Low-Cost Organodisulfide Polymer for Ultrafast High-Capacity Cathode Materials

Traditional inorganic cathode materials are currently facing serious technical bottlenecks due to the use of transition metals with limited resources (such as Co and Ni) and a relatively low specific capacity (<300 mAh g–1). Organic cathode materials have no resource problem and a large theoretic...

Full description

Saved in:
Bibliographic Details
Published inACS applied energy materials Vol. 6; no. 16; pp. 8479 - 8488
Main Authors Zeng, Shao-Zhong, Wang, Shuxiao, Kong, Ling Bing, Tian, Yuchao, He, Bin, Yu, Xiao, Niu, Shuzhang, Fu, Dongju, Han, Peigang
Format Journal Article
LanguageEnglish
Published American Chemical Society 28.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional inorganic cathode materials are currently facing serious technical bottlenecks due to the use of transition metals with limited resources (such as Co and Ni) and a relatively low specific capacity (<300 mAh g–1). Organic cathode materials have no resource problem and a large theoretical specific capacity (up to 1000 mAh g–1), simply because they only contain extremely rich and light elements, such as C, N, O, S, and H. Meanwhile, they have broad design and development space, owing to the variety of functional groups with lithiation activity. However, organic cathode materials also have issues in terms of practical applications, such as the dissolution and loss of active substances and low conductivity. For most of the polymers that aim to solve these problems, the raw materials are expensive, and the synthesis process is complicated. Moreover, their theoretical specific capacity is usually below 200 mAh g–1. Herein, we report a low-cost organic disulfide polymer with a theoretical specific capacity of 462 mAh g–1. After incorporation with graphene, this polymer has excellent high rate performance in ether electrolytes. It has an energy density of 1070 Wh kg–1 at a power density of 185 W kg–1. Even at a power density of 33,280 W kg–1 (40 C), the energy density still remains at 200 Wh kg–1, while the specific capacity is retained at 57% after 10,000 cycles at 40 C.
AbstractList Traditional inorganic cathode materials are currently facing serious technical bottlenecks due to the use of transition metals with limited resources (such as Co and Ni) and a relatively low specific capacity (<300 mAh g–1). Organic cathode materials have no resource problem and a large theoretical specific capacity (up to 1000 mAh g–1), simply because they only contain extremely rich and light elements, such as C, N, O, S, and H. Meanwhile, they have broad design and development space, owing to the variety of functional groups with lithiation activity. However, organic cathode materials also have issues in terms of practical applications, such as the dissolution and loss of active substances and low conductivity. For most of the polymers that aim to solve these problems, the raw materials are expensive, and the synthesis process is complicated. Moreover, their theoretical specific capacity is usually below 200 mAh g–1. Herein, we report a low-cost organic disulfide polymer with a theoretical specific capacity of 462 mAh g–1. After incorporation with graphene, this polymer has excellent high rate performance in ether electrolytes. It has an energy density of 1070 Wh kg–1 at a power density of 185 W kg–1. Even at a power density of 33,280 W kg–1 (40 C), the energy density still remains at 200 Wh kg–1, while the specific capacity is retained at 57% after 10,000 cycles at 40 C.
Author Fu, Dongju
He, Bin
Zeng, Shao-Zhong
Han, Peigang
Tian, Yuchao
Kong, Ling Bing
Yu, Xiao
Wang, Shuxiao
Niu, Shuzhang
AuthorAffiliation College of New Materials and New Energies
AuthorAffiliation_xml – name: College of New Materials and New Energies
Author_xml – sequence: 1
  givenname: Shao-Zhong
  orcidid: 0000-0002-9548-5287
  surname: Zeng
  fullname: Zeng, Shao-Zhong
  email: zengshaozhong@sztu.edu.cn
– sequence: 2
  givenname: Shuxiao
  surname: Wang
  fullname: Wang, Shuxiao
– sequence: 3
  givenname: Ling Bing
  orcidid: 0000-0001-5784-1327
  surname: Kong
  fullname: Kong, Ling Bing
– sequence: 4
  givenname: Yuchao
  surname: Tian
  fullname: Tian, Yuchao
– sequence: 5
  givenname: Bin
  orcidid: 0000-0002-7553-4686
  surname: He
  fullname: He, Bin
– sequence: 6
  givenname: Xiao
  surname: Yu
  fullname: Yu, Xiao
– sequence: 7
  givenname: Shuzhang
  surname: Niu
  fullname: Niu, Shuzhang
– sequence: 8
  givenname: Dongju
  surname: Fu
  fullname: Fu, Dongju
  email: fudongju@sztu.edu.cn
– sequence: 9
  givenname: Peigang
  surname: Han
  fullname: Han, Peigang
  email: hanpeigang@sztu.edu.cn
BookMark eNp1kDFPwzAQRi1UJErpypwZKcF2nDgeUQQUKVAGOkdX-9ymSuLKToXy7wlqBxam73R63-n0bsmsdz0Scs9owihnj6ADYJekmrKUyisy55kUMVU5n_2Zb8gyhAOllCmWc6Xm5KNy33HpwhCt_Q56Z5pwam1jMPp07dihj6zz0aYdPFiYqFWz28clHEE3wxiVMOzdxL7DgL6BNtyRazsFLi-5IJuX569yFVfr17fyqYqBczXEWGCuuWQiV5oDoFIWpYEtUMWF2BqbGWYsFkIWkGFW5NQIprkpCpkJKzBdkOR8V3sXgkdbH33TgR9rRutfIfVZSH0RMhUezoVpXx_cyffTe__BP_btZW4
Cites_doi 10.1038/nmat3601
10.1002/aenm.202003281
10.1002/adma.201103392
10.1039/C7EE01473B
10.1002/aenm.202000997
10.1002/chem.201103535
10.1038/s41563-020-00869-1
10.1002/anie.201902185
10.1021/cm901452z
10.1002/adma.201502241
10.1038/s41560-019-0368-4
10.1002/aenm.202102962
10.1016/j.jallcom.2018.02.048
10.1016/j.jechem.2021.08.045
10.1002/aenm.201900705
10.1039/C5TA07246H
10.1063/1.4898006
10.1038/s41467-021-23375-7
10.1038/ncomms8278
10.1002/anie.201708746
10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
10.1002/anie.201805540
10.1021/acsnano.2c05090
10.1002/adma.201706643
10.1016/j.jpowsour.2016.03.010
10.1002/advs.201500018
10.1149/1.2085896
10.1016/j.ensm.2019.05.001
10.1002/adma.202210151
10.1002/adfm.201908074
10.1038/s41578-022-00478-1
10.1039/C9TA05252F
10.1021/acsenergylett.1c02569
10.1016/j.isci.2019.04.010
10.1016/j.ensm.2020.06.032
10.1002/cssc.200700161
10.1016/j.jechem.2018.06.003
10.1149/1.2108689
10.1002/adma.201203119
10.1021/ja507852t
10.1002/anie.201603897
10.1002/anie.201506673
10.1021/acsami.8b03611
10.1038/s41570-020-0160-9
10.1038/nchem.1624
10.1021/jacs.2c02196
10.1002/advs.202200187
10.1002/anie.201607194
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsaem.3c01307
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2574-0962
EndPage 8488
ExternalDocumentID 10_1021_acsaem_3c01307
a118897618
GroupedDBID ABFRP
ABQRX
ABUCX
ACGFS
ACS
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
EBS
GGK
VF5
VG9
W1F
AAYXX
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a229t-e8e6c271469c2aae99fe7daba09244bdf5d1dfe8478a5e5860d41c2d88754f4e3
IEDL.DBID ACS
ISSN 2574-0962
IngestDate Fri Aug 23 01:57:08 EDT 2024
Wed Aug 30 03:14:26 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords organic electrode materials
disulfide bond
organodisulfide polymers
high energy/power density
graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a229t-e8e6c271469c2aae99fe7daba09244bdf5d1dfe8478a5e5860d41c2d88754f4e3
ORCID 0000-0002-9548-5287
0000-0001-5784-1327
0000-0002-7553-4686
PageCount 10
ParticipantIDs crossref_primary_10_1021_acsaem_3c01307
acs_journals_10_1021_acsaem_3c01307
PublicationCentury 2000
PublicationDate 2023-08-28
PublicationDateYYYYMMDD 2023-08-28
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-28
  day: 28
PublicationDecade 2020
PublicationTitle ACS applied energy materials
PublicationTitleAlternate ACS Appl. Energy Mater
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref45/cit45
  doi: 10.1038/nmat3601
– ident: ref28/cit28
  doi: 10.1002/aenm.202003281
– ident: ref21/cit21
  doi: 10.1002/adma.201103392
– ident: ref41/cit41
  doi: 10.1039/C7EE01473B
– ident: ref1/cit1
  doi: 10.1002/aenm.202000997
– ident: ref22/cit22
  doi: 10.1002/chem.201103535
– ident: ref27/cit27
  doi: 10.1038/s41563-020-00869-1
– ident: ref31/cit31
  doi: 10.1002/anie.201902185
– ident: ref5/cit5
  doi: 10.1021/cm901452z
– ident: ref15/cit15
  doi: 10.1002/adma.201502241
– ident: ref6/cit6
  doi: 10.1038/s41560-019-0368-4
– ident: ref24/cit24
  doi: 10.1002/aenm.202102962
– ident: ref4/cit4
  doi: 10.1016/j.jallcom.2018.02.048
– ident: ref46/cit46
  doi: 10.1016/j.jechem.2021.08.045
– ident: ref43/cit43
  doi: 10.1002/aenm.201900705
– ident: ref36/cit36
  doi: 10.1039/C5TA07246H
– ident: ref2/cit2
  doi: 10.1063/1.4898006
– ident: ref3/cit3
  doi: 10.1038/s41467-021-23375-7
– ident: ref20/cit20
  doi: 10.1038/ncomms8278
– ident: ref25/cit25
  doi: 10.1002/anie.201708746
– ident: ref17/cit17
  doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P
– ident: ref38/cit38
  doi: 10.1002/anie.201805540
– ident: ref40/cit40
  doi: 10.1021/acsnano.2c05090
– ident: ref19/cit19
  doi: 10.1002/adma.201706643
– ident: ref16/cit16
  doi: 10.1016/j.jpowsour.2016.03.010
– ident: ref49/cit49
– ident: ref34/cit34
  doi: 10.1002/advs.201500018
– ident: ref26/cit26
  doi: 10.1149/1.2085896
– ident: ref30/cit30
  doi: 10.1016/j.ensm.2019.05.001
– ident: ref44/cit44
  doi: 10.1002/adma.202210151
– ident: ref37/cit37
  doi: 10.1002/adfm.201908074
– ident: ref8/cit8
  doi: 10.1038/s41578-022-00478-1
– ident: ref9/cit9
  doi: 10.1039/C9TA05252F
– ident: ref48/cit48
  doi: 10.1021/acsenergylett.1c02569
– ident: ref42/cit42
  doi: 10.1016/j.isci.2019.04.010
– ident: ref14/cit14
  doi: 10.1016/j.ensm.2020.06.032
– ident: ref33/cit33
  doi: 10.1002/cssc.200700161
– ident: ref10/cit10
  doi: 10.1016/j.jechem.2018.06.003
– ident: ref35/cit35
  doi: 10.1149/1.2108689
– ident: ref29/cit29
  doi: 10.1002/adma.201203119
– ident: ref12/cit12
  doi: 10.1021/ja507852t
– ident: ref23/cit23
  doi: 10.1002/anie.201603897
– ident: ref11/cit11
  doi: 10.1002/anie.201506673
