Low-Cost Organodisulfide Polymer for Ultrafast High-Capacity Cathode Materials
Traditional inorganic cathode materials are currently facing serious technical bottlenecks due to the use of transition metals with limited resources (such as Co and Ni) and a relatively low specific capacity (<300 mAh g–1). Organic cathode materials have no resource problem and a large theoretic...
Saved in:
Published in | ACS applied energy materials Vol. 6; no. 16; pp. 8479 - 8488 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
28.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional inorganic cathode materials are currently facing serious technical bottlenecks due to the use of transition metals with limited resources (such as Co and Ni) and a relatively low specific capacity (<300 mAh g–1). Organic cathode materials have no resource problem and a large theoretical specific capacity (up to 1000 mAh g–1), simply because they only contain extremely rich and light elements, such as C, N, O, S, and H. Meanwhile, they have broad design and development space, owing to the variety of functional groups with lithiation activity. However, organic cathode materials also have issues in terms of practical applications, such as the dissolution and loss of active substances and low conductivity. For most of the polymers that aim to solve these problems, the raw materials are expensive, and the synthesis process is complicated. Moreover, their theoretical specific capacity is usually below 200 mAh g–1. Herein, we report a low-cost organic disulfide polymer with a theoretical specific capacity of 462 mAh g–1. After incorporation with graphene, this polymer has excellent high rate performance in ether electrolytes. It has an energy density of 1070 Wh kg–1 at a power density of 185 W kg–1. Even at a power density of 33,280 W kg–1 (40 C), the energy density still remains at 200 Wh kg–1, while the specific capacity is retained at 57% after 10,000 cycles at 40 C. |
---|---|
AbstractList | Traditional inorganic cathode materials are currently facing serious technical bottlenecks due to the use of transition metals with limited resources (such as Co and Ni) and a relatively low specific capacity (<300 mAh g–1). Organic cathode materials have no resource problem and a large theoretical specific capacity (up to 1000 mAh g–1), simply because they only contain extremely rich and light elements, such as C, N, O, S, and H. Meanwhile, they have broad design and development space, owing to the variety of functional groups with lithiation activity. However, organic cathode materials also have issues in terms of practical applications, such as the dissolution and loss of active substances and low conductivity. For most of the polymers that aim to solve these problems, the raw materials are expensive, and the synthesis process is complicated. Moreover, their theoretical specific capacity is usually below 200 mAh g–1. Herein, we report a low-cost organic disulfide polymer with a theoretical specific capacity of 462 mAh g–1. After incorporation with graphene, this polymer has excellent high rate performance in ether electrolytes. It has an energy density of 1070 Wh kg–1 at a power density of 185 W kg–1. Even at a power density of 33,280 W kg–1 (40 C), the energy density still remains at 200 Wh kg–1, while the specific capacity is retained at 57% after 10,000 cycles at 40 C. |
Author | Fu, Dongju He, Bin Zeng, Shao-Zhong Han, Peigang Tian, Yuchao Kong, Ling Bing Yu, Xiao Wang, Shuxiao Niu, Shuzhang |
AuthorAffiliation | College of New Materials and New Energies |
AuthorAffiliation_xml | – name: College of New Materials and New Energies |
Author_xml | – sequence: 1 givenname: Shao-Zhong orcidid: 0000-0002-9548-5287 surname: Zeng fullname: Zeng, Shao-Zhong email: zengshaozhong@sztu.edu.cn – sequence: 2 givenname: Shuxiao surname: Wang fullname: Wang, Shuxiao – sequence: 3 givenname: Ling Bing orcidid: 0000-0001-5784-1327 surname: Kong fullname: Kong, Ling Bing – sequence: 4 givenname: Yuchao surname: Tian fullname: Tian, Yuchao – sequence: 5 givenname: Bin orcidid: 0000-0002-7553-4686 surname: He fullname: He, Bin – sequence: 6 givenname: Xiao surname: Yu fullname: Yu, Xiao – sequence: 7 givenname: Shuzhang surname: Niu fullname: Niu, Shuzhang – sequence: 8 givenname: Dongju surname: Fu fullname: Fu, Dongju email: fudongju@sztu.edu.cn – sequence: 9 givenname: Peigang surname: Han fullname: Han, Peigang email: hanpeigang@sztu.edu.cn |
BookMark | eNp1kDFPwzAQRi1UJErpypwZKcF2nDgeUQQUKVAGOkdX-9ymSuLKToXy7wlqBxam73R63-n0bsmsdz0Scs9owihnj6ADYJekmrKUyisy55kUMVU5n_2Zb8gyhAOllCmWc6Xm5KNy33HpwhCt_Q56Z5pwam1jMPp07dihj6zz0aYdPFiYqFWz28clHEE3wxiVMOzdxL7DgL6BNtyRazsFLi-5IJuX569yFVfr17fyqYqBczXEWGCuuWQiV5oDoFIWpYEtUMWF2BqbGWYsFkIWkGFW5NQIprkpCpkJKzBdkOR8V3sXgkdbH33TgR9rRutfIfVZSH0RMhUezoVpXx_cyffTe__BP_btZW4 |
Cites_doi | 10.1038/nmat3601 10.1002/aenm.202003281 10.1002/adma.201103392 10.1039/C7EE01473B 10.1002/aenm.202000997 10.1002/chem.201103535 10.1038/s41563-020-00869-1 10.1002/anie.201902185 10.1021/cm901452z 10.1002/adma.201502241 10.1038/s41560-019-0368-4 10.1002/aenm.202102962 10.1016/j.jallcom.2018.02.048 10.1016/j.jechem.2021.08.045 10.1002/aenm.201900705 10.1039/C5TA07246H 10.1063/1.4898006 10.1038/s41467-021-23375-7 10.1038/ncomms8278 10.1002/anie.201708746 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P 10.1002/anie.201805540 10.1021/acsnano.2c05090 10.1002/adma.201706643 10.1016/j.jpowsour.2016.03.010 10.1002/advs.201500018 10.1149/1.2085896 10.1016/j.ensm.2019.05.001 10.1002/adma.202210151 10.1002/adfm.201908074 10.1038/s41578-022-00478-1 10.1039/C9TA05252F 10.1021/acsenergylett.1c02569 10.1016/j.isci.2019.04.010 10.1016/j.ensm.2020.06.032 10.1002/cssc.200700161 10.1016/j.jechem.2018.06.003 10.1149/1.2108689 10.1002/adma.201203119 10.1021/ja507852t 10.1002/anie.201603897 10.1002/anie.201506673 10.1021/acsami.8b03611 10.1038/s41570-020-0160-9 10.1038/nchem.1624 10.1021/jacs.2c02196 10.1002/advs.202200187 10.1002/anie.201607194 |
ContentType | Journal Article |
Copyright | 2023 American Chemical Society |
Copyright_xml | – notice: 2023 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaem.3c01307 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2574-0962 |
EndPage | 8488 |
ExternalDocumentID | 10_1021_acsaem_3c01307 a118897618 |
GroupedDBID | ABFRP ABQRX ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS EBS GGK VF5 VG9 W1F AAYXX BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a229t-e8e6c271469c2aae99fe7daba09244bdf5d1dfe8478a5e5860d41c2d88754f4e3 |
IEDL.DBID | ACS |
ISSN | 2574-0962 |
IngestDate | Fri Aug 23 01:57:08 EDT 2024 Wed Aug 30 03:14:26 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | organic electrode materials disulfide bond organodisulfide polymers high energy/power density graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a229t-e8e6c271469c2aae99fe7daba09244bdf5d1dfe8478a5e5860d41c2d88754f4e3 |
ORCID | 0000-0002-9548-5287 0000-0001-5784-1327 0000-0002-7553-4686 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1021_acsaem_3c01307 acs_journals_10_1021_acsaem_3c01307 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-28 |
PublicationDateYYYYMMDD | 2023-08-28 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-28 day: 28 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied energy materials |
PublicationTitleAlternate | ACS Appl. Energy Mater |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref45/cit45 doi: 10.1038/nmat3601 – ident: ref28/cit28 doi: 10.1002/aenm.202003281 – ident: ref21/cit21 doi: 10.1002/adma.201103392 – ident: ref41/cit41 doi: 10.1039/C7EE01473B – ident: ref1/cit1 doi: 10.1002/aenm.202000997 – ident: ref22/cit22 doi: 10.1002/chem.201103535 – ident: ref27/cit27 doi: 10.1038/s41563-020-00869-1 – ident: ref31/cit31 doi: 10.1002/anie.201902185 – ident: ref5/cit5 doi: 10.1021/cm901452z – ident: ref15/cit15 doi: 10.1002/adma.201502241 – ident: ref6/cit6 doi: 10.1038/s41560-019-0368-4 – ident: ref24/cit24 doi: 10.1002/aenm.202102962 – ident: ref4/cit4 doi: 10.1016/j.jallcom.2018.02.048 – ident: ref46/cit46 doi: 10.1016/j.jechem.2021.08.045 – ident: ref43/cit43 doi: 10.1002/aenm.201900705 – ident: ref36/cit36 doi: 10.1039/C5TA07246H – ident: ref2/cit2 doi: 10.1063/1.4898006 – ident: ref3/cit3 doi: 10.1038/s41467-021-23375-7 – ident: ref20/cit20 doi: 10.1038/ncomms8278 – ident: ref25/cit25 doi: 10.1002/anie.201708746 – ident: ref17/cit17 doi: 10.1002/1521-4095(20020705)14:13/14<963::AID-ADMA963>3.0.CO;2-P – ident: ref38/cit38 doi: 10.1002/anie.201805540 – ident: ref40/cit40 doi: 10.1021/acsnano.2c05090 – ident: ref19/cit19 doi: 10.1002/adma.201706643 – ident: ref16/cit16 doi: 10.1016/j.jpowsour.2016.03.010 – ident: ref49/cit49 – ident: ref34/cit34 doi: 10.1002/advs.201500018 – ident: ref26/cit26 doi: 10.1149/1.2085896 – ident: ref30/cit30 doi: 10.1016/j.ensm.2019.05.001 – ident: ref44/cit44 doi: 10.1002/adma.202210151 – ident: ref37/cit37 doi: 10.1002/adfm.201908074 – ident: ref8/cit8 doi: 10.1038/s41578-022-00478-1 – ident: ref9/cit9 doi: 10.1039/C9TA05252F – ident: ref48/cit48 doi: 10.1021/acsenergylett.1c02569 – ident: ref42/cit42 doi: 10.1016/j.isci.2019.04.010 – ident: ref14/cit14 doi: 10.1016/j.ensm.2020.06.032 – ident: ref33/cit33 doi: 10.1002/cssc.200700161 – ident: ref10/cit10 doi: 10.1016/j.jechem.2018.06.003 – ident: ref35/cit35 doi: 10.1149/1.2108689 – ident: ref29/cit29 doi: 10.1002/adma.201203119 – ident: ref12/cit12 doi: 10.1021/ja507852t – ident: ref23/cit23 doi: 10.1002/anie.201603897 – ident: ref11/cit11 doi: 10.1002/anie.201506673 – ident: ref47/cit47 doi: 10.1021/acsami.8b03611 – ident: ref7/cit7 doi: 10.1038/s41570-020-0160-9 – ident: ref18/cit18 doi: 10.1038/nchem.1624 – ident: ref39/cit39 doi: 10.1021/jacs.2c02196 – ident: ref32/cit32 doi: 10.1002/advs.202200187 – ident: ref13/cit13 doi: 10.1002/anie.201607194 |
SSID | ssj0001916299 |
Score | 2.2774222 |
Snippet | Traditional inorganic cathode materials are currently facing serious technical bottlenecks due to the use of transition metals with limited resources (such as... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 8479 |
Title | Low-Cost Organodisulfide Polymer for Ultrafast High-Capacity Cathode Materials |
URI | http://dx.doi.org/10.1021/acsaem.3c01307 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46X_TBuzhvFBR8ylzTtE0epTiGuCHoYG_l5AbDbZW1Q_TXm7QdGw7R90MIJyf5vpyTfAehmyAIQBvBMNWcYuqLGHNGJQbpA3Cnv6lcaqDXj7oD-jgMh8t8x88KPvHvQOagJ61AuhpbvIm2SGx3hiNBycsym2JZDimbRdoQpNjycrJQaFwbwuGQzFdwaAVQOnuVulFe6hC6dyRvrXkhWvJrXaXxz7nuo92aVXr3VRgcoA09PUQ7K1qDR6j_lH3gJMsLr_x-malRPh-bkdLeczb-nOiZZ-mrNxgXMzBgrdwDEJxYKJWWp3vuo2BmbXtQVCF7jAadh9eki-tmChgI4QXWTEeSxPZg5JIAaM6NjhUIaNsbGBXKhMpXRluwYhDqkEVtRX1JlD2EQmqoDk5QY5pN9SnyqIhkEEYsCogTqPdFGAphwMQAhmjGm-jaOiKtN0OelnVu4qeVd9LaO010u1iA9L1S1vjF8uxf452jbdcK3uV7CbtAjWI215eWMBTiqoyVb6Duuxo |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyNBEC58HNTDrk9019UBBU8dnZ7ueRyXsBI1CYIGvA3VLwjGjGQmiP56qyeJBmVBr0NRFDU1Xd9UdX0FcBxFEVqnUiZsJpgIVcKyVGiGOkTMPP-m8aWBTjdu9cTlnbxbgNPZLAwZUZKmsm7iv7MLhKf0DO1DI9K-1ZYswrJMKFo9FmrevBdVCOzwemckRaJgBM_5jKjxkwqfjnQ5l47m8sr5T7h-s6i-TnLfGFeqoV8-kDV-w-R1-DHFmMHfSVBswIIdbsLaHPPgFnTbxRNrFmUV1MOYhemX44HrGxtcF4PnBzsKCMwGvUE1Qock5a-DsCYlVk2oPfBjgwXJdrCaBPA29M7_3TZbbLpagSHnWcVsamPNEzomM80RbZY5mxhUeEb_Y0IZJ01onKXUlaK0Mo3PjAg1N3QkSeGEjXZgaVgM7S4EQsU6knEaR9zT1YdKSqUcugTRcZtme3BEjsinn0aZ111vHuYT7-RT7-zByew95I8Tno3_SP76kr5DWGnddtp5-6J79RtW_ZJ4Xwnm6T4sVaOx_UNQolIHdfi8Av0Qw3o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEA4eIPrgLd4uKPiU2s0mezxKtXi1FGyhb8vkArF2pbtF9Nc72a5aFEFfl2EYZieZL5PMN4ScBEEAxsqYcpNwyn0Z0STmioLyARLHv6ldaaDVDq96_KYv-lUft-uFQSNy1JSXl_huVT9rWzEM-Gf4HcxTLVDuui2aJfMi8pmb13DeuP8qrCDgYeXcSIxGThGisw-yxh8qXEpS-VRKmsotzRXS_bSqfFLyWBsXsqbevhE2_tPsVbJcYU3vfBIca2TGDNfJ0hQD4QZp32UvtJHlhVc2ZWb6IR8P7IM2XicbvD6ZkYeg1usNihFYQCn3LIQ2MMEqRO-eax_MULYFxSSQN0mvedltXNFqxAIFxpKCmtiEikW4XSaKAZgksSbSIKGO5zIutRXa19ZgCotBGBGHdc19xTRuTYJbboItMjfMhmabeFyGKhBhHAbM0db7UggpLdgIwDITJzvkGB2RVkskT8vbb-anE--klXd2yOnHv0ifJ3wbv0ju_knfEVnoXDTTu-v27R5ZdLPiXUGYxftkrhiNzQEiikIelhH0DmrcxfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-Cost+Organodisulfide+Polymer+for+Ultrafast+High-Capacity+Cathode+Materials&rft.jtitle=ACS+applied+energy+materials&rft.au=Zeng%2C+Shao-Zhong&rft.au=Wang%2C+Shuxiao&rft.au=Kong%2C+Ling+Bing&rft.au=Tian%2C+Yuchao&rft.date=2023-08-28&rft.issn=2574-0962&rft.eissn=2574-0962&rft.volume=6&rft.issue=16&rft.spage=8479&rft.epage=8488&rft_id=info:doi/10.1021%2Facsaem.3c01307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaem_3c01307 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2574-0962&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2574-0962&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2574-0962&client=summon |