Real-World Decision Support Systems Case Studies

This book presents real-world decision support systems, i.e., systems that have been running for some time and as such have been tested in real environments and complex situations;

Saved in:
Bibliographic Details
Main Authors Papathanasiou, Jason, Ploskas, Nikolaos, Linden, Isabelle
Format eBook
LanguageEnglish
Published Cham Springer Nature 2016
Springer International Publishing AG
Springer International Publishing
Springer
Edition1
SeriesIntegrated Series in Information Systems
Subjects
Online AccessGet full text
ISBN9783319439167
3319439162
9783319439150
3319439154
ISSN1571-0270
2197-7968
DOI10.1007/978-3-319-43916-7

Cover

Table of Contents:
  • 3.7.3 User Interface -- 3.7.4 Classification -- 3.8 Lessons Learned -- 3.9 Conclusions -- References -- 4 Decision Support Systems for Energy Production Optimization and Network Design in DistrictHeating Applications -- 4.1 Introduction -- 4.2 Business Issue n. 1: District Heating Network Design -- 4.2.1 Literature -- 4.2.2 System Requirements Analysis and System Design -- 4.2.3 System Development and User Interface Design -- 4.2.4 Optimization Module -- 4.2.5 System User Experience -- 4.3 Business Issue n. 2: Energy Production Management -- 4.3.1 Literature -- 4.3.2 System Requirements Analysis and System Design -- 4.3.3 System Development and User Interface Design -- 4.3.4 Optimization Module -- 4.3.5 System User Experience -- 4.4 Conclusions -- References -- 5 Birth and Evolution of a Decision Support System in the Textile Manufacturing Field -- 5.1 Introduction -- 5.1.1 The Problem -- 5.1.2 The Need for a DSS -- 5.1.3 Target Group -- 5.1.4 Existing Procedures -- 5.1.5 Classification -- 5.1.6 Underlying Technologies -- 5.2 System Requirements Analysis -- 5.2.1 Requirements Gathering -- 5.2.2 Requirement Determination and Definition -- 5.2.3 Final System Proposal -- 5.3 System Design and Development -- 5.3.1 The Problem -- Terminology -- 5.3.2 Class Diagram -- Order -- StockPiece -- Map -- FabricSheet -- UserDefinedConstraint -- 5.3.3 Activity Diagram -- 5.4 User Interface -- 5.4.1 A Typical DSS Usage -- Import from SAP -- Parameters Setting -- User-Defined Constraints -- Check and Run -- 5.4.2 Results and Graphical Maps -- Graphical Maps -- Orders vs Sheets -- KPIs -- 5.5 System Implementation -- 5.5.1 Problem Statement -- 5.5.2 Pattern Generation -- 5.5.3 ILP Model -- 5.6 System User Experience -- 5.6.1 Lessons Learnt -- 5.6.2 System Sustainability -- 5.6.3 System Upgrade and Maintenance Issues -- 5.7 Conclusions -- Appendix: Mathematical Model
  • 11 SINGRAR-A Distributed Expert System for Emergency Management: Context and Design -- 11.1 Introduction -- 11.1.1 General Considerations -- 11.1.2 Problem Characterization -- 11.1.3 SINGRAR General Characteristics -- 11.2 System Requirements Analysis -- 11.2.1 Context of Use -- 11.2.2 User and Organizational Requirements -- 11.3 System Design -- 11.3.1 Knowledge Management -- 11.3.1.1 Knowledge Acquisition -- 11.3.1.2 Knowledge Coding -- 11.3.1.3 Knowledge Inferencing -- 11.3.1.4 Knowledge Transfer -- 11.3.2 Other SINGRAR Design Features -- 11.4 System Development -- 11.4.1 System Architecture -- 11.4.2 Intelligent System's Typology -- 11.4.3 Knowledge Domains -- 11.4.4 Customization -- 11.4.5 SINGAR Project Chronology -- 11.5 Conclusion -- References -- 12 SINGRAR-A Distributed Expert System for Emergency Management: Implementation and Validation -- 12.1 Introduction -- 12.2 User Interface Design -- 12.3 System Implementation -- 12.3.1 Repair Priorities Inference Model -- 12.3.2 Resource Assignment Inference Model -- 12.3.3 Forward and Backward Chaining in the Inference Process -- 12.4 System Usability -- 12.4.1 SINGRAR Usability Analysis Using SUMI Method -- 12.4.2 Dynamic Analysis of the Application -- 12.4.3 Analysis of Interfaces and User Interaction -- 12.5 Conclusions -- References -- 13 Crop Protection Online-Weeds: A Case Study for Agricultural Decision Support Systems -- 13.1 Introduction -- 13.2 System Requirements Analysis -- 13.3 System Design and Problem Solving Technic -- 13.4 User Interface Design -- 13.5 System Implementation -- 13.6 System User Experience -- 13.7 Conclusions -- References -- Index
  • QDL -- ILP Model -- QDL Minimization Objective -- Stock Piece Maximum Length Usage -- Order Required Quantity -- Cut-Lengths -- Finish -- Secondary Objective -- References -- 6 A Decision Analytical Perspective on PublicProcurement Processes -- 6.1 Introduction -- 6.2 Decision Analysis for Procurement -- 6.2.1 Unreasonable Precision -- 6.2.2 Handling Value Scales Over Qualitative Estimates -- 6.2.3 Deficiencies in the Handling of Value Scales -- 6.3 System Requirement Analysis -- 6.4 System Design -- 6.4.1 Node Constraint Set -- 6.4.2 Comparing Alternatives -- 6.5 System Development -- 6.6 User Interface Design -- 6.7 System Implementation -- 6.8 System User Experience -- 6.9 Concluding Remarks -- References -- 7 Evaluation Support System for Open Challenges on Earth Observation Topics -- 7.1 Introduction -- 7.2 Evaluation Support System (ESS) Design -- 7.3 Evaluation Support System Requirements Analysis -- 7.3.1 Criteria Definition -- 7.3.2 Normalization -- 7.3.3 Criteria Relative Importance with Weighting Functions -- 7.4 User Interface Design -- 7.5 Evaluation Support System Process: Hierarchical Synthetizing Process for Rating -- 7.5.1 Bottom-Up Hierarchical Synthetizing Process (HSP) -- 7.5.2 Rating Process -- 7.5.2.1 Rating Layers 4 and 5 (Step 5) -- 7.5.2.2 Rating Layers 1, 2 and 3 (Step 6) -- 7.6 System User Experience (Experimental Cases) -- 7.6.1 Example for Demonstrating Step-by-Step Method -- 7.6.2 Illustrative Case for Demonstrating Peer Comparisonof Results -- 7.7 Conclusions -- References -- 8 An Optimization Based Decision Support System for Strategic Planning in Process Industries: The Case of a Pharmaceutical Company -- 8.1 Introduction -- 8.2 Literature Review and Motivation -- 8.2.1 Literature Review on Real-World Applications of a DSS -- 8.2.2 Motivation for the Development of the Proposed DSS
  • Intro -- Foreword -- Preface -- References -- Contents -- Contributors -- List of Reviewers -- About the Editors -- 1 Computerized Decision Support Case Study Research: Concepts and Suggestions -- 1.1 Introduction -- 1.2 Understanding Decision Support Systems -- 1.3 Decision Support Case Studies -- 1.4 Examples of DSS Case Studies -- 1.5 How Useful Are DSS Case Studies -- 1.6 Conclusions and Recommendations -- Note -- References -- 2 ArgMed: A Support System for Medical Decision Making Based on the Analysis of Clinical Discussions -- 2.1 Introduction -- 2.2 An Iterative Approach to System Development: From Requirements Collection to Field Testing -- 2.3 Requirements and System Architecture -- 2.3.1 ArgMed Requirements -- 2.3.2 System Architecture -- 2.4 System Design and Implementation -- 2.4.1 Discussion Documentation -- 2.4.2 Discussion Interpretation -- 2.4.3 Discussion Analysis -- 2.4.4 ArgMed Implementation -- 2.5 User Interaction -- 2.5.1 A Clinical Discussion -- 2.5.2 Discussion Documentation -- 2.5.3 Discussion Interpretation -- 2.5.4 Discussion Analysis -- 2.6 ArgMed Experimentation -- 2.7 Conclusions -- References -- 3 The Integration of Decision Analysis Techniques in High-Throughput Clinical Analyzers -- 3.1 Introduction -- 3.2 The Technological Issues of Immunoassay Analyzers -- 3.2.1 The Biochemical Point of View -- 3.2.2 The Engineering Point of View -- 3.3 The Operational Planning in High-Throughput Clinical Analyzers -- 3.4 OR-Driven Solutions to Operational Planning -- 3.4.1 The Proposed Optimization Algorithm: SPT2 -- 3.5 Computational Results -- 3.6 Quantifiable Benefits -- 3.6.1 The Clinical Utility Gain -- 3.6.2 Clinical Benefits -- 3.6.3 Monetary Benefits -- 3.7 System Design and Development -- 3.7.1 Class Diagram -- 3.7.1.1 Batch -- 3.7.1.2 Job -- 3.7.1.3 Machine -- 3.7.1.4 Scheduler -- 3.7.2 Activity Diagram
  • 8.3 Stochastic Linear Programming (SLP): An Illustrative Model -- 8.4 Decision Support System -- 8.4.1 Modeling the Pharmaceutical Industry's Production Operations -- 8.4.1.1 Fundamental Elements of Process Industry Production System -- 8.4.1.2 Model Assumptions -- 8.4.1.3 Optimization Steps -- 8.4.2 Database Structure -- 8.4.3 User Interface Development Experience -- 8.4.4 Model and DSS Validation -- 8.5 Application of the DSS to a Pharmaceutical Company -- 8.5.1 The Scale and Scope of Optimization -- 8.5.2 The Process Flow of Tablet Production -- 8.5.3 Stochastic Optimization and Scenario Experiments -- 8.5.3.1 Stochastic Optimization Model -- 8.5.3.2 Variants of the Model -- 8.5.3.3 Stochastic Experiments Design -- 8.6 Results: Analysis and Discussion -- 8.7 User Experiences -- 8.7.1 Lessons from the End User Perspective -- 8.7.2 Key Characteristics of a Good Model-Based DSS -- 8.7.3 Challenges Addressed in Model-Based DSS -- 8.8 Conclusions -- References -- 9 Decision Support in Water Resources Planning and Management: The Nile Basin Decision Support System -- 9.1 Introduction -- 9.2 Main Characteristics of the Nile Basin and the NB DSS -- 9.3 Users and System Requirements -- 9.4 System Design and Components -- 9.5 System Implementation -- 9.6 User Interface Design -- 9.7 Cases Analyzed with NB DSS -- 9.8 Experiences and Future Prospects for NB DSS -- 9.9 Conclusions -- References -- 10 The AFM-ToolBox to Support Adaptive Forest Management Under Climate Change -- 10.1 Introduction -- 10.2 System Requirements Analysis -- 10.3 System Design -- 10.3.1 ToolBox DataBase and ToolBox Client -- 10.3.2 Content Management System and Knowledge Base -- 10.3.3 Tools -- 10.4 System Development -- 10.5 User Interface Design -- 10.6 System Implementation -- 10.7 System User Experience -- 10.8 Conclusions -- References