TiO2@COF Nanowire Arrays: A “Filter Amplifier” Heterojunction Strategy to Reverse the Redox Nature

Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a “filter amplifier” strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrat...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 23; no. 8; pp. 3614 - 3622
Main Authors Chen, Yong-Jun, Wen, Ying-Yi, Li, Wen-Hua, Fu, Zhi-Hua, Wang, Guan-E, Xu, Gang
Format Journal Article
LanguageEnglish
Published American Chemical Society 26.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a “filter amplifier” strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO2 to form core–sheath nanowire arrays. This unique structure forms a Z-scheme heterojunction to function as “a filter amplifier” which can conceal the intrinsic oxidative sites and increase the extrinsic reductive sites. Consequently, the selective response of TiO2 is dramatically reversed from reductive ethanol and methanol to oxidative NO2. Moreover, TiO2@COF-316 provides remarkably improved sensitivity, response, and recovery speed, as well as unusual anti-humidity properties as compared with TiO2. This work not only provides a new strategy to rationally modulate the surface chemistry properties of nanomaterials but also opens an avenue to design high-performance electronic devices with a Z-scheme heterojunction.
AbstractList Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a "filter amplifier" strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO2 to form core-sheath nanowire arrays. This unique structure forms a Z-scheme heterojunction to function as "a filter amplifier" which can conceal the intrinsic oxidative sites and increase the extrinsic reductive sites. Consequently, the selective response of TiO2 is dramatically reversed from reductive ethanol and methanol to oxidative NO2. Moreover, TiO2@COF-316 provides remarkably improved sensitivity, response, and recovery speed, as well as unusual anti-humidity properties as compared with TiO2. This work not only provides a new strategy to rationally modulate the surface chemistry properties of nanomaterials but also opens an avenue to design high-performance electronic devices with a Z-scheme heterojunction.Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a "filter amplifier" strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO2 to form core-sheath nanowire arrays. This unique structure forms a Z-scheme heterojunction to function as "a filter amplifier" which can conceal the intrinsic oxidative sites and increase the extrinsic reductive sites. Consequently, the selective response of TiO2 is dramatically reversed from reductive ethanol and methanol to oxidative NO2. Moreover, TiO2@COF-316 provides remarkably improved sensitivity, response, and recovery speed, as well as unusual anti-humidity properties as compared with TiO2. This work not only provides a new strategy to rationally modulate the surface chemistry properties of nanomaterials but also opens an avenue to design high-performance electronic devices with a Z-scheme heterojunction.
Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In this work, a “filter amplifier” strategy is proposed for the first time to reverse the intrinsic redox nature of materials. This is demonstrated by coating a COF-316 layer with controlled thickness on TiO2 to form core–sheath nanowire arrays. This unique structure forms a Z-scheme heterojunction to function as “a filter amplifier” which can conceal the intrinsic oxidative sites and increase the extrinsic reductive sites. Consequently, the selective response of TiO2 is dramatically reversed from reductive ethanol and methanol to oxidative NO2. Moreover, TiO2@COF-316 provides remarkably improved sensitivity, response, and recovery speed, as well as unusual anti-humidity properties as compared with TiO2. This work not only provides a new strategy to rationally modulate the surface chemistry properties of nanomaterials but also opens an avenue to design high-performance electronic devices with a Z-scheme heterojunction.
