Heterostructured MoSe2/Oxygen-Terminated Ti3C2 MXene Architectures for Efficient Electrocatalytic Hydrogen Evolution

Two-dimensional (2D) atomically thin transition metal dichalcogenide MoSe2 has been identified as one of the highly active noble-metal-free catalysts for the electrocatalytic hydrogen evolution reaction (HER), owing to its excellent electronic property and rich active sites. However, the electrocata...

Full description

Saved in:
Bibliographic Details
Published inEnergy & fuels Vol. 35; no. 5; pp. 4609 - 4615
Main Authors Xiao, Weiping, Yan, Daqiang, Zhang, Yu, Yang, Xiaofei, Zhang, Tierui
Format Journal Article
LanguageEnglish
Published American Chemical Society 04.03.2021
Subjects
Online AccessGet full text
ISSN0887-0624
1520-5029
1520-5029
DOI10.1021/acs.energyfuels.1c00123

Cover

Loading…
Abstract Two-dimensional (2D) atomically thin transition metal dichalcogenide MoSe2 has been identified as one of the highly active noble-metal-free catalysts for the electrocatalytic hydrogen evolution reaction (HER), owing to its excellent electronic property and rich active sites. However, the electrocatalytic hydrogen-evolving activity is still hindered by its moderate conductivity, arising from semiconducting property and the thermodynamically stable basal plane. It is anticipated that the integration of 2D MoSe2 nanosheets with a highly conductive large-area 2D substrate enables the accelerated interfacial electron transfer and the enhanced HER performance. We report herein a facile and scalable fabrication of 2D MoSe2/2D Ti3C2 MXene heterostructured architecture, where the layered MoSe2 nanosheets are in situ decorated on the exfoliated oxygen-terminated Ti3C2 MXene flakes. In comparison to pristine MoSe2 and the MoSe2/unmodified Ti3C2 MXene hybrids, the composite electrocatalysts of MoSe2 nanosheets and oxygen-terminated Ti3C2 MXene exhibited improved HER activities, owing to higher electrochemically active surface areas, an oxygen-substituted surface, and the synergy effect between nanosized MoSe2 and oxygen-terminated MXene nanosheets. This study serves to promote continuous efforts toward low-cost, high-performance HER electrocatalysts by taking advantage of merits of transition metal dichalcogenides and 2D nanostructures.
AbstractList Two-dimensional (2D) atomically thin transition metal dichalcogenide MoSe₂ has been identified as one of the highly active noble-metal-free catalysts for the electrocatalytic hydrogen evolution reaction (HER), owing to its excellent electronic property and rich active sites. However, the electrocatalytic hydrogen-evolving activity is still hindered by its moderate conductivity, arising from semiconducting property and the thermodynamically stable basal plane. It is anticipated that the integration of 2D MoSe₂ nanosheets with a highly conductive large-area 2D substrate enables the accelerated interfacial electron transfer and the enhanced HER performance. We report herein a facile and scalable fabrication of 2D MoSe₂/2D Ti₃C₂ MXene heterostructured architecture, where the layered MoSe₂ nanosheets are in situ decorated on the exfoliated oxygen-terminated Ti₃C₂ MXene flakes. In comparison to pristine MoSe₂ and the MoSe₂/unmodified Ti₃C₂ MXene hybrids, the composite electrocatalysts of MoSe₂ nanosheets and oxygen-terminated Ti₃C₂ MXene exhibited improved HER activities, owing to higher electrochemically active surface areas, an oxygen-substituted surface, and the synergy effect between nanosized MoSe₂ and oxygen-terminated MXene nanosheets. This study serves to promote continuous efforts toward low-cost, high-performance HER electrocatalysts by taking advantage of merits of transition metal dichalcogenides and 2D nanostructures.
