Bioinspired Photonic Systems Directed by Designer DNA Nanostructures

DNA nanotechnology leverages the programmable and predictable base pairing of DNA molecules to construct self-assembled nanomaterials in a designer fashion. The high programmability, intrinsic addressability, and dynamic reconfiguration of DNA structures make them tailored synthetic templates for gu...

Full description

Saved in:
Bibliographic Details
Published inACS applied optical materials Vol. 3; no. 3; pp. 552 - 568
Main Authors Satyabola, Deeksha, Prasad, Abhay, Yan, Hao, Zhou, Xu
Format Journal Article
LanguageEnglish
Published American Chemical Society 28.03.2025
Subjects
Online AccessGet full text
ISSN2771-9855
2771-9855
DOI10.1021/acsaom.4c00103

Cover

Loading…
Abstract DNA nanotechnology leverages the programmable and predictable base pairing of DNA molecules to construct self-assembled nanomaterials in a designer fashion. The high programmability, intrinsic addressability, and dynamic reconfiguration of DNA structures make them tailored synthetic templates for guiding the construction of high-performance optical nanomaterials and devices. Inspired by protein-scaffolded multichromophore complexes in natural light-harvesting systems, diverse photoactive components can be precisely organized onto DNA templates, forming both weakly and strongly coupled excitonic architectures that enable efficient photon capture and excitation energy transfer. This review discusses lessons learned from natural light-harvesting complexes, guiding the design of artificial optical nanomaterials templated on DNA assemblies. The focus then shifts to the design and construction of DNA-directed efficient energy transfer systems, highlighting advancements in utilizing DNA-based photonic structures and devices for applications in energy, bioimaging, biosensing, and more while also discussing challenges and potential opportunities.
AbstractList DNA nanotechnology leverages the programmable and predictable base pairing of DNA molecules to construct self-assembled nanomaterials in a designer fashion. The high programmability, intrinsic addressability, and dynamic reconfiguration of DNA structures make them tailored synthetic templates for guiding the construction of high-performance optical nanomaterials and devices. Inspired by protein-scaffolded multichromophore complexes in natural light-harvesting systems, diverse photoactive components can be precisely organized onto DNA templates, forming both weakly and strongly coupled excitonic architectures that enable efficient photon capture and excitation energy transfer. This review discusses lessons learned from natural light-harvesting complexes, guiding the design of artificial optical nanomaterials templated on DNA assemblies. The focus then shifts to the design and construction of DNA-directed efficient energy transfer systems, highlighting advancements in utilizing DNA-based photonic structures and devices for applications in energy, bioimaging, biosensing, and more while also discussing challenges and potential opportunities.
Author Yan, Hao
Prasad, Abhay
Satyabola, Deeksha
Zhou, Xu
AuthorAffiliation School of Molecular Sciences
Center for Molecular Design and Biomimetics at the Biodesign Institute
AuthorAffiliation_xml – name: Center for Molecular Design and Biomimetics at the Biodesign Institute
– name: School of Molecular Sciences
Author_xml – sequence: 1
  givenname: Deeksha
  surname: Satyabola
  fullname: Satyabola, Deeksha
  organization: School of Molecular Sciences
– sequence: 2
  givenname: Abhay
  surname: Prasad
  fullname: Prasad, Abhay
  organization: School of Molecular Sciences
– sequence: 3
  givenname: Hao
  orcidid: 0000-0001-7397-9852
  surname: Yan
  fullname: Yan, Hao
  email: hao.yan@asu.edu
  organization: School of Molecular Sciences
– sequence: 4
  givenname: Xu
  orcidid: 0000-0002-2714-5627
  surname: Zhou
  fullname: Zhou, Xu
  email: xzhou110@asu.edu
  organization: Center for Molecular Design and Biomimetics at the Biodesign Institute
BookMark eNp1kM1LxDAQxYOs4Lru1XPPQuukTZv0uG79gmUV1HNJ00Sz2GRJ0kP_eyPdgxdhYIbfzHsM7xItjDUSoWsMGYYc33LhuR0yIgAwFGdomVOK05qV5eLPfIHW3h8AoACooSqXqLnTVht_1E72yeuXDdZokbxNPsjBJ03EIsRNNyWN9PrTSJc0-02y58b64EYRRif9FTpX_NvL9amv0MfD_fv2Kd29PD5vN7uU53kdUiW7mlCiGK473ismIyWgRM-ZwFDhiopacJYXRa8ojVUKApKIgkvoWMeLFcpmX-Gs906q9uj0wN3UYmh_Y2jnGNpTDFFwMwsibw92dCa-99_xD6ETYgg
Cites_doi 10.1039/C7RA02114C
10.1021/acsnano.6b07097
10.1021/acs.chemrev.0c00749
10.1021/acsnano.1c09143
10.1002/anie.201301439
10.1002/adom.201500554
10.1021/acs.jpcc.0c09258
10.1021/ja902825j
10.1039/D0CS00936A
10.1021/acsnano.2c07749
10.1002/chem.201702780
10.1073/pnas.1003581107
10.1021/acs.jpclett.0c01020
10.1002/cssc.201701390
10.1038/nature04586
10.1021/ja0541938
10.1007/s11120-010-9533-0
10.1021/acs.nanolett.3c03652
10.1021/acs.chemrev.6b00002
10.1126/science.aao2648
10.1002/anie.201002307
10.1021/acs.jpcc.2c04336
10.1021/ar030257c
10.1039/c3lc50629k
10.1021/ja058145z
10.1021/acsanm.0c03474
10.1016/j.chempr.2020.12.020
10.1002/anie.201400323
10.1021/acsnano.2c06936
10.1002/adma.201301141
10.1021/acsaom.3c00459
10.1021/acs.bioconjchem.9b00043
10.1021/acssensors.6b00593
10.1038/nnano.2009.83
10.1021/jacs.3c05578
10.1021/acsnano.8b01510
10.1021/acs.nanolett.0c04502
10.1002/adma.202104678
10.1021/jacs.0c04975
10.1021/acs.accounts.6b00042
10.1021/ar400017u
10.1021/acs.bioconjchem.5b00194
10.1016/j.chempr.2024.03.007
10.1021/acs.jpclett.2c00017
10.1021/acs.chemrev.3c00028
10.1021/acs.jpcb.6b09385
10.1006/jsbi.1995.1042
10.1021/acs.nanolett.5b05139
10.1002/anie.202211200
10.1021/acsabm.2c01045
10.1038/nature09012
10.1021/acsnano.5b04066
10.1021/jacs.0c12522
10.1021/acsnano.7b05631
10.1038/nchem.1145
10.1021/acsnano.0c10259
10.1021/acs.analchem.7b02763
10.1021/acs.jpca.7b04344
10.1002/ange.201912654
10.1021/acs.chemrev.2c00061
10.1126/science.aar8104
10.1039/C4RA10580J
10.1021/ja803407t
10.1038/s41467-020-17995-8
10.1126/science.1202998
10.1002/adfm.202201541
10.1021/nl049660i
10.1021/ja002184n
10.1021/jacs.9b10080
10.1021/acs.nanolett.7b02559
10.1021/acs.jpcc.1c08981
10.1021/ja310596a
10.1002/agt2.460
10.1002/anie.202003427
10.1002/adfm.202100322
10.1038/nnano.2009.227
10.1109/JPHOT.2020.2976489
10.1021/acs.jpca.3c00562
10.1021/nn402468t
10.1016/0022-5193(82)90002-9
10.1038/nature08274
10.1021/acs.chemmater.5b02870
10.1021/acs.chemrev.7b00581
10.1038/natrevmats.2017.68
10.1038/nature14570
10.1038/nnano.2015.190
10.1039/C9CS00776H
10.1126/science.1227268
10.1021/bc034028m
10.1002/adom.201700679
10.1021/acs.jpcb.1c09048
10.1021/acsanm.0c00038
10.1002/anie.201006735
10.1021/acsanm.9b01851
10.1021/ja1105464
10.1088/1367-2630/17/11/115007
10.1021/acs.jpcb.0c06480
10.1021/acsphotonics.5b00052
10.1021/acsphotonics.6b00006
10.1021/jacs.7b01550
10.1073/pnas.95.11.5935
10.1039/c4cc01072h
10.1098/rsif.2013.0901
10.1021/ja993393e
10.1021/acsnano.1c05871
10.1039/C4CS00131A
10.1038/nmat4448
10.1021/acs.accounts.0c00590
10.1002/adom.202100884
10.1021/acs.chemrev.6b00825
10.1021/bi00064a003
10.1038/nature06597
10.1021/nn800727x
10.1038/s41586-018-0332-7
10.1017/S0033583506004434
10.1021/acs.jpcb.8b02134
10.1016/j.chempr.2022.05.017
10.1021/acs.nanolett.7b03425
10.1021/acsami.8b03585
10.1021/jacs.2c11199
10.1103/PhysRev.37.1276
10.1021/acs.jpclett.7b01898
10.1002/anie.202106035
10.1038/nature21425
10.1021/acs.jpclett.9b00404
10.1126/science.1174251
10.1038/s43586-020-00009-8
10.1021/acs.jpcb.1c07602
10.1128/JB.181.13.3869-3879.1999
10.1021/acs.jpca.2c06442
10.1016/j.bpc.2015.01.001
10.1126/sciadv.aau1157
10.1002/adma.201600697
10.1002/anie.201809914
10.1038/nnano.2011.187
10.1021/ja512416n
10.1038/ncomms6615
10.1002/smll.202301811
10.1021/acs.nanolett.1c02584
10.1038/nature07971
10.1038/s41557-018-0016-9
10.1038/s41467-017-02435-x
10.1038/nbt0396-303
10.1039/D0SC01127D
10.1039/D2SC02759C
10.1002/anie.202117735
10.1021/ja505101a
10.1002/anie.202210730
10.1021/jacsau.3c00826
10.1021/bc060143w
10.2307/3571331
10.1021/acs.nanolett.6b04846
10.1007/b100442
10.1038/nmat5033
10.1021/ja066354t
10.1073/pnas.0706861104
10.1021/jacs.9b08797
10.1021/acs.chemrev.7b00225
10.1038/28998
10.1021/ja509018g
10.1021/acsphotonics.2c00445
10.1002/anie.202004221
10.1038/nnano.2015.130
10.1002/anie.201202356
10.1038/s41565-018-0318-5
10.1021/ph500444d
10.1002/cphc.200600260
10.1021/jacs.0c11060
10.1002/anie.201807223
10.1016/j.chempr.2020.10.025
10.1021/ja1115138
10.1021/cm500592j
10.1021/acs.chemrev.8b00570
10.1021/acs.jpclett.1c03848
10.1021/acssensors.6b00778
10.1038/s41557-020-00563-4
10.1038/nchem.957
10.1002/anie.202014466
10.1021/ja106465x
10.1021/acs.chemrev.9b00121
10.1038/35020524
10.1039/D3CC02024J
10.1021/acsnano.0c10922
10.1038/s41565-022-01284-0
10.1021/ja311828v
10.1126/science.1089389
10.1021/jacs.9b01548
10.1038/nature11075
10.1126/science.1200520
10.1021/acs.jpcb.1c04517
10.1038/nchembio.1555
10.1021/nl3004336
10.1038/359859a0
10.1021/acsnano.9b02679
10.1021/acs.jpcb.0c06732
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsaom.4c00103
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2771-9855
EndPage 568
ExternalDocumentID 10_1021_acsaom_4c00103
i57098779
GroupedDBID ABJNI
ABQRX
ACS
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
EBS
GGK
VF5
VG9
AAYXX
ABBLG
ABLBI
CITATION
ID FETCH-LOGICAL-a229t-feb9474f819badf8e22940fcda8c106167c9ca8233df77f775c40e4c3ae0b8ba3
IEDL.DBID ACS
ISSN 2771-9855
IngestDate Tue Jul 01 05:18:56 EDT 2025
Mon Mar 31 03:20:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords energy transfer
biosensing
excitonic system
light harvesting
DNA Nanotechnology
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a229t-feb9474f819badf8e22940fcda8c106167c9ca8233df77f775c40e4c3ae0b8ba3
ORCID 0000-0002-2714-5627
0000-0001-7397-9852
PageCount 17
ParticipantIDs crossref_primary_10_1021_acsaom_4c00103
acs_journals_10_1021_acsaom_4c00103
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-28
PublicationDateYYYYMMDD 2025-03-28
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-28
  day: 28
PublicationDecade 2020
PublicationTitle ACS applied optical materials
PublicationTitleAlternate ACS Appl. Opt. Mater
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref187/cit187
ref181/cit181
ref111/cit111
ref113/cit113
ref183/cit183
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref10/cit10
ref35/cit35
ref93/cit93
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref137/cit137
ref11/cit11
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
ref148/cit148
ref55/cit55
ref144/cit144
ref167/cit167
ref163/cit163
ref66/cit66
ref22/cit22
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref194/cit194
ref98/cit98
ref153/cit153
ref150/cit150
ref63/cit63
ref56/cit56
ref155/cit155
ref156/cit156
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref17/cit17
ref82/cit82
ref147/cit147
ref145/cit145
ref21/cit21
ref166/cit166
ref164/cit164
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref14/cit14
ref57/cit57
ref169/cit169
ref134/cit134
ref40/cit40
ref131/cit131
ref161/cit161
ref142/cit142
ref15/cit15
ref180/cit180
ref62/cit62
ref41/cit41
ref58/cit58
ref104/cit104
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref186/cit186
ref116/cit116
ref110/cit110
ref182/cit182
ref2/cit2
ref112/cit112
ref77/cit77
ref71/cit71
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref107/cit107
ref191/cit191
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref38/cit38
ref90/cit90
ref195/cit195
ref64/cit64
ref6/cit6
ref18/cit18
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref76/cit76
ref32/cit32
ref39/cit39
ref168/cit168
ref132/cit132
ref91/cit91
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref154/cit154
ref27/cit27
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref31/cit31
ref88/cit88
ref160/cit160
ref143/cit143
ref53/cit53
ref149/cit149
ref162/cit162
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref50/cit50
ref138/cit138
ref100/cit100
ref25/cit25
ref173/cit173
ref103/cit103
ref72/cit72
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref146/cit146
ref26/cit26
ref73/cit73
ref69/cit69
ref165/cit165
ref95/cit95
ref108/cit108
ref192/cit192
ref4/cit4
ref30/cit30
ref47/cit47
ref127/cit127
References_xml – ident: ref117/cit117
  doi: 10.1039/C7RA02114C
– ident: ref160/cit160
  doi: 10.1021/acsnano.6b07097
– ident: ref190/cit190
  doi: 10.1021/acs.chemrev.0c00749
– ident: ref78/cit78
  doi: 10.1021/acsnano.1c09143
– ident: ref146/cit146
  doi: 10.1002/anie.201301439
– ident: ref123/cit123
  doi: 10.1002/adom.201500554
– ident: ref68/cit68
  doi: 10.1021/acs.jpcc.0c09258
– ident: ref13/cit13
  doi: 10.1021/ja902825j
– ident: ref57/cit57
  doi: 10.1039/D0CS00936A
– ident: ref181/cit181
  doi: 10.1021/acsnano.2c07749
– ident: ref135/cit135
  doi: 10.1002/chem.201702780
– ident: ref144/cit144
  doi: 10.1073/pnas.1003581107
– ident: ref124/cit124
  doi: 10.1021/acs.jpclett.0c01020
– ident: ref182/cit182
  doi: 10.1002/cssc.201701390
– ident: ref49/cit49
  doi: 10.1038/nature04586
– ident: ref41/cit41
  doi: 10.1021/ja0541938
– ident: ref20/cit20
  doi: 10.1007/s11120-010-9533-0
– ident: ref92/cit92
  doi: 10.1021/acs.nanolett.3c03652
– ident: ref4/cit4
  doi: 10.1021/acs.chemrev.6b00002
– ident: ref56/cit56
  doi: 10.1126/science.aao2648
– ident: ref25/cit25
  doi: 10.1002/anie.201002307
– ident: ref81/cit81
  doi: 10.1021/acs.jpcc.2c04336
– ident: ref100/cit100
  doi: 10.1021/ar030257c
– ident: ref145/cit145
  doi: 10.1039/c3lc50629k
– ident: ref42/cit42
  doi: 10.1021/ja058145z
– ident: ref163/cit163
  doi: 10.1021/acsanm.0c03474
– ident: ref65/cit65
  doi: 10.1016/j.chempr.2020.12.020
– ident: ref147/cit147
  doi: 10.1002/anie.201400323
– ident: ref69/cit69
  doi: 10.1021/acsnano.2c06936
– ident: ref141/cit141
  doi: 10.1002/adma.201301141
– ident: ref82/cit82
  doi: 10.1021/acsaom.3c00459
– ident: ref131/cit131
  doi: 10.1021/acs.bioconjchem.9b00043
– ident: ref157/cit157
  doi: 10.1021/acssensors.6b00593
– ident: ref158/cit158
  doi: 10.1038/nnano.2009.83
– ident: ref171/cit171
  doi: 10.1021/jacs.3c05578
– ident: ref155/cit155
  doi: 10.1021/acsnano.8b01510
– ident: ref143/cit143
  doi: 10.1021/acs.nanolett.0c04502
– ident: ref35/cit35
  doi: 10.1002/adma.202104678
– ident: ref33/cit33
  doi: 10.1021/jacs.0c04975
– ident: ref88/cit88
  doi: 10.1021/acs.accounts.6b00042
– ident: ref27/cit27
  doi: 10.1021/ar400017u
– ident: ref169/cit169
  doi: 10.1021/acs.bioconjchem.5b00194
– ident: ref91/cit91
  doi: 10.1016/j.chempr.2024.03.007
– ident: ref80/cit80
  doi: 10.1021/acs.jpclett.2c00017
– ident: ref58/cit58
  doi: 10.1021/acs.chemrev.3c00028
– ident: ref118/cit118
  doi: 10.1021/acs.jpcb.6b09385
– ident: ref9/cit9
  doi: 10.1006/jsbi.1995.1042
– ident: ref116/cit116
  doi: 10.1021/acs.nanolett.5b05139
– ident: ref133/cit133
  doi: 10.1002/anie.202211200
– ident: ref193/cit193
  doi: 10.1021/acsabm.2c01045
– ident: ref62/cit62
  doi: 10.1038/nature09012
– ident: ref138/cit138
  doi: 10.1021/acsnano.5b04066
– ident: ref12/cit12
  doi: 10.1021/jacs.0c12522
– ident: ref121/cit121
  doi: 10.1021/acsnano.7b05631
– ident: ref2/cit2
  doi: 10.1038/nchem.1145
– ident: ref70/cit70
  doi: 10.1021/acsnano.0c10259
– ident: ref156/cit156
  doi: 10.1021/acs.analchem.7b02763
– ident: ref84/cit84
  doi: 10.1021/acs.jpca.7b04344
– ident: ref17/cit17
  doi: 10.1002/ange.201912654
– ident: ref1/cit1
  doi: 10.1039/D0CS00936A
– ident: ref191/cit191
  doi: 10.1021/acs.chemrev.2c00061
– ident: ref30/cit30
  doi: 10.1126/science.aar8104
– ident: ref168/cit168
  doi: 10.1039/C4RA10580J
– ident: ref114/cit114
  doi: 10.1021/ja803407t
– ident: ref189/cit189
  doi: 10.1038/s41467-020-17995-8
– ident: ref51/cit51
  doi: 10.1126/science.1202998
– ident: ref178/cit178
  doi: 10.1002/adfm.202201541
– ident: ref111/cit111
  doi: 10.1021/nl049660i
– ident: ref99/cit99
  doi: 10.1021/ja002184n
– ident: ref14/cit14
  doi: 10.1021/jacs.9b10080
– ident: ref32/cit32
  doi: 10.1021/acs.nanolett.7b02559
– ident: ref77/cit77
  doi: 10.1021/acs.jpcc.1c08981
– ident: ref15/cit15
  doi: 10.1021/ja310596a
– ident: ref10/cit10
  doi: 10.1002/agt2.460
– ident: ref19/cit19
  doi: 10.1002/anie.202003427
– ident: ref139/cit139
  doi: 10.1002/adfm.202100322
– ident: ref26/cit26
  doi: 10.1038/nnano.2009.227
– ident: ref140/cit140
  doi: 10.1109/JPHOT.2020.2976489
– ident: ref85/cit85
  doi: 10.1021/acs.jpca.3c00562
– ident: ref110/cit110
  doi: 10.1021/nn402468t
– ident: ref37/cit37
  doi: 10.1016/0022-5193(82)90002-9
– ident: ref47/cit47
  doi: 10.1038/nature08274
– ident: ref179/cit179
  doi: 10.1021/acs.chemmater.5b02870
– ident: ref36/cit36
  doi: 10.1021/acs.chemrev.7b00581
– ident: ref107/cit107
  doi: 10.1038/natrevmats.2017.68
– ident: ref31/cit31
  doi: 10.1038/nature14570
– ident: ref136/cit136
  doi: 10.1038/nnano.2015.190
– ident: ref67/cit67
  doi: 10.1039/C9CS00776H
– ident: ref55/cit55
  doi: 10.1126/science.1227268
– ident: ref108/cit108
  doi: 10.1021/bc034028m
– ident: ref126/cit126
  doi: 10.1002/adom.201700679
– ident: ref130/cit130
  doi: 10.1021/acs.jpcb.1c09048
– ident: ref128/cit128
  doi: 10.1021/acsanm.0c00038
– ident: ref113/cit113
  doi: 10.1002/anie.201006735
– ident: ref142/cit142
  doi: 10.1021/acsanm.9b01851
– ident: ref120/cit120
  doi: 10.1021/ja1105464
– ident: ref177/cit177
  doi: 10.1088/1367-2630/17/11/115007
– ident: ref87/cit87
  doi: 10.1021/acs.jpcb.0c06480
– ident: ref109/cit109
  doi: 10.1021/acsphotonics.5b00052
– ident: ref115/cit115
  doi: 10.1021/acsphotonics.6b00006
– ident: ref28/cit28
  doi: 10.1021/jacs.7b01550
– ident: ref7/cit7
  doi: 10.1073/pnas.95.11.5935
– ident: ref112/cit112
  doi: 10.1039/c4cc01072h
– ident: ref23/cit23
  doi: 10.1098/rsif.2013.0901
– ident: ref40/cit40
  doi: 10.1021/ja993393e
– ident: ref73/cit73
  doi: 10.1021/acsnano.1c05871
– ident: ref183/cit183
  doi: 10.1039/C4CS00131A
– ident: ref16/cit16
  doi: 10.1038/nmat4448
– ident: ref29/cit29
  doi: 10.1021/acs.accounts.0c00590
– ident: ref125/cit125
  doi: 10.1002/adom.202100884
– ident: ref53/cit53
  doi: 10.1021/acs.chemrev.6b00825
– ident: ref39/cit39
  doi: 10.1021/bi00064a003
– ident: ref44/cit44
  doi: 10.1038/nature06597
– ident: ref96/cit96
  doi: 10.1021/nn800727x
– ident: ref196/cit196
  doi: 10.1038/s41586-018-0332-7
– ident: ref5/cit5
  doi: 10.1017/S0033583506004434
– ident: ref74/cit74
  doi: 10.1021/acs.jpcb.8b02134
– ident: ref101/cit101
  doi: 10.1016/j.chempr.2022.05.017
– ident: ref194/cit194
  doi: 10.1021/acs.nanolett.7b03425
– ident: ref150/cit150
  doi: 10.1021/acsami.8b03585
– ident: ref172/cit172
  doi: 10.1021/jacs.2c11199
– ident: ref22/cit22
  doi: 10.1103/PhysRev.37.1276
– ident: ref129/cit129
  doi: 10.1021/acs.jpclett.7b01898
– ident: ref11/cit11
  doi: 10.1002/anie.202106035
– ident: ref24/cit24
  doi: 10.1038/nature21425
– ident: ref83/cit83
  doi: 10.1021/acs.jpclett.9b00404
– ident: ref50/cit50
  doi: 10.1126/science.1174251
– ident: ref52/cit52
  doi: 10.1038/s43586-020-00009-8
– ident: ref72/cit72
  doi: 10.1021/acs.jpcb.1c07602
– ident: ref8/cit8
  doi: 10.1128/JB.181.13.3869-3879.1999
– ident: ref86/cit86
  doi: 10.1021/acs.jpca.2c06442
– ident: ref66/cit66
  doi: 10.1016/j.bpc.2015.01.001
– ident: ref195/cit195
  doi: 10.1126/sciadv.aau1157
– ident: ref185/cit185
  doi: 10.1002/adma.201600697
– ident: ref134/cit134
  doi: 10.1002/anie.201809914
– ident: ref106/cit106
  doi: 10.1038/nnano.2011.187
– ident: ref148/cit148
  doi: 10.1021/ja512416n
– ident: ref119/cit119
  doi: 10.1038/ncomms6615
– ident: ref166/cit166
  doi: 10.1002/smll.202301811
– ident: ref161/cit161
  doi: 10.1021/acs.nanolett.1c02584
– ident: ref43/cit43
  doi: 10.1038/nature07971
– ident: ref175/cit175
  doi: 10.1038/s41557-018-0016-9
– ident: ref170/cit170
  doi: 10.1038/s41467-017-02435-x
– ident: ref154/cit154
  doi: 10.1038/nbt0396-303
– ident: ref79/cit79
  doi: 10.1039/D0SC01127D
– ident: ref90/cit90
  doi: 10.1039/D2SC02759C
– ident: ref152/cit152
  doi: 10.1002/anie.202117735
– ident: ref105/cit105
  doi: 10.1021/ja505101a
– ident: ref188/cit188
  doi: 10.1002/anie.202210730
– ident: ref104/cit104
  doi: 10.1021/jacsau.3c00826
– ident: ref174/cit174
  doi: 10.1021/bc060143w
– ident: ref21/cit21
  doi: 10.2307/3571331
– ident: ref149/cit149
  doi: 10.1021/acs.nanolett.6b04846
– ident: ref98/cit98
  doi: 10.1007/b100442
– ident: ref102/cit102
  doi: 10.1038/nmat5033
– ident: ref94/cit94
  doi: 10.1021/ja066354t
– ident: ref6/cit6
  doi: 10.1073/pnas.0706861104
– ident: ref187/cit187
  doi: 10.1021/jacs.9b08797
– ident: ref184/cit184
  doi: 10.1021/acs.chemrev.7b00225
– ident: ref45/cit45
  doi: 10.1038/28998
– ident: ref173/cit173
  doi: 10.1021/ja509018g
– ident: ref186/cit186
  doi: 10.1021/acsphotonics.2c00445
– ident: ref127/cit127
  doi: 10.1002/anie.202004221
– ident: ref151/cit151
  doi: 10.1038/nnano.2015.130
– ident: ref162/cit162
  doi: 10.1002/anie.201202356
– ident: ref159/cit159
  doi: 10.1038/s41565-018-0318-5
– ident: ref165/cit165
  doi: 10.1021/ph500444d
– ident: ref38/cit38
  doi: 10.1002/cphc.200600260
– ident: ref18/cit18
  doi: 10.1021/jacs.0c11060
– ident: ref48/cit48
  doi: 10.1002/anie.201807223
– ident: ref59/cit59
  doi: 10.1016/j.chempr.2020.10.025
– ident: ref122/cit122
  doi: 10.1021/ja1115138
– ident: ref97/cit97
  doi: 10.1021/cm500592j
– ident: ref64/cit64
  doi: 10.1021/acs.chemrev.8b00570
– ident: ref75/cit75
  doi: 10.1021/acs.jpclett.1c03848
– ident: ref167/cit167
  doi: 10.1021/acssensors.6b00778
– ident: ref34/cit34
  doi: 10.1038/s41557-020-00563-4
– ident: ref60/cit60
  doi: 10.1038/nchem.957
– ident: ref103/cit103
  doi: 10.1002/anie.202014466
– ident: ref176/cit176
  doi: 10.1021/ja106465x
– ident: ref153/cit153
  doi: 10.1021/acs.chemrev.9b00121
– ident: ref61/cit61
  doi: 10.1038/35020524
– ident: ref89/cit89
  doi: 10.1039/D3CC02024J
– ident: ref137/cit137
  doi: 10.1021/acsnano.0c10922
– ident: ref192/cit192
  doi: 10.1038/s41565-022-01284-0
– ident: ref95/cit95
  doi: 10.1021/ja311828v
– ident: ref46/cit46
  doi: 10.1126/science.1089389
– ident: ref132/cit132
  doi: 10.1021/jacs.9b01548
– ident: ref54/cit54
  doi: 10.1038/nature11075
– ident: ref63/cit63
  doi: 10.1126/science.1200520
– ident: ref71/cit71
  doi: 10.1021/acs.jpcb.1c04517
– ident: ref3/cit3
  doi: 10.1038/nchembio.1555
– ident: ref164/cit164
  doi: 10.1021/nl3004336
– ident: ref93/cit93
  doi: 10.1038/359859a0
– ident: ref180/cit180
  doi: 10.1021/acsnano.9b02679
– ident: ref76/cit76
  doi: 10.1021/acs.jpcb.0c06732
SSID ssj0003009065
Score 2.3258886
SecondaryResourceType review_article
Snippet DNA nanotechnology leverages the programmable and predictable base pairing of DNA molecules to construct self-assembled nanomaterials in a designer fashion....
SourceID crossref
acs
SourceType Index Database
Publisher
StartPage 552
Title Bioinspired Photonic Systems Directed by Designer DNA Nanostructures
URI http://dx.doi.org/10.1021/acsaom.4c00103
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NS8MwFMCDzose_BbnFwEFT5ltkjbJcW6O4WEIOtitJGmCQ9aK7Q7615u0nQ6HKOTUlJA8krz38h6_B8BVyGOrMLbIo1YQjalGQlCODJOSy5ClkaoSZEfxcEzvJ9Hk-73jZwQfhzdSFzKfdaiuShKsgw0cuxPsjaDe49drCnGmQlDVjcSMhUjwKFoQGleG8HpIF0t6aEmhDHZqulFRcQh9HslLZ16qjv5YpTT-OdddsN1YlbBbb4M9sGayfbC1xBo8AP3baT7NfFzdpPDhOS89Exc2wHJY33yuR73DfpXUYd5gf9SF7vbNa8bs3Dnmh2A8uHvqDVFTQgFJjEWJrFGCMmqd3lcytdy4rzSwOpVce2cwZlpoyTEhqWXMtUjTwFBNpAkUV5IcgVaWZ-YYQImJMAExTFlNhXKODo05pooZYhRLVRtcuuUnzREokiq6jcOklknSyKQNrhdiT15rnsYvf578a7xTsIl9Rd6AIMzPQMsJxJw7M6FUF9UO-QQPZ7ea
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mfFAf_BbnZ0HBp2xtkjbp49wcU-cYuMHeSpKmOMRW7Pagf73px-ZQBIU-peW4Htfc73qX3wFcOtyLJMYRyqhWEPWoQr5POdJMCC4cFroyb5Dte90RvRu74wo05mdhjBKpkZTmRfwvdgGnYdZE8lKnKp9MsAKrBongzKWbrcfFTxViEIOdj4_EjDnI5647J2r8ISILRypdCkdLcaWzBYOFRnk7yXN9NpV19fGNrPEfKm_DZokxrWbhFDtQ0fEubCwxD-5B-3qSTOKsyq5Da_CUTDOGXKukL7eKfdDcke9WO2_x0G9Wu9-0zF6cFIyzM5Om78OoczNsdVE5UAEJjP0pirT0KaORQQFShBHXZpXakQoFV1lq6DHlK8ExIWHEmLlcRW1NFRHallwKcgDVOIn1IVgCE1_bRDMZKepLk_ZQj2MqmSZaslDW4MK8flB-EGmQ17qxExQ2CUqb1OBqbv3gtWDX-OXJoz_JO4e17vChF_Ru-_fHsI6zWb02QZifQNUYR58aADGVZ7nTfAII-L_7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QfTBb3F-FhR8ymyTtEkf5-qYH4yBG-ytJGmCQ2yH7R70rzdpuzEUQaFPaTgu10vurnf5HQBXHgu0QEhDC7UCSUAkDEPCoKKcM-7RxBdlgWw_6I3Iw9gf1_e47V0Yw0RuKOVlEt_u6mmia4QB78aM8-ytRWTZnWAVrNmcnVXrdud58WMFG6_BLVtIIko9GDLfn4M1_iBhTZLMl0zSkm3pboPhgquypOS1NStES35-A2z8J9s7YKv2NZ12pRy7YEWle2BzCYFwH0S3k2yS2my7SpzBS1ZYpFynhjF3qvPQvBEfTlSWeqh3J-q3HXMmZxXy7MyE6wdg1L0bdnqwbqwAOUJhAbUSIaFEG29A8EQzZUaJq2XCmbQhYkBlKDlDGCeaUvP4kriKSMyVK5jg-BA00ixVR8DhCIfKxYoKLUkoTPhDAoaIoAorQRPRBJdm-XG9MfK4zHkjL65kEtcyaYLr-ReIpxXKxi8zj_9E7wKsD6Ju_HTffzwBG8i27HUxROwUNIxs1JnxIwpxXurNF2-kwn4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioinspired+Photonic+Systems+Directed+by+Designer+DNA+Nanostructures&rft.jtitle=ACS+applied+optical+materials&rft.au=Satyabola%2C+Deeksha&rft.au=Prasad%2C+Abhay&rft.au=Yan%2C+Hao&rft.au=Zhou%2C+Xu&rft.date=2025-03-28&rft.pub=American+Chemical+Society&rft.issn=2771-9855&rft.eissn=2771-9855&rft.volume=3&rft.issue=3&rft.spage=552&rft.epage=568&rft_id=info:doi/10.1021%2Facsaom.4c00103&rft.externalDocID=i57098779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9855&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9855&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9855&client=summon