Author Wang, Guan-E
Chen, Yong-Jun
Wen, Ying-Yi
Li, Wen-Hua
Xu, Gang
Fu, Zhi-Hua
AuthorAffiliation State Key Laboratory of Structural Chemistry
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
University of Chinese Academy of Science (UCAS)
AuthorAffiliation_xml – name: State Key Laboratory of Structural Chemistry
– name: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
– name: University of Chinese Academy of Science (UCAS)
Author_xml – sequence: 1
  givenname: Yong-Jun
  surname: Chen
  fullname: Chen, Yong-Jun
  organization: University of Chinese Academy of Science (UCAS)
– sequence: 2
  givenname: Ying-Yi
  surname: Wen
  fullname: Wen, Ying-Yi
  organization: State Key Laboratory of Structural Chemistry
– sequence: 3
  givenname: Wen-Hua
  surname: Li
  fullname: Li, Wen-Hua
  organization: State Key Laboratory of Structural Chemistry
– sequence: 4
  givenname: Zhi-Hua
  surname: Fu
  fullname: Fu, Zhi-Hua
  organization: State Key Laboratory of Structural Chemistry
– sequence: 5
  givenname: Guan-E
  surname: Wang
  fullname: Wang, Guan-E
  organization: State Key Laboratory of Structural Chemistry
– sequence: 6
  givenname: Gang
  orcidid: 0000-0001-8562-0724
  surname: Xu
  fullname: Xu, Gang
  email: gxu@fjirsm.ac.cn
  organization: Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
BookMark eNo9kMFOAjEURRuDiYD-gYsu3Qy-ttNh6kpCREyIJIrrSSlvdMgwxbajsuND9Of4EoeArt7Nzc3Jy-mQVmUrJOSSQY8BZ9fa-F6lK1tiCD1hAFKIT0ibSQFRohRv_ec0PiMd75cAoISENslnxZTfDqcj-tgAPguHdOCc3vgbOqC77feoKAM6OlityyIv0O22P3SMTWWXdWVCYSv6HJwO-LqhwdIn_EDnkYY3bPLCfjXYUDs8J6e5Lj1eHG-XvIzuZsNxNJnePwwHk0hzrkJkUqmTPiRzCTxPUyY5T_I4NUwksZa5UoLzfm6YEqjjuZwbA3NgAhHkQqrUiC65OnDXzr7X6EO2KrzBstQV2tpnvK8SlkAi4mYKh2ljL1va2lXNYxmDbK8025d_SrOjUvEL5Mpwew
ContentType Journal Article
Copyright 2023 American Chemical Society
Copyright_xml – notice: 2023 American Chemical Society
DBID 7X8
DOI 10.1021/acs.nanolett.3c00804
DatabaseName MEDLINE - Academic
DatabaseTitle MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 3622
ExternalDocumentID a722315674
GroupedDBID ---
-~X
.K2
123
4.4
55A
5VS
6P2
7~N
AABXI
ABFRP
ABMVS
ABPTK
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
7X8
AAHBH
ABBLG
ABJNI
ABLBI
ACBEA
CUPRZ
ID FETCH-LOGICAL-a229t-c85a6706b502f8815226f48c1364a5f993227fc193ea4b5bcc0b013ee05d598c3
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Fri Jul 11 02:12:59 EDT 2025
Thu Jul 06 08:30:32 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Covalent organic frameworks
sensing device
Z-scheme heterojunction
functional motif
thin films
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a229t-c85a6706b502f8815226f48c1364a5f993227fc193ea4b5bcc0b013ee05d598c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8562-0724
PQID 2796160634
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2796160634
acs_journals_10_1021_acs_nanolett_3c00804
PublicationCentury 2000
PublicationDate 20230426
PublicationDateYYYYMMDD 2023-04-26
PublicationDate_xml – month: 04
  year: 2023
  text: 20230426
  day: 26
PublicationDecade 2020
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0009350
Score 2.5220072
Snippet Surface modification is a promising method to change the surface properties of nanomaterials, but it is limited in enhancing their intrinsic redox nature. In...
SourceID proquest
acs
SourceType Aggregation Database
Publisher
StartPage 3614
Title TiO2@COF Nanowire Arrays: A “Filter Amplifier” Heterojunction Strategy to Reverse the Redox Nature
URI http://dx.doi.org/10.1021/acs.nanolett.3c00804
https://www.proquest.com/docview/2796160634
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-LnrwLb6J4MVD1zaZpK0nl8VlEXTBB3grSZqACi1su6Ce_CH65_wlTna7KIqgt1LK0E5mMt_0m5kQcgDWcK7yMNDK8QDyRAcphuEgAivBQgwu9r3D5xeydwNnt-L2M1H8zuCz6EiZqlWoosTPqFvceIgD02SWSfRjD4U6V59DdvnoRFZ0YkyJ0gQmrXK_SPEByVQ_NuFRZOkukv6kP2dcUPLQGta6ZZ5_jmv840svkYUGZNL22CqWyZQtVsj8l9GDq8Rd3_XZSaffpbi_ln5gMT4-UE_VMW3T95fX7p2n0WnbF5w7DJ3vL2-050tnynuMhH41aTPY9onWJb20vrzDUoSTeJ2XjyjWcxNr5KZ7et3pBc2ZC4FiLK0Dkwgl41BqETKXJJGHZw4SE3EJSjhEM4zFziDsswq00MaM_6TaUOQiTQxfJzNFWdgNQnMFKtHMhcIBcGBK5DFYq6RJFcu12ySHqKas8ZkqG9HhLMr8zYnuskZ3m2R_skgZ2r8nNVRhy2GVsTiVEWZhHLb-IW-bzPlz4z0txOQOmakHQ7uL6KLWeyOT-gBX886I
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gAcoDwqSqEYiQuHLIk9zqMnVitWC_QhwRb1FtmOLRWkRGqyEuXUHwJ_rr-EmTRLq6IeeousaDQZz3g-Z14Ab9A7pUwVR9YEFWGV26ggNxwl6FP0mGHIuHZ4bz-dHeKnI320AnpZC0NMtESp7YP4l90Fkne8Vpu6oa_pRsox0sE7sEZ4RLJijydfL3vtqn4wK9ky3YyKHJcVczdQYb_k2v_O4t7BTB_Ct3-s9XklP0aLzo7cr2tdG2_N-zo8GCCnGF_oyCNY8fVjuH-lEeETCPPjA_l-cjAVdNo23L6YXj8xp-2OGIvzs9_TYw6qizGnnwdypOdnf8SME2ma7-QXeW_F0Ob2VHSN-OI52cMLApf0XDU_iSxHKp7C4fTDfDKLhgkMkZGy6CKXa5NmcWp1LEOeJwzWAuYuUSkaHQjbSJkFRyDQG7TaOnfxX9XHutJF7tQGrNZN7Z-BqAya3MoQ64CoUBpdZei9SV1hZGXDJrwlMZWDBbVlHxyXScmLS9mVg-w24fVyr0qyBg5xmNo3i7aUWZEmdCdT-PwW9F7B3dl8b7fc_bj_eQvu8UR5DhjJ9AWsdicL_5JwR2e3ey37C5401uk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZokVA5UCit6APqSr1wyDaxx3lwYrUQbaEPBK1UcYlsx5YWpKRqshLtqT8E_lx_CTNptlSgHsotsqLRxJ7xfM43nmFsG5yVUpdhYLSXAZSpCTIMw0EELgYHCfiE7g7vH8TjY_hwok5utfpCJRqU1HQkPnn1aen7CgPRDo1Xuqrxi9qBtIR2YI49JOaOjHs4-vKn3q7smrOiP-PpKEthdmvuDikUm2zzz37cBZl8kX29Ua_LLfk-mLZmYC_-qtz4X_o_ZU966MmH17byjD1w1RJ7fKsg4XPmjyaH4u3oMOe469ZUxhhfP9PnzRs-5FeXP_MJket8SGnoHgPq1eUvPqaEmvobxkdaY96Xuz3nbc0_O0r6cBxBJj6X9Q8US4zFMjvO3x-NxkHfiSHQQmRtYFOl4ySMjQqFT9OIQJuH1EYyBq08YhwhEm8RDDoNRhlrr_-vulCVKkutXGHzVV25F4yXGnRqhA-VB5AgtCoTcE7HNtOiNH6VvcZpKnpPaoqOJBdRQYOzuSv6uVtlW7P1KtAriOrQlaunTSGSLI7wbCZh7R7yNtmjT-_yYm_34OM6W6DG8sQbiXiDzbdnU_cS4UdrXnWG9huUQNls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TiO2%40COF+Nanowire+Arrays%3A+A+%22Filter+Amplifier%22+Heterojunction+Strategy+to+Reverse+the+Redox+Nature&rft.jtitle=Nano+letters&rft.au=Chen%2C+Yong-Jun&rft.au=Wen%2C+Ying-Yi&rft.au=Li%2C+Wen-Hua&rft.au=Fu%2C+Zhi-Hua&rft.date=2023-04-26&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=23&rft.issue=8&rft.spage=3614&rft_id=info:doi/10.1021%2Facs.nanolett.3c00804&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon