Reimagining Dearomatization: Arenophile-Mediated Single-Atom Insertions and π‑Extensions
Conspectus Dearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to const...
Saved in:
Published in | Accounts of chemical research Vol. 58; no. 7; pp. 1134 - 1150 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.04.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | Conspectus Dearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures. A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means. Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity. |
---|---|
AbstractList | Conspectus Dearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures. A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means. Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity. ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures.A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means.Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity.ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures.A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means.Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity. ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures.A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo -photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means.Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity. |
Author | Siddiqi, Zohaib Sarlah, David |
AuthorAffiliation | Department of Chemistry |
AuthorAffiliation_xml | – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Zohaib surname: Siddiqi fullname: Siddiqi, Zohaib organization: Department of Chemistry – sequence: 2 givenname: David orcidid: 0000-0002-8736-8953 surname: Sarlah fullname: Sarlah, David email: sarlah@rice.edu organization: Department of Chemistry |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40069000$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1OwzAUhC1URH_gBghlySbFdmI7ZVeVApWKkPhZsYgc56WkauxiJxKw6hU4GXfgJDhqy5KFZc_zN0-a6aOONhoQOiV4SDAlF1K5oVTKNLp2Q6YwxhE7QD3CKA7jZJR0UM_PiH_HtIv6zi29pDEXR6gbY8xHXvbQywOUlVyUutSL4AqkNZWsy09_jL4Mxha0Wb-WKwjvIC9lDXnw6Emvx7Wpgpl2YFvUBVLnwffmZ_M1fa9Bu3Z2jA4LuXJwsrsH6Pl6-jS5Def3N7PJeB5KSkUdCl4wTIpRnHEMnGSCMo4LjDMRUSZYJpJIRVxxRYAATphiXGZx5hMAyxMaRQN0vt27tuatAVenVekUrFZSg2lcGhHBo5gKwTx6tkObrII8XVuf3n6k-0I8EG8BZY1zFoo_hOC07T31vaf73tNd796Gt7b2d2kaq33g_y2_rLmKjw |
Cites_doi | 10.1016/S0040-4039(00)90005-4 10.1021/cr200251d 10.1002/aoc.6555 10.1038/s44160-022-00080-x 10.1002/anie.202402819 10.1351/pac196816010047 10.1002/anie.201905021 10.1002/anie.202208014 10.1351/pac198254091633 10.1021/cr100380z 10.1016/S0040-4039(00)80799-6 10.1002/tcr.201700110 10.1016/S0040-4039(00)78093-2 10.1021/acs.chemrev.7b00480 10.1021/jacs.0c05069 10.1021/acs.orglett.7b02660 10.1002/anie.202216817 10.1021/jacs.2c09616 10.1021/ol050317+ 10.1039/D2NP00042C 10.1002/9780470187203.ch2 10.1021/acs.orglett.6b01564 10.1021/jacs.0c02724 10.1039/c29710000297 10.1021/np990362o 10.1021/acs.jmedchem.9b01293 10.1055/s-1997-3254 10.1002/anie.201701058 10.1021/acscatal.0c05588 10.1126/science.185.4151.573 10.1126/science.abg0720 10.1016/S0040-4039(00)88311-2 10.1038/s44160-022-00052-1 10.1021/acs.chemrev.9b00099 10.1021/jacs.3c02314 10.1021/acs.orglett.3c00801 10.1002/anie.201814471 10.1039/D2SC04638E 10.1002/anie.196704021 10.1021/ja00330a065 10.1021/jacs.3c13603 10.1021/ja00437a063 10.1039/D3SC04421A 10.1021/jacs.8b12123 10.1002/adsc.202300001 10.1038/s41570-023-00514-w 10.1016/j.chempr.2019.10.016 10.1021/jacs.3c02556 10.1002/anie.201609686 10.1002/anie.202313807 10.1002/jlac.198019800912 10.1016/0047-2670(85)87032-5 10.1021/jo9906429 10.1002/anie.201709712 10.1016/j.tim.2015.02.005 10.1021/ja201931e 10.1021/jacs.3c03048 10.1021/ja00828a073 10.1016/S0040-4039(00)85028-5 10.1021/jacs.3c02470 10.1038/s41467-022-32201-7 10.1021/jo960921l 10.1021/jacs.7b11663 10.1021/ja029962r 10.1021/acscatal.0c03958 10.1021/ja00459a024 10.1016/j.tet.2010.10.030 10.1021/cr60284a002 10.1021/jo200339w 10.1021/jacs.3c02961 10.1002/anie.201909838 10.1039/C7CC02525D 10.1007/s11426-020-9954-6 10.1038/s41467-022-28099-w 10.1002/anie.200701920 10.1007/s11224-009-9451-y 10.1038/nchem.2087 10.1021/acs.joc.7b01608 10.1021/jacs.6b01375 10.1002/anie.201502708 10.1021/jacs.2c07726 10.1021/jacs.8b02568 10.1097/00007691-197901030-00009 10.1039/C5CS00183H 10.1002/anie.202407281 10.3762/bjoc.14.98 10.1002/anie.201006017 10.1038/s41467-021-24261-y 10.1081/DMR-200033445 10.1021/jacs.3c08565 10.1002/0471264180.or018.03 10.1021/jacs.8b13030 10.1021/ar600021z 10.3987/R-1973-03-0267 10.1039/C8CS00389K 10.1021/cm102419z 10.1021/cr00018a002 10.1002/anie.201707486 10.1002/anie.201310723 10.1038/s41557-018-0178-5 10.1038/s41557-024-01680-0 10.1021/jacs.5b10440 10.1002/0471264180.or042.01 10.1021/jo01056a056 10.1021/jacs.1c06287 10.1021/ar50106a006 10.1021/acs.orglett.6b00518 10.1021/ja00500a005 10.1016/S0040-4039(01)99162-2 10.1248/cpb.38.2911 10.1021/acs.chemrev.6b00005 10.1039/D0CS00702A 10.1126/science.add1383 10.1021/acs.orglett.5b01838 10.1021/acs.orglett.9b03375 10.1002/cber.19660990238 10.1002/anie.201006180 10.1021/acscatal.4c02656 10.3762/bjoc.7.61 10.1021/ja00208a028 10.1002/anie.202305622 10.1021/acscentsci.0c01651 10.1021/jo00796a005 10.1038/s41467-020-18713-0 10.1038/ncomms7251 10.1039/cc9960000045 10.1016/j.femsle.2005.05.046 10.1021/jacs.3c14467 10.1126/science.157.3796.1524 10.1039/C4OB00371C 10.2174/138920021610151210164501 10.1039/B817222F 10.1055/s-0031-1289520 10.1248/cpb.35.3166 10.1002/hlca.202200182 10.1021/ja00213a006 10.1021/ol048846l 10.1021/acs.orglett.0c04050 10.1002/anie.202212855 10.1002/anie.196405101 10.1021/jacs.7b10351 10.1039/D4CS00137K 10.1002/ange.19610731215 10.1021/ja00756a035 10.3390/ijms241512066 10.1021/jo00193a029 10.1039/a703071a 10.1002/anie.196703851 10.3390/molecules29091920 10.1039/CS9962500289 10.1021/jacs.5b09209 10.1021/jacs.8b01726 10.1038/nchem.2594 10.1039/b009712h 10.1021/ja00488a037 10.1016/j.tet.2009.12.046 10.1021/acs.jmedchem.4c01347 10.1002/cber.188501802119 10.1002/0471264180.or063.02 10.1080/01442350701611991 10.1021/jacs.9b05370 10.1039/C9CS00311H |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.accounts.5c00035 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 1150 |
ExternalDocumentID | 40069000 10_1021_acs_accounts_5c00035 h91764581 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM122891 |
GroupedDBID | --- -DZ -~X 23M 4.4 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S AABXI ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YZZ ZCA ~02 AAYXX ABBLG ABLBI CITATION NPM 7X8 |
ID | FETCH-LOGICAL-a227t-76f501f94b60e61b72560f00b732575b783c36c6c1e1e085c56ab4b069e5d8233 |
IEDL.DBID | ACS |
ISSN | 0001-4842 1520-4898 |
IngestDate | Thu Jul 10 23:49:51 EDT 2025 Mon Jul 21 05:58:14 EDT 2025 Tue Jul 01 05:11:06 EDT 2025 Wed Apr 02 03:15:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a227t-76f501f94b60e61b72560f00b732575b783c36c6c1e1e085c56ab4b069e5d8233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8736-8953 |
PMID | 40069000 |
PQID | 3176342775 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3176342775 pubmed_primary_40069000 crossref_primary_10_1021_acs_accounts_5c00035 acs_journals_10_1021_acs_accounts_5c00035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-Apr-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-Apr-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc. Chem. Res |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref63/cit63b ref3/cit3 ref63/cit63a ref37/cit37c ref37/cit37b ref37/cit37d ref37/cit37a ref23/cit23 ref2/cit2 ref57/cit57b ref57/cit57c ref43/cit43a ref20/cit20 ref48/cit48 ref43/cit43c ref43/cit43b ref10/cit10 ref62/cit62a ref16/cit16c ref16/cit16b ref35/cit35 ref36/cit36a ref16/cit16a ref36/cit36b ref19/cit19 ref16/cit16e ref7/cit7d ref16/cit16d ref22/cit22a ref62/cit62b ref22/cit22d ref22/cit22c ref13/cit13 ref22/cit22b ref7/cit7c ref7/cit7b ref7/cit7a ref42/cit42b ref42/cit42c ref42/cit42a ref65/cit65 de Oliveira K. T. (ref57/cit57a) 2014; 42 ref11/cit11 ref29/cit29 ref61/cit61a ref61/cit61b ref31/cit31d ref31/cit31e ref32/cit32 ref59/cit59b ref31/cit31b ref60/cit60f ref31/cit31c ref39/cit39a ref39/cit39b ref5/cit5 ref31/cit31a ref28/cit28 ref31/cit31h ref41/cit41b ref31/cit31f ref41/cit41a ref31/cit31g ref18/cit18b ref55/cit55 ref18/cit18a ref38/cit38b ref38/cit38c ref60/cit60a ref12/cit12 ref38/cit38a ref60/cit60d ref60/cit60e ref60/cit60b ref60/cit60c ref30/cit30a ref30/cit30c ref40/cit40b ref50/cit50d ref30/cit30b ref40/cit40c ref50/cit50b ref50/cit50c ref50/cit50a ref30/cit30e ref30/cit30d ref40/cit40a ref70/cit70 ref30/cit30f ref9/cit9 ref27/cit27 ref33/cit33a ref56/cit56 ref8/cit8 Johnson R. A. (ref6/cit6c) 2004 ref67/cit67b ref67/cit67a ref33/cit33c ref33/cit33b ref33/cit33e ref33/cit33d ref17/cit17 ref26/cit26b ref26/cit26c ref26/cit26d ref52/cit52a ref52/cit52b ref52/cit52c ref53/cit53 ref52/cit52d ref21/cit21 ref66/cit66b ref46/cit46 ref26/cit26a ref49/cit49 ref66/cit66a ref24/cit24 ref45/cit45c