Two-dimensional (2D) atomically thin transition metal dichalcogenide MoSe2 has been identified as one of the highly active noble-metal-free catalysts for the electrocatalytic hydrogen evolution reaction (HER), owing to its excellent electronic property and rich active sites. However, the electrocatalytic hydrogen-evolving activity is still hindered by its moderate conductivity, arising from semiconducting property and the thermodynamically stable basal plane. It is anticipated that the integration of 2D MoSe2 nanosheets with a highly conductive large-area 2D substrate enables the accelerated interfacial electron transfer and the enhanced HER performance. We report herein a facile and scalable fabrication of 2D MoSe2/2D Ti3C2 MXene heterostructured architecture, where the layered MoSe2 nanosheets are in situ decorated on the exfoliated oxygen-terminated Ti3C2 MXene flakes. In comparison to pristine MoSe2 and the MoSe2/unmodified Ti3C2 MXene hybrids, the composite electrocatalysts of MoSe2 nanosheets and oxygen-terminated Ti3C2 MXene exhibited improved HER activities, owing to higher electrochemically active surface areas, an oxygen-substituted surface, and the synergy effect between nanosized MoSe2 and oxygen-terminated MXene nanosheets. This study serves to promote continuous efforts toward low-cost, high-performance HER electrocatalysts by taking advantage of merits of transition metal dichalcogenides and 2D nanostructures.
Author Xiao, Weiping
Yan, Daqiang
Yang, Xiaofei
Zhang, Tierui
Zhang, Yu
AuthorAffiliation College of Science, Institute of Materials Physics and Chemistry
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry
Center of Materials Science and Optoelectronics Engineering
University of Chinese Academy of Sciences
AuthorAffiliation_xml – name: Center of Materials Science and Optoelectronics Engineering
– name: University of Chinese Academy of Sciences
– name: College of Science, Institute of Materials Physics and Chemistry
– name: Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry
Author_xml – sequence: 1
  givenname: Weiping
  surname: Xiao
  fullname: Xiao, Weiping
  organization: College of Science, Institute of Materials Physics and Chemistry
– sequence: 2
  givenname: Daqiang
  surname: Yan
  fullname: Yan, Daqiang
  organization: College of Science, Institute of Materials Physics and Chemistry
– sequence: 3
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: College of Science, Institute of Materials Physics and Chemistry
– sequence: 4
  givenname: Xiaofei
  orcidid: 0000-0003-1972-4562
  surname: Yang
  fullname: Yang, Xiaofei
  email: xiaofei.yang@njfu.edu.cn
  organization: College of Science, Institute of Materials Physics and Chemistry
– sequence: 5
  givenname: Tierui
  orcidid: 0000-0002-7948-9413
  surname: Zhang
  fullname: Zhang, Tierui
  email: tierui@mail.ipc.ac.cn
  organization: University of Chinese Academy of Sciences
BookMark eNpNkEtPwzAQhC1UJNrCb8BHLmn9iPM4VlWgSFQ9UCRukeusi6vUBttB5N-T0h44rTSand35JmhknQWE7imZUcLoXKowAwt-3-sO2jCjihDK-BUaU8FIIggrR2hMiiJPSMbSGzQJ4UAIyXghxiiuIIJ3IfpOxc5Dg9fuFdh889PvwSZb8EdjZRz0reFLhtfvwy288OrDRPjbCFg7jyutjTJgI67aQfdOySjbPhqFV33j3RCGq2_XdtE4e4uutWwD3F3mFL09VtvlKnnZPD0vFy-JZKyIiRISFNdlIyUFoahWguWcSp5JnXNJFRDBWboDAruMNEKInRiql7TIG8jLlE_Rwzn307uvDkKsjyYoaFtpwXWhZoKlrOQ0ywcrP1sHnPXBdd4Oj9WU1CfG9Un8x7i-MOa_oEt4oQ
ContentType Journal Article
Copyright 2021 American Chemical Society
Copyright_xml – notice: 2021 American Chemical Society
DBID 7S9
L.6
DOI 10.1021/acs.energyfuels.1c00123
DatabaseName AGRICOLA
AGRICOLA - Academic
DatabaseTitle AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-5029
EndPage 4615
ExternalDocumentID b587998776
GroupedDBID 02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABUCX
ACGFS
ACJ
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
JG
JG~
LG6
P2P
ROL
TAE
TN5
UI2
VF5
VG9
W1F
X
-~X
.DC
7S9
AAHBH
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AGXLV
AHGAQ
BAANH
CUPRZ
GGK
L.6
ZCA
~02
ID FETCH-LOGICAL-a228t-c5aec3f9daa1e5c1fc52731a36af73a1ce05324be0eb60d555b50129187de7943
IEDL.DBID ACS
ISSN 0887-0624
1520-5029
IngestDate Thu Jul 10 23:14:51 EDT 2025
Sat Mar 06 03:12:44 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a228t-c5aec3f9daa1e5c1fc52731a36af73a1ce05324be0eb60d555b50129187de7943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7948-9413
0000-0003-1972-4562
PQID 2524293167
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_2524293167
acs_journals_10_1021_acs_energyfuels_1c00123
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2021-03-04
PublicationDateYYYYMMDD 2021-03-04
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-04
  day: 04
PublicationDecade 2020
PublicationTitle Energy & fuels
PublicationTitleAlternate Energy Fuels
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0006385
Score 2.5838866
Snippet Two-dimensional (2D) atomically thin transition metal dichalcogenide MoSe2 has been identified as one of the highly active noble-metal-free catalysts for the...
Two-dimensional (2D) atomically thin transition metal dichalcogenide MoSe₂ has been identified as one of the highly active noble-metal-free catalysts for the...
SourceID proquest
acs
SourceType Aggregation Database
Publisher
StartPage 4609
SubjectTerms electrochemistry
electron transfer
energy
hydrogen production
nanosheets
Non-Carbon-Based Fuels
semiconductors
thermodynamics
Title Heterostructured MoSe2/Oxygen-Terminated Ti3C2 MXene Architectures for Efficient Electrocatalytic Hydrogen Evolution
URI http://dx.doi.org/10.1021/acs.energyfuels.1c00123
https://www.proquest.com/docview/2524293167
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB58HNSDj6r4JoJHt928trtHKZUiVMFW6G1JsgmI0AW3Feuvd7IPKRRBr3uYDZOZzJfMzDcAN1RoEwvFAuNojBeU0KHPcRYwDM1ORzzjzr9DDh-jwYt4mMjJGtBfMviMdpQp2rbsg3NzDBdtakocsA6bLEJX9mioN_o5fNGcZEPuGUZMNCVdvwvyYckUK0dxGV_u9-C56dKpykre2vOZbpuvVdLGvy99H3ZrtEnuKvM4gDU7bcFWrxny1oKdJT7CQ5gNfHFMXnHKzt9tRob5yLLO0-cC7SwYV4UziFHJ-JX3GBlO8L_kbikXURAEwaRf8lJgOCP9aspO-Ui0wEWQwSJ7z1EY6X_URn8EL_f9cW8Q1GMZAsVYPAuMVNZwl2RKUSsNdcaTuFHFI-W6XFFTTpsQ2oZWR2EmpdTSP3fRuJtZz0d3DBvTfGpPgCRcxLKbODSPrjAIJmOBKgod41mok0ifwi3qMK3dqkjLjDmjqf-4pNi0VuwpXDebmKIefepDTW0-L1ImEYokvuv_7H8iz2Gb-SoWX3UmLmADN8BeIgyZ6avS8L4BUS3cFA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5ROFAO5dFWpS1gJI5kiV_Z5LhaLQqPhQOLtD1FtmNLCGkjkV3E8us79iZ0BeoBrj5MxuOx54tn_A3AERXapEKxyDia4g9K7HDPcRYxDM1OJ7zkzt9DDq-S_Facj-V4BdL2LQwqUaOkOiTx_7EL0BM_ZsNzODfDqNGhJsCBT7CGkIR53-71b17OYPQq2XJ8xgkTbWXX_wX56GTqNydyCDOnm_DnRcFQXXLfmU11xzy_4m78yAy24EuDPUlv4SzbsGInO7Deb1u-7cDGEjvhV5jmvlSmWjDMzh5sSYbVjWUn109z9LpotCijQcRKRne8z8hwjN8lvaXMRE0QEpNBYKnA4EYGi5474cpojkqQfF4-VCiMDB6bLfANbk8Ho34eNU0aIsVYOo2MVNZwl5VKUSsNdcZTulHFE-W6XFETek8IbWOrk7iUUmrpL79o2i2tZ6f7DquTamJ_AMm4SGU3c-gsXWEQWqYCTRQ7xstYZ4nehWO0YdFssroI-XNGCz-4ZNiiMewuHLZrWaAdfSJETWw1qwsmEZhkngPg5_tEHsB6PhpeFpdnVxe_4DPz9S2-Hk38hlVcDLuHAGWq94Mv_gUTdOR1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED6xIm3wwBgbooNtnrTHpcS_0kTaS1VadWNlkyhSX6bIdmxpQmoQaRHlr-fsJqjaxAO8-uFin-98X3zn7wC-UKFNKhSLjKMp_qDEDn2Os4hhaHY64QV3_h5yfJaMLsSPqZxuwLfmLQxOokJJVUjie6--KlzNMECP_bgNT-LcAiNHh5oACV7Apk_eefvu9c8fzmG0LNnwfMYJE0111-OCfIQy1X-ncgg1w9fw52GSocLksrOY6465-4e_8bmr2IWdGoOS3spo3sCGne3Bq37T-m0PttdYCt_CfORLZsoV0-zi2hZkXJ5bdvzrdonWF01W5TSIXMnkL-8zMp7id0lvLUNREYTGZBDYKjDIkcGq9064OlriJMhoWVyXKIwMbmpXeAcXw8GkP4rqZg2RYiydR0Yqa7jLCqWolYY646ndqOKJcl2uqAk9KIS2sdVJXEgptfSXYDTtFtaz1O1Da1bO7AGQjItUdjOHRtMVBiFmKlBFsWO8iHWW6DZ8RR3mtbNVecijM5r7wTXF5rVi2_C52c8c9egTImpmy0WVM4kAJfNcAO-fJvITvPx9Msx_fj87PYQt5stcfFmaOIIW7oX9gDhlrj8Gc7wHbl_m-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterostructured+MoSe%E2%82%82%2FOxygen-Terminated+Ti%E2%82%83C%E2%82%82+MXene+Architectures+for+Efficient+Electrocatalytic+Hydrogen+Evolution&rft.jtitle=Energy+%26+fuels&rft.au=Xiao%2C+Weiping&rft.au=Yan%2C+Daqiang&rft.au=Zhang%2C+Yu&rft.au=Yang%2C+Xiaofei&rft.date=2021-03-04&rft.issn=1520-5029&rft.volume=35&rft.issue=5+p.4609-4615&rft.spage=4609&rft.epage=4615&rft_id=info:doi/10.1021%2Facs.energyfuels.1c00123&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-0624&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-0624&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-0624&client=summon