– ident: ref47/cit47
  doi: 10.1021/acsami.8b03611
– ident: ref7/cit7
  doi: 10.1038/s41570-020-0160-9
– ident: ref18/cit18
  doi: 10.1038/nchem.1624
– ident: ref39/cit39
  doi: 10.1021/jacs.2c02196
– ident: ref32/cit32
  doi: 10.1002/advs.202200187
– ident: ref13/cit13
  doi: 10.1002/anie.201607194
SSID ssj0001916299
Score 2.2774222
Snippet Traditional inorganic cathode materials are currently facing serious technical bottlenecks due to the use of transition metals with limited resources (such as...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 8479
Title Low-Cost Organodisulfide Polymer for Ultrafast High-Capacity Cathode Materials
URI http://dx.doi.org/10.1021/acsaem.3c01307
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TBuzhvFBR8ylzTtE0epTiGuCHoYG_l5AbDbZW1Q_TXm7QdGw7R90MIJyf5vpyTfAehmyAIQBvBMNWcYuqLGHNGJQbpA3Cnv6lcaqDXj7oD-jgMh8t8x88KPvHvQOagJ61AuhpbvIm2SGx3hiNBycsym2JZDimbRdoQpNjycrJQaFwbwuGQzFdwaAVQOnuVulFe6hC6dyRvrXkhWvJrXaXxz7nuo92aVXr3VRgcoA09PUQ7K1qDR6j_lH3gJMsLr_x-malRPh-bkdLeczb-nOiZZ-mrNxgXMzBgrdwDEJxYKJWWp3vuo2BmbXtQVCF7jAadh9eki-tmChgI4QXWTEeSxPZg5JIAaM6NjhUIaNsbGBXKhMpXRluwYhDqkEVtRX1JlD2EQmqoDk5QY5pN9SnyqIhkEEYsCogTqPdFGAphwMQAhmjGm-jaOiKtN0OelnVu4qeVd9LaO010u1iA9L1S1vjF8uxf452jbdcK3uV7CbtAjWI215eWMBTiqoyVb6Duuxo
link.rule.ids 315,783,787,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyNBEC58HNTDrk9019UBBU8dnZ7ueRyXsBI1CYIGvA3VLwjGjGQmiP56qyeJBmVBr0NRFDU1Xd9UdX0FcBxFEVqnUiZsJpgIVcKyVGiGOkTMPP-m8aWBTjdu9cTlnbxbgNPZLAwZUZKmsm7iv7MLhKf0DO1DI9K-1ZYswrJMKFo9FmrevBdVCOzwemckRaJgBM_5jKjxkwqfjnQ5l47m8sr5T7h-s6i-TnLfGFeqoV8-kDV-w-R1-DHFmMHfSVBswIIdbsLaHPPgFnTbxRNrFmUV1MOYhemX44HrGxtcF4PnBzsKCMwGvUE1Qock5a-DsCYlVk2oPfBjgwXJdrCaBPA29M7_3TZbbLpagSHnWcVsamPNEzomM80RbZY5mxhUeEb_Y0IZJ01onKXUlaK0Mo3PjAg1N3QkSeGEjXZgaVgM7S4EQsU6knEaR9zT1YdKSqUcugTRcZtme3BEjsinn0aZ111vHuYT7-RT7-zByew95I8Tno3_SP76kr5DWGnddtp5-6J79RtW_ZJ4Xwnm6T4sVaOx_UNQolIHdfi8Av0Qw3o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEA4eIPrgLd4uKPiU2s0mezxKtXi1FGyhb8vkArF2pbtF9Nc72a5aFEFfl2EYZieZL5PMN4ScBEEAxsqYcpNwyn0Z0STmioLyARLHv6ldaaDVDq96_KYv-lUft-uFQSNy1JSXl_huVT9rWzEM-Gf4HcxTLVDuui2aJfMi8pmb13DeuP8qrCDgYeXcSIxGThGisw-yxh8qXEpS-VRKmsotzRXS_bSqfFLyWBsXsqbevhE2_tPsVbJcYU3vfBIca2TGDNfJ0hQD4QZp32UvtJHlhVc2ZWb6IR8P7IM2XicbvD6ZkYeg1usNihFYQCn3LIQ2MMEqRO-eax_MULYFxSSQN0mvedltXNFqxAIFxpKCmtiEikW4XSaKAZgksSbSIKGO5zIutRXa19ZgCotBGBGHdc19xTRuTYJbboItMjfMhmabeFyGKhBhHAbM0db7UggpLdgIwDITJzvkGB2RVkskT8vbb-anE--klXd2yOnHv0ifJ3wbv0ju_knfEVnoXDTTu-v27R5ZdLPiXUGYxftkrhiNzQEiikIelhH0DmrcxfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Cost+Organodisulfide+Polymer+for+Ultrafast+High-Capacity+Cathode+Materials&rft.jtitle=ACS+applied+energy+materials&rft.au=Zeng%2C+Shao-Zhong&rft.au=Wang%2C+Shuxiao&rft.au=Kong%2C+Ling+Bing&rft.au=Tian%2C+Yuchao&rft.date=2023-08-28&rft.issn=2574-0962&rft.eissn=2574-0962&rft.volume=6&rft.issue=16&rft.spage=8479&rft.epage=8488&rft_id=info:doi/10.1021%2Facsaem.3c01307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaem_3c01307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon