Reimagining Dearomatization: Arenophile-Mediated Single-Atom Insertions and π‑Extensions

Conspectus Dearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to const...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 58; no. 7; pp. 1134 - 1150
Main Authors Siddiqi, Zohaib, Sarlah, David
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.04.2025
Online AccessGet full text

Cover

Loading…
Abstract Conspectus Dearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures. A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means. Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)­arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)­arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity.
AbstractList Conspectus Dearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures. A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means. Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)­arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)­arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity.
ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures.A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means.Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity.ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures.A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means.Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity.
ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures.A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo -photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means.Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity.
Author Siddiqi, Zohaib
Sarlah, David
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Zohaib
  surname: Siddiqi
  fullname: Siddiqi, Zohaib
  organization: Department of Chemistry
– sequence: 2
  givenname: David
  orcidid: 0000-0002-8736-8953
  surname: Sarlah
  fullname: Sarlah, David
  email: sarlah@rice.edu
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40069000$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1OwzAUhC1URH_gBghlySbFdmI7ZVeVApWKkPhZsYgc56WkauxiJxKw6hU4GXfgJDhqy5KFZc_zN0-a6aOONhoQOiV4SDAlF1K5oVTKNLp2Q6YwxhE7QD3CKA7jZJR0UM_PiH_HtIv6zi29pDEXR6gbY8xHXvbQywOUlVyUutSL4AqkNZWsy09_jL4Mxha0Wb-WKwjvIC9lDXnw6Emvx7Wpgpl2YFvUBVLnwffmZ_M1fa9Bu3Z2jA4LuXJwsrsH6Pl6-jS5Def3N7PJeB5KSkUdCl4wTIpRnHEMnGSCMo4LjDMRUSZYJpJIRVxxRYAATphiXGZx5hMAyxMaRQN0vt27tuatAVenVekUrFZSg2lcGhHBo5gKwTx6tkObrII8XVuf3n6k-0I8EG8BZY1zFoo_hOC07T31vaf73tNd796Gt7b2d2kaq33g_y2_rLmKjw
Cites_doi 10.1016/S0040-4039(00)90005-4
10.1021/cr200251d
10.1002/aoc.6555
10.1038/s44160-022-00080-x
10.1002/anie.202402819
10.1351/pac196816010047
10.1002/anie.201905021
10.1002/anie.202208014
10.1351/pac198254091633
10.1021/cr100380z
10.1016/S0040-4039(00)80799-6
10.1002/tcr.201700110
10.1016/S0040-4039(00)78093-2
10.1021/acs.chemrev.7b00480
10.1021/jacs.0c05069
10.1021/acs.orglett.7b02660
10.1002/anie.202216817
10.1021/jacs.2c09616
10.1021/ol050317+
10.1039/D2NP00042C
10.1002/9780470187203.ch2
10.1021/acs.orglett.6b01564
10.1021/jacs.0c02724
10.1039/c29710000297
10.1021/np990362o
10.1021/acs.jmedchem.9b01293
10.1055/s-1997-3254
10.1002/anie.201701058
10.1021/acscatal.0c05588
10.1126/science.185.4151.573
10.1126/science.abg0720
10.1016/S0040-4039(00)88311-2
10.1038/s44160-022-00052-1
10.1021/acs.chemrev.9b00099
10.1021/jacs.3c02314
10.1021/acs.orglett.3c00801
10.1002/anie.201814471
10.1039/D2SC04638E
10.1002/anie.196704021
10.1021/ja00330a065
10.1021/jacs.3c13603
10.1021/ja00437a063
10.1039/D3SC04421A
10.1021/jacs.8b12123
10.1002/adsc.202300001
10.1038/s41570-023-00514-w
10.1016/j.chempr.2019.10.016
10.1021/jacs.3c02556
10.1002/anie.201609686
10.1002/anie.202313807
10.1002/jlac.198019800912
10.1016/0047-2670(85)87032-5
10.1021/jo9906429
10.1002/anie.201709712
10.1016/j.tim.2015.02.005
10.1021/ja201931e
10.1021/jacs.3c03048
10.1021/ja00828a073
10.1016/S0040-4039(00)85028-5
10.1021/jacs.3c02470
10.1038/s41467-022-32201-7
10.1021/jo960921l
10.1021/jacs.7b11663
10.1021/ja029962r
10.1021/acscatal.0c03958
10.1021/ja00459a024
10.1016/j.tet.2010.10.030
10.1021/cr60284a002
10.1021/jo200339w
10.1021/jacs.3c02961
10.1002/anie.201909838
10.1039/C7CC02525D
10.1007/s11426-020-9954-6
10.1038/s41467-022-28099-w
10.1002/anie.200701920
10.1007/s11224-009-9451-y
10.1038/nchem.2087
10.1021/acs.joc.7b01608
10.1021/jacs.6b01375
10.1002/anie.201502708
10.1021/jacs.2c07726
10.1021/jacs.8b02568
10.1097/00007691-197901030-00009
10.1039/C5CS00183H
10.1002/anie.202407281
10.3762/bjoc.14.98
10.1002/anie.201006017
10.1038/s41467-021-24261-y
10.1081/DMR-200033445
10.1021/jacs.3c08565
10.1002/0471264180.or018.03
10.1021/jacs.8b13030
10.1021/ar600021z
10.3987/R-1973-03-0267
10.1039/C8CS00389K
10.1021/cm102419z
10.1021/cr00018a002
10.1002/anie.201707486
10.1002/anie.201310723
10.1038/s41557-018-0178-5
10.1038/s41557-024-01680-0
10.1021/jacs.5b10440
10.1002/0471264180.or042.01
10.1021/jo01056a056
10.1021/jacs.1c06287
10.1021/ar50106a006
10.1021/acs.orglett.6b00518
10.1021/ja00500a005
10.1016/S0040-4039(01)99162-2
10.1248/cpb.38.2911
10.1021/acs.chemrev.6b00005
10.1039/D0CS00702A
10.1126/science.add1383
10.1021/acs.orglett.5b01838
10.1021/acs.orglett.9b03375
10.1002/cber.19660990238
10.1002/anie.201006180
10.1021/acscatal.4c02656
10.3762/bjoc.7.61
10.1021/ja00208a028
10.1002/anie.202305622
10.1021/acscentsci.0c01651
10.1021/jo00796a005
10.1038/s41467-020-18713-0
10.1038/ncomms7251
10.1039/cc9960000045
10.1016/j.femsle.2005.05.046
10.1021/jacs.3c14467
10.1126/science.157.3796.1524
10.1039/C4OB00371C
10.2174/138920021610151210164501
10.1039/B817222F
10.1055/s-0031-1289520
10.1248/cpb.35.3166
10.1002/hlca.202200182
10.1021/ja00213a006
10.1021/ol048846l
10.1021/acs.orglett.0c04050
10.1002/anie.202212855
10.1002/anie.196405101
10.1021/jacs.7b10351
10.1039/D4CS00137K
10.1002/ange.19610731215
10.1021/ja00756a035
10.3390/ijms241512066
10.1021/jo00193a029
10.1039/a703071a
10.1002/anie.196703851
10.3390/molecules29091920
10.1039/CS9962500289
10.1021/jacs.5b09209
10.1021/jacs.8b01726
10.1038/nchem.2594
10.1039/b009712h
10.1021/ja00488a037
10.1016/j.tet.2009.12.046
10.1021/acs.jmedchem.4c01347
10.1002/cber.188501802119
10.1002/0471264180.or063.02
10.1080/01442350701611991
10.1021/jacs.9b05370
10.1039/C9CS00311H
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.accounts.5c00035
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 1150
ExternalDocumentID 40069000
10_1021_acs_accounts_5c00035
h91764581
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM122891
GroupedDBID ---
-DZ
-~X
23M
4.4
55A
5GY
5VS
5ZA
6J9
6P2
7~N
85S
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
ZCA
~02
AAYXX
ABBLG
ABLBI
CITATION
NPM
7X8
ID FETCH-LOGICAL-a227t-76f501f94b60e61b72560f00b732575b783c36c6c1e1e085c56ab4b069e5d8233
IEDL.DBID ACS
ISSN 0001-4842
1520-4898
IngestDate Thu Jul 10 23:49:51 EDT 2025
Mon Jul 21 05:58:14 EDT 2025
Tue Jul 01 05:11:06 EDT 2025
Wed Apr 02 03:15:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a227t-76f501f94b60e61b72560f00b732575b783c36c6c1e1e085c56ab4b069e5d8233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8736-8953
PMID 40069000
PQID 3176342775
PQPubID 23479
PageCount 17
ParticipantIDs proquest_miscellaneous_3176342775
pubmed_primary_40069000
crossref_primary_10_1021_acs_accounts_5c00035
acs_journals_10_1021_acs_accounts_5c00035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Apr-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-Apr-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc. Chem. Res
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref63/cit63b
ref3/cit3
ref63/cit63a
ref37/cit37c
ref37/cit37b
ref37/cit37d
ref37/cit37a
ref23/cit23
ref2/cit2
ref57/cit57b
ref57/cit57c
ref43/cit43a
ref20/cit20
ref48/cit48
ref43/cit43c
ref43/cit43b
ref10/cit10
ref62/cit62a
ref16/cit16c
ref16/cit16b
ref35/cit35
ref36/cit36a
ref16/cit16a
ref36/cit36b
ref19/cit19
ref16/cit16e
ref7/cit7d
ref16/cit16d
ref22/cit22a
ref62/cit62b
ref22/cit22d
ref22/cit22c
ref13/cit13
ref22/cit22b
ref7/cit7c
ref7/cit7b
ref7/cit7a
ref42/cit42b
ref42/cit42c
ref42/cit42a
ref65/cit65
de Oliveira K. T. (ref57/cit57a) 2014; 42
ref11/cit11
ref29/cit29
ref61/cit61a
ref61/cit61b
ref31/cit31d
ref31/cit31e
ref32/cit32
ref59/cit59b
ref31/cit31b
ref60/cit60f
ref31/cit31c
ref39/cit39a
ref39/cit39b
ref5/cit5
ref31/cit31a
ref28/cit28
ref31/cit31h
ref41/cit41b
ref31/cit31f
ref41/cit41a
ref31/cit31g
ref18/cit18b
ref55/cit55
ref18/cit18a
ref38/cit38b
ref38/cit38c
ref60/cit60a
ref12/cit12
ref38/cit38a
ref60/cit60d
ref60/cit60e
ref60/cit60b
ref60/cit60c
ref30/cit30a
ref30/cit30c
ref40/cit40b
ref50/cit50d
ref30/cit30b
ref40/cit40c
ref50/cit50b
ref50/cit50c
ref50/cit50a
ref30/cit30e
ref30/cit30d
ref40/cit40a
ref70/cit70
ref30/cit30f
ref9/cit9
ref27/cit27
ref33/cit33a
ref56/cit56
ref8/cit8
Johnson R. A. (ref6/cit6c) 2004
ref67/cit67b
ref67/cit67a
ref33/cit33c
ref33/cit33b
ref33/cit33e
ref33/cit33d
ref17/cit17
ref26/cit26b
ref26/cit26c
ref26/cit26d
ref52/cit52a
ref52/cit52b
ref52/cit52c
ref53/cit53
ref52/cit52d
ref21/cit21
ref66/cit66b
ref46/cit46
ref26/cit26a
ref49/cit49
ref66/cit66a
ref24/cit24
ref45/cit45c
ref45/cit45b
ref45/cit45a
ref15/cit15a
ref15/cit15d
ref15/cit15e
ref15/cit15b
ref25/cit25
ref15/cit15c
ref15/cit15h
ref15/cit15i
Boyd D. R. (ref34/cit34c) 1985
ref15/cit15f
ref15/cit15g
ref14/cit14
ref51/cit51
ref45/cit45j
ref45/cit45i
ref45/cit45h
ref45/cit45g
ref68/cit68
ref45/cit45f
ref45/cit45e
ref45/cit45d
ref54/cit54c
ref44/cit44a
ref54/cit54b
Dave V. (ref59/cit59a) 2011
ref54/cit54a
ref64/cit64c
ref64/cit64b
ref6/cit6d
ref34/cit34b
ref64/cit64a
ref6/cit6e
ref34/cit34a
ref54/cit54d
ref69/cit69
ref58/cit58
ref4/cit4
ref6/cit6a
ref47/cit47
ref1/cit1
ref6/cit6b
ref44/cit44d
ref44/cit44e
ref44/cit44b
ref44/cit44c
References_xml – ident: ref40/cit40b
  doi: 10.1016/S0040-4039(00)90005-4
– ident: ref44/cit44c
  doi: 10.1021/cr200251d
– ident: ref50/cit50a
  doi: 10.1002/aoc.6555
– ident: ref26/cit26d
  doi: 10.1038/s44160-022-00080-x
– ident: ref7/cit7c
  doi: 10.1002/anie.202402819
– ident: ref9/cit9
  doi: 10.1351/pac196816010047
– ident: ref22/cit22d
  doi: 10.1002/anie.201905021
– ident: ref3/cit3
  doi: 10.1002/anie.202208014
– ident: ref14/cit14
  doi: 10.1351/pac198254091633
– ident: ref64/cit64a
  doi: 10.1021/cr100380z
– ident: ref16/cit16c
  doi: 10.1016/S0040-4039(00)80799-6
– ident: ref53/cit53
  doi: 10.1002/tcr.201700110
– ident: ref62/cit62a
  doi: 10.1016/S0040-4039(00)78093-2
– ident: ref6/cit6d
  doi: 10.1021/acs.chemrev.7b00480
– ident: ref10/cit10
  doi: 10.1021/jacs.0c05069
– ident: ref31/cit31c
  doi: 10.1021/acs.orglett.7b02660
– ident: ref15/cit15c
  doi: 10.1002/anie.202216817
– ident: ref30/cit30e
  doi: 10.1021/jacs.2c09616
– ident: ref52/cit52a
  doi: 10.1021/ol050317+
– ident: ref6/cit6e
  doi: 10.1039/D2NP00042C
– start-page: 197
  volume-title: Chem. Heterocycl. Compd.
  year: 1985
  ident: ref34/cit34c
  doi: 10.1002/9780470187203.ch2
– ident: ref45/cit45g
  doi: 10.1021/acs.orglett.6b01564
– ident: ref1/cit1
  doi: 10.1021/jacs.0c02724
– ident: ref43/cit43a
  doi: 10.1039/c29710000297
– ident: ref51/cit51
  doi: 10.1021/np990362o
– volume: 42
  start-page: 421
  volume-title: Studies in Natural Products Chemistry
  year: 2014
  ident: ref57/cit57a
– ident: ref60/cit60a
  doi: 10.1021/acs.jmedchem.9b01293
– ident: ref33/cit33b
  doi: 10.1055/s-1997-3254
– ident: ref66/cit66b
  doi: 10.1002/anie.201701058
– ident: ref33/cit33c
  doi: 10.1021/acscatal.0c05588
– ident: ref34/cit34b
  doi: 10.1126/science.185.4151.573
– ident: ref15/cit15d
  doi: 10.1126/science.abg0720
– ident: ref62/cit62b
  doi: 10.1016/S0040-4039(00)88311-2
– ident: ref27/cit27
  doi: 10.1038/s44160-022-00052-1
– ident: ref63/cit63b
  doi: 10.1021/acs.chemrev.9b00099
– ident: ref31/cit31h
  doi: 10.1021/jacs.3c02314
– ident: ref52/cit52c
  doi: 10.1021/acs.orglett.3c00801
– ident: ref44/cit44e
  doi: 10.1002/anie.201814471
– ident: ref44/cit44a
  doi: 10.1039/D2SC04638E
– ident: ref60/cit60c
  doi: 10.1002/anie.196704021
– ident: ref16/cit16d
  doi: 10.1021/ja00330a065
– ident: ref2/cit2
  doi: 10.1021/jacs.3c13603
– ident: ref39/cit39a
  doi: 10.1021/ja00437a063
– ident: ref13/cit13
  doi: 10.1039/D3SC04421A
– ident: ref26/cit26c
  doi: 10.1021/jacs.8b12123
– ident: ref52/cit52b
  doi: 10.1002/adsc.202300001
– ident: ref29/cit29
  doi: 10.1038/s41570-023-00514-w
– ident: ref15/cit15b
  doi: 10.1016/j.chempr.2019.10.016
– ident: ref15/cit15h
  doi: 10.1021/jacs.3c02556
– ident: ref24/cit24
  doi: 10.1002/anie.201609686
– ident: ref31/cit31f
  doi: 10.1002/anie.202313807
– ident: ref43/cit43b
  doi: 10.1002/jlac.198019800912
– ident: ref16/cit16a
  doi: 10.1016/0047-2670(85)87032-5
– ident: ref16/cit16e
  doi: 10.1021/jo9906429
– ident: ref26/cit26a
  doi: 10.1002/anie.201709712
– ident: ref38/cit38c
  doi: 10.1016/j.tim.2015.02.005
– ident: ref70/cit70
  doi: 10.1021/ja201931e
– ident: ref45/cit45a
  doi: 10.1021/jacs.3c03048
– ident: ref54/cit54c
  doi: 10.1021/ja00828a073
– ident: ref56/cit56
  doi: 10.1016/S0040-4039(00)85028-5
– ident: ref45/cit45b
  doi: 10.1021/jacs.3c02470
– ident: ref15/cit15g
  doi: 10.1038/s41467-022-32201-7
– ident: ref61/cit61a
  doi: 10.1021/jo960921l
– ident: ref22/cit22a
  doi: 10.1021/jacs.7b11663
– ident: ref42/cit42c
  doi: 10.1021/ja029962r
– ident: ref44/cit44d
  doi: 10.1021/acscatal.0c03958
– ident: ref54/cit54b
  doi: 10.1021/ja00459a024
– ident: ref60/cit60f
  doi: 10.1016/j.tet.2010.10.030
– ident: ref57/cit57c
  doi: 10.1021/cr60284a002
– ident: ref67/cit67a
  doi: 10.1021/jo200339w
– ident: ref15/cit15a
  doi: 10.1021/jacs.3c02961
– ident: ref22/cit22c
  doi: 10.1002/anie.201909838
– ident: ref31/cit31g
  doi: 10.1039/C7CC02525D
– ident: ref52/cit52d
  doi: 10.1007/s11426-020-9954-6
– ident: ref30/cit30f
  doi: 10.1038/s41467-022-28099-w
– ident: ref64/cit64c
  doi: 10.1002/anie.200701920
– ident: ref60/cit60b
  doi: 10.1007/s11224-009-9451-y
– ident: ref45/cit45i
  doi: 10.1038/nchem.2087
– ident: ref60/cit60e
  doi: 10.1021/acs.joc.7b01608
– ident: ref45/cit45e
  doi: 10.1021/jacs.6b01375
– ident: ref45/cit45d
  doi: 10.1002/anie.201502708
– ident: ref15/cit15e
  doi: 10.1021/jacs.2c07726
– ident: ref45/cit45j
  doi: 10.1021/jacs.8b02568
– ident: ref37/cit37a
  doi: 10.1097/00007691-197901030-00009
– ident: ref65/cit65
  doi: 10.1039/C5CS00183H
– ident: ref21/cit21
  doi: 10.1002/anie.202407281
– ident: ref57/cit57b
  doi: 10.3762/bjoc.14.98
– ident: ref7/cit7b
  doi: 10.1002/anie.201006017
– ident: ref4/cit4
  doi: 10.1038/s41467-021-24261-y
– ident: ref36/cit36a
  doi: 10.1081/DMR-200033445
– ident: ref33/cit33e
  doi: 10.1021/jacs.3c08565
– start-page: 217
  volume-title: Organic Reactions
  year: 2011
  ident: ref59/cit59a
  doi: 10.1002/0471264180.or018.03
– ident: ref22/cit22b
  doi: 10.1021/jacs.8b13030
– ident: ref18/cit18b
  doi: 10.1021/ar600021z
– ident: ref34/cit34a
  doi: 10.3987/R-1973-03-0267
– ident: ref5/cit5
  doi: 10.1039/C8CS00389K
– ident: ref64/cit64b
  doi: 10.1021/cm102419z
– ident: ref12/cit12
  doi: 10.1021/cr00018a002
– ident: ref69/cit69
  doi: 10.1002/anie.201707486
– ident: ref67/cit67b
  doi: 10.1002/anie.201310723
– ident: ref45/cit45f
  doi: 10.1038/s41557-018-0178-5
– ident: ref31/cit31d
  doi: 10.1038/s41557-024-01680-0
– ident: ref45/cit45c
  doi: 10.1021/jacs.5b10440
– ident: ref6/cit6a
  doi: 10.1002/0471264180.or042.01
– ident: ref49/cit49
  doi: 10.1021/jo01056a056
– ident: ref30/cit30d
  doi: 10.1021/jacs.1c06287
– ident: ref37/cit37c
  doi: 10.1021/ar50106a006
– ident: ref42/cit42a
  doi: 10.1021/acs.orglett.6b00518
– ident: ref54/cit54a
  doi: 10.1021/ja00500a005
– ident: ref38/cit38b
  doi: 10.1016/S0040-4039(01)99162-2
– ident: ref41/cit41a
  doi: 10.1248/cpb.38.2911
– ident: ref8/cit8
  doi: 10.1021/acs.chemrev.6b00005
– ident: ref18/cit18a
  doi: 10.1039/D0CS00702A
– ident: ref30/cit30c
  doi: 10.1126/science.add1383
– ident: ref55/cit55
  doi: 10.1021/acs.orglett.5b01838
– ident: ref60/cit60d
  doi: 10.1021/acs.orglett.9b03375
– ident: ref50/cit50c
  doi: 10.1002/cber.19660990238
– ident: ref68/cit68
  doi: 10.1002/anie.201006180
– ident: ref20/cit20
  doi: 10.1021/acscatal.4c02656
– ident: ref11/cit11
  doi: 10.3762/bjoc.7.61
– ident: ref16/cit16b
  doi: 10.1021/ja00208a028
– ident: ref15/cit15f
  doi: 10.1002/anie.202305622
– ident: ref7/cit7a
  doi: 10.1021/acscentsci.0c01651
– ident: ref46/cit46
  doi: 10.1021/jo00796a005
– ident: ref48/cit48
  doi: 10.1038/s41467-020-18713-0
– ident: ref66/cit66a
  doi: 10.1038/ncomms7251
– ident: ref40/cit40c
  doi: 10.1039/cc9960000045
– ident: ref15/cit15i
  doi: 10.1021/jacs.3c02314
– ident: ref38/cit38a
  doi: 10.1016/j.femsle.2005.05.046
– ident: ref31/cit31e
  doi: 10.1021/jacs.3c14467
– ident: ref37/cit37b
  doi: 10.1126/science.157.3796.1524
– ident: ref44/cit44b
  doi: 10.1039/C4OB00371C
– ident: ref36/cit36b
  doi: 10.2174/138920021610151210164501
– ident: ref33/cit33d
  doi: 10.1039/B817222F
– ident: ref59/cit59b
  doi: 10.1055/s-0031-1289520
– ident: ref17/cit17
  doi: 10.1002/anie.201909838
– ident: ref41/cit41b
  doi: 10.1248/cpb.35.3166
– ident: ref30/cit30b
  doi: 10.1002/hlca.202200182
– ident: ref43/cit43c
  doi: 10.1021/ja00213a006
– ident: ref42/cit42b
  doi: 10.1021/ol048846l
– ident: ref31/cit31b
  doi: 10.1021/acs.orglett.0c04050
– ident: ref50/cit50b
  doi: 10.1002/anie.202212855
– ident: ref40/cit40a
  doi: 10.1002/anie.196405101
– ident: ref26/cit26b
  doi: 10.1021/jacs.7b10351
– ident: ref31/cit31a
  doi: 10.1039/D4CS00137K
– ident: ref50/cit50d
  doi: 10.1002/ange.19610731215
– ident: ref37/cit37d
  doi: 10.1021/ja00756a035
– ident: ref47/cit47
  doi: 10.3390/ijms241512066
– ident: ref61/cit61b
  doi: 10.1021/jo00193a029
– ident: ref32/cit32
  doi: 10.1039/a703071a
– ident: ref35/cit35
  doi: 10.1002/anie.196703851
– ident: ref30/cit30a
  doi: 10.3390/molecules29091920
– ident: ref33/cit33a
  doi: 10.1039/CS9962500289
– ident: ref45/cit45h
  doi: 10.1021/jacs.5b09209
– ident: ref19/cit19
  doi: 10.1021/jacs.8b01726
– ident: ref23/cit23
  doi: 10.1038/nchem.2594
– ident: ref54/cit54d
  doi: 10.1039/b009712h
– ident: ref39/cit39b
  doi: 10.1021/ja00488a037
– ident: ref6/cit6b
  doi: 10.1016/j.tet.2009.12.046
– ident: ref28/cit28
  doi: 10.1021/acs.jmedchem.4c01347
– ident: ref58/cit58
  doi: 10.1002/cber.188501802119
– start-page: 117
  volume-title: Organic Reactions
  year: 2004
  ident: ref6/cit6c
  doi: 10.1002/0471264180.or063.02
– ident: ref63/cit63a
  doi: 10.1080/01442350701611991
– ident: ref25/cit25
  doi: 10.1021/jacs.9b05370
– ident: ref7/cit7d
  doi: 10.1039/C9CS00311H
SSID ssj0002467
Score 2.4902577
Snippet Conspectus Dearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional...
ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 1134
Title Reimagining Dearomatization: Arenophile-Mediated Single-Atom Insertions and π‑Extensions
URI http://dx.doi.org/10.1021/acs.accounts.5c00035
https://www.ncbi.nlm.nih.gov/pubmed/40069000
https://www.proquest.com/docview/3176342775
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8VADB5cDnpx3xcqePHQZ2c6S583eSoqqOACgofSmaYo8lqxfSCe_Av-Mv-Dv8TM9FVREfXYIQ1tJpl8IZmEkHUqFAiIEj9tAwYoVAZ-lCrmZwxoJjWEQtuM7tGx3L_gh5fi8iNQ_JrBZ3QzMSWydpMTypYwLvc1SIaZRDu2UKhz9n7yMi7rHpkYIvOIs-aq3A9crEMy5WeH9APKdN5mb5ycNHd26iKT21av0i3z-L2F4x9_ZIKM9YGnt11ryiQZgHyKjHSaeW_T5OoUbrp2ZhE6M28HDaCwYLa-pbmF70Fe3F3jGeIfuekekHpnSInP21XR9Q5ym9a3Ouwleeq9PL0-Pe8-uPJ4XJshF3u75519vz96wU8YU5WvZCYCmrW5lgFIqpVFRlkQaBWijQutotCE0khDgQKiNiNkorkOZBtEGrEwnCVDeZHDPPGMQRKhaTvjGI1FItLUGCEgBBpJrvUC2UDJxH3TKWOXFWc0touNuOK-uBaI3-xVfFd34_iFfq3Z0BilaXMhSQ5Fr4wRNsmQM6WQZq7e6XeO3LVvDoLFf3zZEhlldjKwq-lZJkPVfQ9WEK5UetXp6BvJ0egB
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwEB5RONBLKf2lUBqkXnrINnb8k-W22oKWluXAT4XUQxQ7ExUhEtRkJcSJV-DJeAeehLGz2QokhDjGGo-c8Yzns2Y8A_CVSY0SkyzM-0gXFKaiMMk1DwuOrFAGY2lcRHe8p0ZH4uexPJ4D2b2FoUXUxKn2Qfz_1QXYdzeWtQ0U6p60PgT2AhYIj3Cn2IPhwewA5kK1pTLppiwSwbsXc49wcX7J1vf90iNg0zud7SX4PVuuzzU57U0a07OXDyo5Pvt_XsOrKQwNBq3eLMMclm9gcdh1f3sLf_bx5Mx1MCLXFvwgc6gctG3fbG7SPCyr8790ooRj3-sD8-CAKOl70FRnwU7pgvxOo4OszIObq9ur660LnyxPY-_gaHvrcDgKp40Ywoxz3YRaFTJiRV8YFaFiRjucVESR0TFZvDQ6iW2srLIMGRKGs1JlRphI9VHmCY_j9zBfViV-hMBaIpGG9QtBd7NEJoZZKyXGyBIljFmBbySZdGpIdepj5JylbrATVzoV1wqE3Zal521tjifoN7p9TUmaLjKSlVhN6pRAlIoF15poPrQbPuMofDHnKPr0jJV9gcXR4Xg33d3Z-7UKL7nrGeyzfdZgvvk3wc8EZBqz7tX2Du1B8GI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwELYoSIULPy3_0KZSLxyyxI5_stxWCysoBVUFJNQeotiZCIRIViQrIU68Ak_GO_AkjJ1kVZBQ1R5jjS1nPOMZ67PnI-QrFQoERImfdgEPKFQGfpQq5mcMaCY1hEJbRPfoWO6f8W_n4vwPqi-cRIkjlQ7Et149TLOmwgDdtu1JTaJQdoRxMNg7MmWRO2vcvf7JeBNmXNblMvG0zCPO2ldzb4xiY5MpX8amNxJOF3gGc-TXeMruvslVZ1Tpjrl7Vc3xv_5pnsw26ajXq-1ngUxA_oFM91sWuI_k90-4vLZMRhjivF10i8KmuPXbzR3sB3kxvMCdxT9ynB-Qeicoid-9qrj2DnIL9lvL9pI89R7vn-4f9m7dpXlsWyRng73T_r7fEDL4CWOq8pXMRECzLtcyAEm1svlSFgRahej5QqsoNKE00lCggLmcETLRXAeyCyKNWBgukcm8yGGFeMagiNC0m3E8o0Ui0tQYISAEGkmu9SrZQs3EjUOVscPKGY1tY6uuuFHXKvHbZYuHdY2Ov8h_adc2Rm1ahCTJoRiVMSZTMuRMKZRZrhd9PCJ3RZ2DYO0fZvaZvP-xO4i_HxwfrpMZZqmD3aWfDTJZ3YxgE_OZSn9ylvsMrF3y5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reimagining+Dearomatization%3A+Arenophile-Mediated+Single-Atom+Insertions+and+%CF%80-Extensions&rft.jtitle=Accounts+of+chemical+research&rft.au=Siddiqi%2C+Zohaib&rft.au=Sarlah%2C+David&rft.date=2025-04-01&rft.eissn=1520-4898&rft.volume=58&rft.issue=7&rft.spage=1134&rft_id=info:doi/10.1021%2Facs.accounts.5c00035&rft_id=info%3Apmid%2F40069000&rft.externalDocID=40069000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon