXy7MyE6wdg1L0bdnqwbqwAOUJhAbUSIaFEG29A8EQzZUaJq2XCmbQhYkBlKDlDGCeaUvP4kriKSMyVK5jg-BA00ixVR8DhCIfKxYoKLUkoTPhDAoaIoAorQRPRBJdm-XG9MfK4zHkjL65kEtcyaYLr-ReIpxXKxi8zj_9E7wKsD6Ju_HTffzwBG8i27HUxROwUNIxs1JnxIwpxXurNF2-kwn4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Photonic+Systems+Directed+by+Designer+DNA+Nanostructures&rft.jtitle=ACS+applied+optical+materials&rft.au=Satyabola%2C+Deeksha&rft.au=Prasad%2C+Abhay&rft.au=Yan%2C+Hao&rft.au=Zhou%2C+Xu&rft.date=2025-03-28&rft.pub=American+Chemical+Society&rft.issn=2771-9855&rft.eissn=2771-9855&rft.volume=3&rft.issue=3&rft.spage=552&rft.epage=568&rft_id=info:doi/10.1021%2Facsaom.4c00103&rft.externalDocID=i57098779 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9855&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9855&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9855&client=summon |