ref45/cit45b ref45/cit45a ref15/cit15a ref15/cit15d ref15/cit15e ref15/cit15b ref25/cit25 ref15/cit15c ref15/cit15h ref15/cit15i Boyd D. R. (ref34/cit34c) 1985 ref15/cit15f ref15/cit15g ref14/cit14 ref51/cit51 ref45/cit45j ref45/cit45i ref45/cit45h ref45/cit45g ref68/cit68 ref45/cit45f ref45/cit45e ref45/cit45d ref54/cit54c ref44/cit44a ref54/cit54b Dave V. (ref59/cit59a) 2011 ref54/cit54a ref64/cit64c ref64/cit64b ref6/cit6d ref34/cit34b ref64/cit64a ref6/cit6e ref34/cit34a ref54/cit54d ref69/cit69 ref58/cit58 ref4/cit4 ref6/cit6a ref47/cit47 ref1/cit1 ref6/cit6b ref44/cit44d ref44/cit44e ref44/cit44b ref44/cit44c |
References_xml | – ident: ref40/cit40b doi: 10.1016/S0040-4039(00)90005-4 – ident: ref44/cit44c doi: 10.1021/cr200251d – ident: ref50/cit50a doi: 10.1002/aoc.6555 – ident: ref26/cit26d doi: 10.1038/s44160-022-00080-x – ident: ref7/cit7c doi: 10.1002/anie.202402819 – ident: ref9/cit9 doi: 10.1351/pac196816010047 – ident: ref22/cit22d doi: 10.1002/anie.201905021 – ident: ref3/cit3 doi: 10.1002/anie.202208014 – ident: ref14/cit14 doi: 10.1351/pac198254091633 – ident: ref64/cit64a doi: 10.1021/cr100380z – ident: ref16/cit16c doi: 10.1016/S0040-4039(00)80799-6 – ident: ref53/cit53 doi: 10.1002/tcr.201700110 – ident: ref62/cit62a doi: 10.1016/S0040-4039(00)78093-2 – ident: ref6/cit6d doi: 10.1021/acs.chemrev.7b00480 – ident: ref10/cit10 doi: 10.1021/jacs.0c05069 – ident: ref31/cit31c doi: 10.1021/acs.orglett.7b02660 – ident: ref15/cit15c doi: 10.1002/anie.202216817 – ident: ref30/cit30e doi: 10.1021/jacs.2c09616 – ident: ref52/cit52a doi: 10.1021/ol050317+ – ident: ref6/cit6e doi: 10.1039/D2NP00042C – start-page: 197 volume-title: Chem. Heterocycl. Compd. year: 1985 ident: ref34/cit34c doi: 10.1002/9780470187203.ch2 – ident: ref45/cit45g doi: 10.1021/acs.orglett.6b01564 – ident: ref1/cit1 doi: 10.1021/jacs.0c02724 – ident: ref43/cit43a doi: 10.1039/c29710000297 – ident: ref51/cit51 doi: 10.1021/np990362o – volume: 42 start-page: 421 volume-title: Studies in Natural Products Chemistry year: 2014 ident: ref57/cit57a – ident: ref60/cit60a doi: 10.1021/acs.jmedchem.9b01293 – ident: ref33/cit33b doi: 10.1055/s-1997-3254 – ident: ref66/cit66b doi: 10.1002/anie.201701058 – ident: ref33/cit33c doi: 10.1021/acscatal.0c05588 – ident: ref34/cit34b doi: 10.1126/science.185.4151.573 – ident: ref15/cit15d doi: 10.1126/science.abg0720 – ident: ref62/cit62b doi: 10.1016/S0040-4039(00)88311-2 – ident: ref27/cit27 doi: 10.1038/s44160-022-00052-1 – ident: ref63/cit63b doi: 10.1021/acs.chemrev.9b00099 – ident: ref31/cit31h doi: 10.1021/jacs.3c02314 – ident: ref52/cit52c doi: 10.1021/acs.orglett.3c00801 – ident: ref44/cit44e doi: 10.1002/anie.201814471 – ident: ref44/cit44a doi: 10.1039/D2SC04638E – ident: ref60/cit60c doi: 10.1002/anie.196704021 – ident: ref16/cit16d doi: 10.1021/ja00330a065 – ident: ref2/cit2 doi: 10.1021/jacs.3c13603 – ident: ref39/cit39a doi: 10.1021/ja00437a063 – ident: ref13/cit13 doi: 10.1039/D3SC04421A – ident: ref26/cit26c doi: 10.1021/jacs.8b12123 – ident: ref52/cit52b doi: 10.1002/adsc.202300001 – ident: ref29/cit29 doi: 10.1038/s41570-023-00514-w – ident: ref15/cit15b doi: 10.1016/j.chempr.2019.10.016 – ident: ref15/cit15h doi: 10.1021/jacs.3c02556 – ident: ref24/cit24 doi: 10.1002/anie.201609686 – ident: ref31/cit31f doi: 10.1002/anie.202313807 – ident: ref43/cit43b doi: 10.1002/jlac.198019800912 – ident: ref16/cit16a doi: 10.1016/0047-2670(85)87032-5 – ident: ref16/cit16e doi: 10.1021/jo9906429 – ident: ref26/cit26a doi: 10.1002/anie.201709712 – ident: ref38/cit38c doi: 10.1016/j.tim.2015.02.005 – ident: ref70/cit70 doi: 10.1021/ja201931e – ident: ref45/cit45a doi: 10.1021/jacs.3c03048 – ident: ref54/cit54c doi: 10.1021/ja00828a073 – ident: ref56/cit56 doi: 10.1016/S0040-4039(00)85028-5 – ident: ref45/cit45b doi: 10.1021/jacs.3c02470 – ident: ref15/cit15g doi: 10.1038/s41467-022-32201-7 – ident: ref61/cit61a doi: 10.1021/jo960921l – ident: ref22/cit22a doi: 10.1021/jacs.7b11663 – ident: ref42/cit42c doi: 10.1021/ja029962r – ident: ref44/cit44d doi: 10.1021/acscatal.0c03958 – ident: ref54/cit54b doi: 10.1021/ja00459a024 – ident: ref60/cit60f doi: 10.1016/j.tet.2010.10.030 – ident: ref57/cit57c doi: 10.1021/cr60284a002 – ident: ref67/cit67a doi: 10.1021/jo200339w – ident: ref15/cit15a doi: 10.1021/jacs.3c02961 – ident: ref22/cit22c doi: 10.1002/anie.201909838 – ident: ref31/cit31g doi: 10.1039/C7CC02525D – ident: ref52/cit52d doi: 10.1007/s11426-020-9954-6 – ident: ref30/cit30f doi: 10.1038/s41467-022-28099-w – ident: ref64/cit64c doi: 10.1002/anie.200701920 – ident: ref60/cit60b doi: 10.1007/s11224-009-9451-y – ident: ref45/cit45i doi: 10.1038/nchem.2087 – ident: ref60/cit60e doi: 10.1021/acs.joc.7b01608 – ident: ref45/cit45e doi: 10.1021/jacs.6b01375 – ident: ref45/cit45d doi: 10.1002/anie.201502708 – ident: ref15/cit15e doi: 10.1021/jacs.2c07726 – ident: ref45/cit45j doi: 10.1021/jacs.8b02568 – ident: ref37/cit37a doi: 10.1097/00007691-197901030-00009 – ident: ref65/cit65 doi: 10.1039/C5CS00183H – ident: ref21/cit21 doi: 10.1002/anie.202407281 – ident: ref57/cit57b doi: 10.3762/bjoc.14.98 – ident: ref7/cit7b doi: 10.1002/anie.201006017 – ident: ref4/cit4 doi: 10.1038/s41467-021-24261-y – ident: ref36/cit36a doi: 10.1081/DMR-200033445 – ident: ref33/cit33e doi: 10.1021/jacs.3c08565 – start-page: 217 volume-title: Organic Reactions year: 2011 ident: ref59/cit59a doi: 10.1002/0471264180.or018.03 – ident: ref22/cit22b doi: 10.1021/jacs.8b13030 – ident: ref18/cit18b doi: 10.1021/ar600021z – ident: ref34/cit34a doi: 10.3987/R-1973-03-0267 – ident: ref5/cit5 doi: 10.1039/C8CS00389K – ident: ref64/cit64b doi: 10.1021/cm102419z – ident: ref12/cit12 doi: 10.1021/cr00018a002 – ident: ref69/cit69 doi: 10.1002/anie.201707486 – ident: ref67/cit67b doi: 10.1002/anie.201310723 – ident: ref45/cit45f doi: 10.1038/s41557-018-0178-5 – ident: ref31/cit31d doi: 10.1038/s41557-024-01680-0 – ident: ref45/cit45c doi: 10.1021/jacs.5b10440 – ident: ref6/cit6a doi: 10.1002/0471264180.or042.01 – ident: ref49/cit49 doi: 10.1021/jo01056a056 – ident: ref30/cit30d doi: 10.1021/jacs.1c06287 – ident: ref37/cit37c doi: 10.1021/ar50106a006 – ident: ref42/cit42a doi: 10.1021/acs.orglett.6b00518 – ident: ref54/cit54a doi: 10.1021/ja00500a005 – ident: ref38/cit38b doi: 10.1016/S0040-4039(01)99162-2 – ident: ref41/cit41a doi: 10.1248/cpb.38.2911 – ident: ref8/cit8 doi: 10.1021/acs.chemrev.6b00005 – ident: ref18/cit18a doi: 10.1039/D0CS00702A – ident: ref30/cit30c doi: 10.1126/science.add1383 – ident: ref55/cit55 doi: 10.1021/acs.orglett.5b01838 – ident: ref60/cit60d doi: 10.1021/acs.orglett.9b03375 – ident: ref50/cit50c doi: 10.1002/cber.19660990238 – ident: ref68/cit68 doi: 10.1002/anie.201006180 – ident: ref20/cit20 doi: 10.1021/acscatal.4c02656 – ident: ref11/cit11 doi: 10.3762/bjoc.7.61 – ident: ref16/cit16b doi: 10.1021/ja00208a028 – ident: ref15/cit15f doi: 10.1002/anie.202305622 – ident: ref7/cit7a doi: 10.1021/acscentsci.0c01651 – ident: ref46/cit46 doi: 10.1021/jo00796a005 – ident: ref48/cit48 doi: 10.1038/s41467-020-18713-0 – ident: ref66/cit66a doi: 10.1038/ncomms7251 – ident: ref40/cit40c doi: 10.1039/cc9960000045 – ident: ref15/cit15i doi: 10.1021/jacs.3c02314 – ident: ref38/cit38a doi: 10.1016/j.femsle.2005.05.046 – ident: ref31/cit31e doi: 10.1021/jacs.3c14467 – ident: ref37/cit37b doi: 10.1126/science.157.3796.1524 – ident: ref44/cit44b doi: 10.1039/C4OB00371C – ident: ref36/cit36b doi: 10.2174/138920021610151210164501 – ident: ref33/cit33d doi: 10.1039/B817222F – ident: ref59/cit59b doi: 10.1055/s-0031-1289520 – ident: ref17/cit17 doi: 10.1002/anie.201909838 – ident: ref41/cit41b doi: 10.1248/cpb.35.3166 – ident: ref30/cit30b doi: 10.1002/hlca.202200182 – ident: ref43/cit43c doi: 10.1021/ja00213a006 – ident: ref42/cit42b doi: 10.1021/ol048846l – ident: ref31/cit31b doi: 10.1021/acs.orglett.0c04050 – ident: ref50/cit50b doi: 10.1002/anie.202212855 – ident: ref40/cit40a doi: 10.1002/anie.196405101 – ident: ref26/cit26b doi: 10.1021/jacs.7b10351 – ident: ref31/cit31a doi: 10.1039/D4CS00137K – ident: ref50/cit50d doi: 10.1002/ange.19610731215 – ident: ref37/cit37d doi: 10.1021/ja00756a035 – ident: ref47/cit47 doi: 10.3390/ijms241512066 – ident: ref61/cit61b doi: 10.1021/jo00193a029 – ident: ref32/cit32 doi: 10.1039/a703071a – ident: ref35/cit35 doi: 10.1002/anie.196703851 – ident: ref30/cit30a doi: 10.3390/molecules29091920 – ident: ref33/cit33a doi: 10.1039/CS9962500289 – ident: ref45/cit45h doi: 10.1021/jacs.5b09209 – ident: ref19/cit19 doi: 10.1021/jacs.8b01726 – ident: ref23/cit23 doi: 10.1038/nchem.2594 – ident: ref54/cit54d doi: 10.1039/b009712h – ident: ref39/cit39b doi: 10.1021/ja00488a037 – ident: ref6/cit6b doi: 10.1016/j.tet.2009.12.046 – ident: ref28/cit28 doi: 10.1021/acs.jmedchem.4c01347 – ident: ref58/cit58 doi: 10.1002/cber.188501802119 – start-page: 117 volume-title: Organic Reactions year: 2004 ident: ref6/cit6c doi: 10.1002/0471264180.or063.02 – ident: ref63/cit63a doi: 10.1080/01442350701611991 – ident: ref25/cit25 doi: 10.1021/jacs.9b05370 – ident: ref7/cit7d doi: 10.1039/C9CS00311H |
SSID | ssj0002467 |
Score | 2.4902577 |
Snippet | Conspectus Dearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional... ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1134 |
Title | Reimagining Dearomatization: Arenophile-Mediated Single-Atom Insertions and π‑Extensions |
URI | http://dx.doi.org/10.1021/acs.accounts.5c00035 https://www.ncbi.nlm.nih.gov/pubmed/40069000 https://www.proquest.com/docview/3176342775 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8VADB5cDnpx3xcqePHQZ2c6S583eSoqqOACgofSmaYo8lqxfSCe_Av-Mv-Dv8TM9FVREfXYIQ1tJpl8IZmEkHUqFAiIEj9tAwYoVAZ-lCrmZwxoJjWEQtuM7tGx3L_gh5fi8iNQ_JrBZ3QzMSWydpMTypYwLvc1SIaZRDu2UKhz9n7yMi7rHpkYIvOIs-aq3A9crEMy5WeH9APKdN5mb5ycNHd26iKT21av0i3z-L2F4x9_ZIKM9YGnt11ryiQZgHyKjHSaeW_T5OoUbrp2ZhE6M28HDaCwYLa-pbmF70Fe3F3jGeIfuekekHpnSInP21XR9Q5ym9a3Ouwleeq9PL0-Pe8-uPJ4XJshF3u75519vz96wU8YU5WvZCYCmrW5lgFIqpVFRlkQaBWijQutotCE0khDgQKiNiNkorkOZBtEGrEwnCVDeZHDPPGMQRKhaTvjGI1FItLUGCEgBBpJrvUC2UDJxH3TKWOXFWc0touNuOK-uBaI3-xVfFd34_iFfq3Z0BilaXMhSQ5Fr4wRNsmQM6WQZq7e6XeO3LVvDoLFf3zZEhlldjKwq-lZJkPVfQ9WEK5UetXp6BvJ0egB |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5RONBLKf2lUBqkXnrINnb8k-W22oKWluXAT4XUQxQ7ExUhEtRkJcSJV-DJeAeehLGz2QokhDjGGo-c8Yzns2Y8A_CVSY0SkyzM-0gXFKaiMMk1DwuOrFAGY2lcRHe8p0ZH4uexPJ4D2b2FoUXUxKn2Qfz_1QXYdzeWtQ0U6p60PgT2AhYIj3Cn2IPhwewA5kK1pTLppiwSwbsXc49wcX7J1vf90iNg0zud7SX4PVuuzzU57U0a07OXDyo5Pvt_XsOrKQwNBq3eLMMclm9gcdh1f3sLf_bx5Mx1MCLXFvwgc6gctG3fbG7SPCyr8790ooRj3-sD8-CAKOl70FRnwU7pgvxOo4OszIObq9ur660LnyxPY-_gaHvrcDgKp40Ywoxz3YRaFTJiRV8YFaFiRjucVESR0TFZvDQ6iW2srLIMGRKGs1JlRphI9VHmCY_j9zBfViV-hMBaIpGG9QtBd7NEJoZZKyXGyBIljFmBbySZdGpIdepj5JylbrATVzoV1wqE3Zal521tjifoN7p9TUmaLjKSlVhN6pRAlIoF15poPrQbPuMofDHnKPr0jJV9gcXR4Xg33d3Z-7UKL7nrGeyzfdZgvvk3wc8EZBqz7tX2Du1B8GI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYoSIULPy3_0KZSLxyyxI5_stxWCysoBVUFJNQeotiZCIRIViQrIU68Ak_GO_AkjJ1kVZBQ1R5jjS1nPOMZ67PnI-QrFQoERImfdgEPKFQGfpQq5mcMaCY1hEJbRPfoWO6f8W_n4vwPqi-cRIkjlQ7Et149TLOmwgDdtu1JTaJQdoRxMNg7MmWRO2vcvf7JeBNmXNblMvG0zCPO2ldzb4xiY5MpX8amNxJOF3gGc-TXeMruvslVZ1Tpjrl7Vc3xv_5pnsw26ajXq-1ngUxA_oFM91sWuI_k90-4vLZMRhjivF10i8KmuPXbzR3sB3kxvMCdxT9ynB-Qeicoid-9qrj2DnIL9lvL9pI89R7vn-4f9m7dpXlsWyRng73T_r7fEDL4CWOq8pXMRECzLtcyAEm1svlSFgRahej5QqsoNKE00lCggLmcETLRXAeyCyKNWBgukcm8yGGFeMagiNC0m3E8o0Ui0tQYISAEGkmu9SrZQs3EjUOVscPKGY1tY6uuuFHXKvHbZYuHdY2Ov8h_adc2Rm1ahCTJoRiVMSZTMuRMKZRZrhd9PCJ3RZ2DYO0fZvaZvP-xO4i_HxwfrpMZZqmD3aWfDTJZ3YxgE_OZSn9ylvsMrF3y5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reimagining+Dearomatization%3A+Arenophile-Mediated+Single-Atom+Insertions+and+%CF%80-Extensions&rft.jtitle=Accounts+of+chemical+research&rft.au=Siddiqi%2C+Zohaib&rft.au=Sarlah%2C+David&rft.date=2025-04-01&rft.eissn=1520-4898&rft.volume=58&rft.issue=7&rft.spage=1134&rft_id=info:doi/10.1021%2Facs.accounts.5c00035&rft_id=info%3Apmid%2F40069000&rft.externalDocID=40069000 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |