Physical validation of simulators in computer graphics a new framework dedicated to slender elastic structures and frictional contact
We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual...
Saved in:
Published in | ACM transactions on graphics Vol. 40; no. 4; pp. 1 - 19 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY, USA
ACM
01.08.2021
Association for Computing Machinery |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual effects, they are more and more used as virtual design tools for predicting the shape and deformation of real objects; hence the need for a careful, quantitative validation. Our tests, experimentally verified, are designed to evaluate carefully the predictability of these simulators on various aspects, such as bending elasticity, bend-twist coupling, and frictional contact. We have passed a number of popular codes of Computer Graphics through our benchmarks by defining a rigorous, consistent, and as fair as possible methodology. Our results show that while some popular simulators for plates/shells and frictional contact fail even on the simplest scenarios, more recent ones, as well as well-known codes for rods, generally perform well and sometimes even better than some reference commercial tools of Mechanical Engineering. To make our validation protocols easily applicable to any simulator, we provide an extensive description of our methodology, and we shall distribute all the necessary model data to be compared against. |
---|---|
AbstractList | We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual effects, they are more and more used as virtual design tools for predicting the shape and deformation of real objects; hence the need for a careful, quantitative validation. Our tests, experimentally verified, are designed to evaluate carefully the predictability of these simulators on various aspects, such as bending elasticity, bend-twist coupling, and frictional contact. We have passed a number of popular codes of Computer Graphics through our benchmarks by defining a rigorous, consistent, and as fair as possible methodology. Our results show that while some popular simulators for plates/shells and frictional contact fail even on the simplest scenarios, more recent ones, as well as well-known codes for rods, generally perform well and sometimes even better than some reference commercial tools of Mechanical Engineering. To make our validation protocols easily applicable to any simulator, we provide an extensive description of our methodology, and we shall distribute all the necessary model data to be compared against. |
ArticleNumber | 66 |
Author | Neukirch, Sébastien Rasheed, Abdullah Haroon Romero, Victor Bertails-Descoubes, Florence Lazarus, Arnaud Ly, Mickaël Charrondière, Raphaël |
Author_xml | – sequence: 1 givenname: Victor surname: Romero fullname: Romero, Victor email: victor.romero@inria.fr organization: Univ. Grenoble Alpes, France – sequence: 2 givenname: Mickaël surname: Ly fullname: Ly, Mickaël email: mickael.ly@inria.fr organization: Univ. Grenoble Alpes, France – sequence: 3 givenname: Abdullah Haroon surname: Rasheed fullname: Rasheed, Abdullah Haroon email: haroon.rasheed@inria.fr organization: Univ. Grenoble Alpes, France – sequence: 4 givenname: Raphaël surname: Charrondière fullname: Charrondière, Raphaël email: raphael.charrondiere@inria.fr organization: Univ. Grenoble Alpes, France – sequence: 5 givenname: Arnaud surname: Lazarus fullname: Lazarus, Arnaud email: arnaud.lazarus@upmc.fr organization: Sorbonne Université, France – sequence: 6 givenname: Sébastien surname: Neukirch fullname: Neukirch, Sébastien email: sebastien.neukirch@upmc.fr organization: Sorbonne Université, France – sequence: 7 givenname: Florence surname: Bertails-Descoubes fullname: Bertails-Descoubes, Florence email: florence.descoubes@inria.fr organization: Univ. Grenoble Alpes, France |
BackLink | https://inria.hal.science/hal-03217459$$DView record in HAL |
BookMark | eNp1kM1LAzEQxYNUsK2eBU979bBtvndzLEWtUNCDnsM0m9jI7qYk20L_e7v98CB4ejDzfjO8N0KDNrQWoXuCJ4RwMWVcYEnl5KBKMXKFhkSIIi-YLAdoiAuGc8wwuUGjlL4xxpJzOUTyfb1P3kCd7aD2FXQ-tFlwWfLNtoYuxJT5NjOh2Ww7G7OvCJu1N-kWXTuok7076xh9Pj99zBf58u3ldT5b5kAp73JplS15qawqqVwxZ1cMjJDYmtKBq3hVVIqSiirpCLeSMGPAWSqcdMY5StkYPZ7urqHWm-gbiHsdwOvFbKn7GWaUFIfEu94rTl4TQ0rROm18dwzURfC1Jlj3RelzUfpc1IGb_uEuj_4nHk4EmObXfFn-AJDLc_Y |
CitedBy_id | crossref_primary_10_1016_j_cad_2024_103734 crossref_primary_10_1016_j_ijsolstr_2022_111619 crossref_primary_10_3390_electronics12020430 crossref_primary_10_1145_3550454_3555510 crossref_primary_10_1145_3550454_3555464 crossref_primary_10_1038_s43246_023_00383_2 crossref_primary_10_1016_j_eml_2022_101823 crossref_primary_10_1145_3618372 crossref_primary_10_1103_PhysRevResearch_6_013100 crossref_primary_10_1145_3687758 crossref_primary_10_1016_j_ymssp_2023_110342 crossref_primary_10_1145_3528223_3530167 crossref_primary_10_1145_3658191 |
Cites_doi | 10.1145/2508363.2508398 10.1090/S0025-5718-97-00785-0 10.1142/S0218127491000397 10.1073/pnas.1409118111 10.1111/j.1467-8659.2012.03064.x 10.1145/2185520.2185565 10.1145/1531326.1531393 10.1145/2070781.2024173 10.1093/qjmam/45.4.567 10.1016/j.finel.2003.11.001 10.1145/1360612.1360662 10.1109/TVCG.2015.2505285 10.1080/14786443409462419 10.1145/2601097.2601116 10.1145/3197517.3201278 10.2312/SCA/SCA06/091-100 10.1016/j.cma.2020.112922 10.1145/3197517.3201320 10.1145/3306346.3323040 10.1002/zamm.19950750816 10.1080/00405008908659184 10.1137/1.9781611971231 10.1007/s10659-014-9487-0 10.1038/s41467-019-14015-2 10.1016/j.compstruc.2018.08.001 10.1145/3386569.3392439 10.1115/1.4031456.111001 10.1145/882262.882357 10.1145/3099564.3099577 10.1145/1141911.1142012 10.1007/s10659-014-9490-5 10.1145/2366145.2366171 10.1111/j.1467-8659.2006.00974.x 10.1145/2601097.2601166 10.1145/3306346.3322989 10.1145/1778765.1778800 10.1145/3386569.3392396 10.1145/2897824.2925896 10.1145/3197517.3201395 10.1016/S0022-5096(02)00028-5 10.1109/TRO.2020.3036618 10.1145/3197517.3201308 10.1145/1531326.1531368 10.1007/s10659-006-9055-3 10.1145/2010324.1964966 10.1007/978-94-017-7300-3 10.1145/2185520.2185602 10.1145/1778765.1778776 10.1103/PhysRevLett.112.068103 10.1145/2461912.2461962 10.1111/j.1467-8659.2012.03031.x 10.1007/BF01299052 10.1145/2601097.2601100 10.1145/2461912.2462010 10.1080/14786449908621336 10.1038/488146a 10.1111/1467-8659.00594 10.1109/LRA.2020.2969926 10.1103/PhysRevLett.118.178001 10.1111/cgf.13126 10.1145/566654.566623 10.1145/1360612.1360622 10.1145/1531326.1531395 10.1103/PhysRev.4.345 10.1145/3414685.3417843 |
ContentType | Journal Article |
Copyright | ACM Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: ACM – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1145/3450626.3459931 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics Computer Science |
EISSN | 1557-7368 |
EndPage | 19 |
ExternalDocumentID | oai_HAL_hal_03217459v2 10_1145_3450626_3459931 3459931 |
GrantInformation_xml | – fundername: European Research Council grantid: StG-2014-639139 funderid: http://dx.doi.org/10.13039/501100000781 |
GroupedDBID | --Z -DZ -~X .DC 23M 2FS 4.4 5GY 5VS 6J9 85S 8US AAKMM AALFJ AAYFX ABPPZ ACGFO ACGOD ACM ADBCU ADL ADMLS ADPZR AEBYY AENEX AENSD AFWIH AFWXC AIKLT ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF BDXCO CCLIF CS3 F5P FEDTE GUFHI HGAVV I07 LHSKQ P1C P2P PQQKQ RNS ROL TWZ UHB UPT W7O WH7 XSW ZCA ~02 AAYXX AEFXT AEJOY AETEA AKRVB CITATION 1XC VOOES |
ID | FETCH-LOGICAL-a224t-6e9e8489e9826b3feb3ac560ec8fafd4d7d921d296f14e613ccafe25f6fcff223 |
ISSN | 0730-0301 |
IngestDate | Fri May 09 12:22:54 EDT 2025 Thu Jul 03 08:43:32 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Fri Feb 21 01:28:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | code benchmarking slender elastic structures dry frictional contact experimental validation Dry frictional contact Experimental validation Code benchmarking Slender elastic structures |
Language | English |
License | Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a224t-6e9e8489e9826b3feb3ac560ec8fafd4d7d921d296f14e613ccafe25f6fcff223 |
ORCID | 0000-0002-4985-1127 0000-0003-0665-9634 0000-0001-8930-3048 0000-0003-3300-4115 0000-0001-6697-9918 |
OpenAccessLink | https://inria.hal.science/hal-03217459 |
PageCount | 19 |
ParticipantIDs | hal_primary_oai_HAL_hal_03217459v2 crossref_citationtrail_10_1145_3450626_3459931 crossref_primary_10_1145_3450626_3459931 acm_primary_3459931 |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York, NY, USA |
PublicationPlace_xml | – name: New York, NY, USA |
PublicationTitle | ACM transactions on graphics |
PublicationTitleAbbrev | ACM TOG |
PublicationYear | 2021 |
Publisher | ACM Association for Computing Machinery |
Publisher_xml | – name: ACM – name: Association for Computing Machinery |
References | T. Sano, T. Yamaguchi, and H. Wada. 2017. Slip Morphology of Elastic Strips on Frictional Rigid Substrates. Physical Review Letters 118, 17 (2017), 178001--5. S. Hadap. 2006. Oriented Strands - Dynamics of Stiff Multi-Body System. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation. 10.2312/SCA/SCA06/091-100 J. Liang, M.C. Lin, and V. Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Conference on Neural Information Processing Systems. M. Habera, J. S. Hale, A. Logg, C. Richardson, J. Ring, M. E. Rognes, N. Sime, and G. N. Wells. 2018. The Fenics Project. https://fenicsproject.org L. D. Landau and E. M. Lifshitz. 1959. Theory of elasticity. Pergamon London. H.-Y. Chen, A. Sastry, W. van Rees, and E. Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (July 2018), 13 pages. 10.1145/3197517.3201395 S. Yang, J. Liang, and M. C. Lin. 2017. Learning-based cloth material recovery from video. In Proceedings of the IEEE International Conference on Computer Vision. 4383--4393. B. Audoly and Y. Pomeau. 2010. Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press. M. A. Crisfield and G. Jelenić. 1998. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. Royal Society of London, Series A 455, 1983 (1998), 1125--1147. L. Hu, D. Bradley, H. Li, and T. Beeler. 2017. Simulation-Ready Hair Capture. Computer Graphics Forum (2017). 10.1111/cgf.13126 W.G. Bickley. 1934. The heavy elastica. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 113 (1934), 603--622. 10.1080/14786443409462419 W. Wunderlich. 1962. Über ein abwickelbares Möbiusband. Monatshefte für Mathematik 66, 3 (June 1962), 276--289. 10.1007/BF01299052 D. K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347--352. 10.1111/1467-8659.00594 D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Computer Graphics Proceedings. 43--54. http://www.cs.cmu.edu/~baraff/papers/sig98.pdf A. G. M. Michell. 1899. Elastic stability of long beams under transverse forces. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48, 292 (1899), 298--309. Dassault-Systems. 2005. Simulia Abaqus. https://www.3ds.com/products-services/simulia/products/abaqus M. Ly, J. Jouve, L. Boissieux, and F. Bertails-Descoubes. 2020. Projective Dynamics with Dry Frictional Contact. ACM Transactions on Graphics 39, 4 (2020), 1--8. 10.1145/3386569.3392396 D. Baraff, A. Witkin, and M. Kass. 2003. Untangling Cloth. ACM Transactions on Graphics 22, 3 (2003), 862--870. B. Bickel, M. Bächer, M. Otaduy, H. Richard Lee, H. Pfister, M. Gross, and W. Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. 10.1145/1778765.1778800 M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete elastic rods. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'08) 27, 3 (2008), 1--12. 10.1145/1360612.1360662 A. Bartle, A. Sheffer, V. Kim, D. Kaufman, N. Vining, and F. Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages. R. Narain, A. Samii, and J. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages. E. Buckingham. 1914. On physically similar systems; illustrations of the use of dimensional equations. Physical Review 4, 4 (1914), 345--376. B. Smith, D. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans. Graph. 31, 4, Article 106 (July 2012), 12 pages. 10.1145/2185520.2185602 R. Fosdick and E. Fried (Eds.). 2015. The Mechanics of Ribbons and Moebius Bands. Springer. D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans. Graph. 27, 3, Article 23 (Aug. 2008), 4 pages. 10.1145/1360612.1360622 M. Li, D. Kaufman, and C. Jiang. 2020. Codimensional Incremental Potential Contact. https://arxiv.org/pdf/2012.04457.pdf D. Arnold and F. Brezzi. 1997. Locking free finite element for shells. Math. Comput. 66 (Jan. 1997), 1--14. 10.1090/S0025-5718-97-00785-0 E. Reissner. 1995. The problem of lateral buckling of cantilever plates. ZAMM - Journal of Applied Mathematics and Mechanics 8 (1995), 615--621. M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. 10.1145/2601097.2601166 H. Pham. 1999. Software reliability. Springer. D. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Trans. Graph. 33, 4, Article 123 (July 2014), 12 pages. K. Museth. 2020. Physics simulations: Is it Hollywood magic or rocket science. http://computeranimation.org/2020/program.html#keynote1 K Sze, X. Liu, and S. Lo. 2004. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design 40, 11 (2004), 1551 -- 1569. 10.1016/j.finel.2003.11.001 A. Goriely. 2006. Twisted Elastic Rings and the Rediscoveries of Michell's Instability. Journal of Elasticity 84 (September 2006), 281--299. 10.1007/s10659-006-9055-3 S. Kawabata and Masako Niwa. 1989. Fabric Performance in Clothing and Clothing Manufacture. The Journal of The Textile Institute 80, 1 (1989), 19--50. 10.1080/00405008908659184 J. Martínez, M. Skouras, C. Schumacher, S. Hornus, S. Lefebvre, and B. Thomaszewski. 2019. Star-Shaped Metrics for Mechanical Metamaterial Design. ACM Transactions on Graphics 38, 4 (July 2019), Article No. 82:1--13. 10.1145/3306346.3322989 D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. 2009. Asynchronous Contact Mechanics. ACM Trans. Graph. 28, 3, Article 87 (July 2009), 12 pages. 10.1145/1531326.1531393 S. Timoshenko. 1953. History of strength of materials. The McGraw-Hill Book Company, Inc. L. Virgin. 2007. Vibration of axially loaded structures. Cambridge University Press. J. M. Gere. 2004. Mechancis of Materials (6th ed.). Thomson-Brooks/Cole. U. Ascher, R. Mattheij, and R. Russell. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM. E. Coevoet, A. Escande, and C. Duriez. 2019. Soft robots locomotion and manipulation control using FEM simulation and quadratic programming. In RoboSoft 2019 - IEEE International Conference on Soft Robotics. Seoul, South Korea. https://hal.inria.fr/hal-02079151 J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (July 2019), 15 pages. 10.1145/3306346.3323040 F. Laccone, L. Malomo, J. Pérez, N. Pietroni, F. Ponchio, B. Bickel, and P. Cignoni. 2019. FlexMaps Pavilion: a twisted arc made of mesostructured flat flexible panels. In FORM and FORCE, IASS Symposium 2019, Structural Membranes 2019. CIMNE, 498--504. http://vcg.isti.cnr.it/Publications/2019/LMPPPBC19 J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07). ACM-EG SCA, 63--72. A.-H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer, J.-S. Franco, and A. Lazarus. 2020. Learning to Measure the Static Friction Coefficient in Cloth Contact. In CVPR 2020 - IEEE Conference on Computer Vision and Pattern Recognition. Seattle, United States, 1--10. https://hal.inria.fr/hal-02511646 H. Wang, R. Ramamoorthi, and J. O'Brien. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4, Article 71 (Aug. 2011), 12 pages. C. Schumacher, S. Marschner, M. Gross, and B. Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. 37, 4, Article 148 (July 2018), 15 pages. 10.1145/3197517.3201278 M. Dias and B. Audoly. 2015. "Wunderlich, Meet Kirchhoff": A General and Unified Description of Elastic Ribbons and Thin Rods. Journal of Elasticity 119, 1 (Apr 2015), 49--66. 10.1007/s10659-014-9487-0 M. Jawed, F. Da, J. Joo, E. Grinspun, and P. Reis. 2014. Coiling of elastic rods on rigid substrates. Proceedings of the National Academy of Sciences 111, 41 (2014), 14663--14668. http://www.cs.columbia.edu/cg/elastic_coiling. 10.1073/pnas.1409118111 E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'03). ACM-EG SCA, 62--67. http://www.multires.caltech.edu/pubs/ds.pdf E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Computer Graphics Forum 31, 2 (may 2012). 10.1111/j.1467-8659.2012.03031.x K. Gavriil, R. Guseinov, J. Pérez, D. Pellis, P. Henderson, F. Rist, H. Pottmann, and B. Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6, Article 208 (Dec 2020), 16 pages. S. Yang and M.C. Lin. 2016. MaterialCloning: Acquiring elasticity parameters from images for medical applications. IEEE Transactions on Visualization and Computer Graphics 22, 9 (2016), 2122--2135. A. Fargette. 2017. Soft Interfaces: from elastocapillary snap-through to droplet dynamics on elastomers. Ph.D. Dissertation. Université Pierre et Marie Curie - Paris VI. H. Wang. 2018. Rule-Free Sewing Pattern Adjustment with Precision and Efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages. F. Boyer, V. Lebastard, F. Candelier, and F. Renda. 2020. Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach. IEEE Transactions on Robotics (2020), 1--17. 10.1109/TRO.2020.3036618 E. Doedel, e_1_2_2_24_1 e_1_2_2_49_1 e_1_2_2_6_1 e_1_2_2_22_1 e_1_2_2_20_1 e_1_2_2_2_1 Rasheed A.-H. (e_1_2_2_71_1) e_1_2_2_41_1 e_1_2_2_62_1 e_1_2_2_87_1 e_1_2_2_43_1 e_1_2_2_64_1 e_1_2_2_85_1 e_1_2_2_8_1 e_1_2_2_28_1 e_1_2_2_45_1 Laccone F. (e_1_2_2_52_1) 2019 e_1_2_2_66_1 Sadowsky M. (e_1_2_2_75_1) 1929 e_1_2_2_26_1 e_1_2_2_47_1 e_1_2_2_68_1 e_1_2_2_89_1 Gere J. M. (e_1_2_2_36_1) Spillmann J. (e_1_2_2_82_1) e_1_2_2_83_1 e_1_2_2_60_1 e_1_2_2_81_1 e_1_2_2_13_1 e_1_2_2_38_1 e_1_2_2_59_1 e_1_2_2_11_1 Coevoet E. (e_1_2_2_23_1) 2079 e_1_2_2_30_1 e_1_2_2_51_1 e_1_2_2_76_1 e_1_2_2_19_1 e_1_2_2_53_1 e_1_2_2_74_1 e_1_2_2_17_1 e_1_2_2_34_1 e_1_2_2_55_1 Liang J. (e_1_2_2_56_1) e_1_2_2_15_1 e_1_2_2_57_1 Pham H. (e_1_2_2_70_1) e_1_2_2_78_1 Baraff D. (e_1_2_2_4_1) e_1_2_2_72_1 Yang S. (e_1_2_2_91_1) e_1_2_2_48_1 e_1_2_2_5_1 e_1_2_2_21_1 e_1_2_2_1_1 e_1_2_2_3_1 e_1_2_2_40_1 e_1_2_2_42_1 e_1_2_2_65_1 Bergou M. (e_1_2_2_7_1) 2010 e_1_2_2_9_1 e_1_2_2_29_1 e_1_2_2_44_1 e_1_2_2_67_1 Virgin L. (e_1_2_2_86_1) e_1_2_2_27_1 e_1_2_2_46_1 e_1_2_2_69_1 e_1_2_2_88_1 Mikata Y (e_1_2_2_63_1) 2006 e_1_2_2_61_1 e_1_2_2_80_1 Timoshenko S. (e_1_2_2_84_1) e_1_2_2_14_1 e_1_2_2_37_1 e_1_2_2_12_1 Grinspun E. (e_1_2_2_39_1) e_1_2_2_10_1 Bridson R. (e_1_2_2_16_1) e_1_2_2_31_1 e_1_2_2_54_1 e_1_2_2_73_1 e_1_2_2_18_1 e_1_2_2_79_1 e_1_2_2_35_1 e_1_2_2_58_1 e_1_2_2_77_1 e_1_2_2_90_1 e_1_2_2_50_1 e_1_2_2_92_1 Crisfield M. A. (e_1_2_2_25_1) 1998 |
References_xml | – reference: G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM Trans. Graph. 30, 6 (Dec. 2011), 1--12. – reference: D. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Trans. Graph. 33, 4, Article 123 (July 2014), 12 pages. – reference: E. Doedel, H. Keller, and J.-P. Kernevez. 1991. Numerical Analysis and Control of Bifurcation Problems (I) Bifurcation in Finite Dimensions. International Journal of Bifurcation and Chaos 1, 3 (1991), 493--520. – reference: E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Computer Graphics Forum 31, 2 (may 2012). 10.1111/j.1467-8659.2012.03031.x – reference: R. Fosdick and E. Fried (Eds.). 2015. The Mechanics of Ribbons and Moebius Bands. Springer. – reference: D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans. Graph. 27, 3, Article 23 (Aug. 2008), 4 pages. 10.1145/1360612.1360622 – reference: M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun. 2010. Discrete Viscous Threads. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'10) 29, 4 (2010). http://www.cs.columbia.edu/cg/threads – reference: S. Hadap. 2006. Oriented Strands - Dynamics of Stiff Multi-Body System. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation. 10.2312/SCA/SCA06/091-100 – reference: F. Boyer, V. Lebastard, F. Candelier, and F. Renda. 2020. Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach. IEEE Transactions on Robotics (2020), 1--17. 10.1109/TRO.2020.3036618 – reference: J. S. Hale, M. Brunetti, S. Bordas, and C. Maurini. 2018. Simple and extensible plate and shell finite element models through automatic code generation tools. Computers & Structures 209 (2018), 163--181. – reference: B. Bickel, M. Bächer, M. Otaduy, W. Matusik, H. Pfister, and M. Gross. 2009. Capture and Modeling of Non-Linear Heterogeneous Soft Tissue. ACM Trans. Graph. 28, 3, Article 89 (July 2009), 9 pages. 10.1145/1531326.1531395 – reference: S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. – reference: D. Clyde, J. Teran, and R. Tamstorf. 2017. Modeling and Data-Driven Parameter Estimation for Woven Fabrics. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17). Association for Computing Machinery, New York, NY, USA, Article 17, 11 pages. 10.1145/3099564.3099577 – reference: K. Museth. 2020. Physics simulations: Is it Hollywood magic or rocket science. http://computeranimation.org/2020/program.html#keynote1 – reference: C. Schumacher, S. Marschner, M. Gross, and B. Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. 37, 4, Article 148 (July 2018), 15 pages. 10.1145/3197517.3201278 – reference: A. G. M. Michell. 1899. Elastic stability of long beams under transverse forces. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48, 292 (1899), 298--309. – reference: R. Narain, A. Samii, and J. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages. – reference: J. Liang, M.C. Lin, and V. Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Conference on Neural Information Processing Systems. – reference: M. A. Crisfield and G. Jelenić. 1998. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. Royal Society of London, Series A 455, 1983 (1998), 1125--1147. – reference: E. Grinspun, Y. Gingold, J. Reisman, and D. Zorin. 2006. Computing discrete shape operators on general meshes. Computer Graphics Forum 25, 3 (2006), 547--556. 10.1111/j.1467-8659.2006.00974.x – reference: J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. Brown, and L. Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (Aug. 2018), 15 pages. – reference: S. Martin, P. Kaufmann, Mario Botsch, E. Grinspun, and M. Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4, Article 39 (July 2010), 10 pages. 10.1145/1778765.1778776 – reference: J. Martínez, M. Skouras, C. Schumacher, S. Hornus, S. Lefebvre, and B. Thomaszewski. 2019. Star-Shaped Metrics for Mechanical Metamaterial Design. ACM Transactions on Graphics 38, 4 (July 2019), Article No. 82:1--13. 10.1145/3306346.3322989 – reference: M. Sadowsky. 1929. Die Differentialgleichungen des MÖBIUSschen Bandes. Jahresbericht der Deutschen Mathematiker-Vereinigung (1929), 49--51., translated in [Hinz and Fried 2015]. – reference: E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'03). ACM-EG SCA, 62--67. http://www.multires.caltech.edu/pubs/ds.pdf – reference: A. Fargette. 2017. Soft Interfaces: from elastocapillary snap-through to droplet dynamics on elastomers. Ph.D. Dissertation. Université Pierre et Marie Curie - Paris VI. – reference: D. Hinz and E. Fried. 2015. Translation of Michael Sadowsky's Paper 'An Elementary Proof for the Existence of a Developable Möbius Band and the Attribution of the Geometric Problem to a Variational Problem'. Journal of Elasticity 119, 1 (2015), 3--6. – reference: D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. 2009. Asynchronous Contact Mechanics. ACM Trans. Graph. 28, 3, Article 87 (July 2009), 12 pages. 10.1145/1531326.1531393 – reference: A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran. 2009. Detail preserving continuum simulation of straight hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'09) 28, 3 (2009), 1--6. 10.1145/1531326.1531368 – reference: P. M. Reis. 2015. A Perspective on the Revival of Structural (In) Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia. Journal of Applied Mechanics 82, 11 (Sept. 2015). 10.1115/1.4031456.111001 – reference: S. Coros, S. Martin, B. Thomaszewski, C. Schumacher, R. Sumner, and M. Gross. 2012. Deformable Objects Alive! ACM Trans. Graph. 31, 4, Article 69 (July 2012), 9 pages. 10.1145/2185520.2185565 – reference: E. Reissner. 1995. The problem of lateral buckling of cantilever plates. ZAMM - Journal of Applied Mathematics and Mechanics 8 (1995), 615--621. – reference: K. Gavriil, R. Guseinov, J. Pérez, D. Pellis, P. Henderson, F. Rist, H. Pottmann, and B. Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6, Article 208 (Dec 2020), 16 pages. – reference: M. Jawed, F. Da, J. Joo, E. Grinspun, and P. Reis. 2014. Coiling of elastic rods on rigid substrates. Proceedings of the National Academy of Sciences 111, 41 (2014), 14663--14668. http://www.cs.columbia.edu/cg/elastic_coiling. 10.1073/pnas.1409118111 – reference: D. Arnold and F. Brezzi. 1997. Locking free finite element for shells. Math. Comput. 66 (Jan. 1997), 1--14. 10.1090/S0025-5718-97-00785-0 – reference: Y Mikata. 2006. Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta mechanica 190, 1-4 (Oct. 2006), 133--150. – reference: K. Krieger. 2012. Extreme mechanics: buckling down. Nature 488, 7410 (Aug. 2012), 146--147. – reference: F. Laccone, L. Malomo, J. Pérez, N. Pietroni, F. Ponchio, B. Bickel, and P. Cignoni. 2019. FlexMaps Pavilion: a twisted arc made of mesostructured flat flexible panels. In FORM and FORCE, IASS Symposium 2019, Structural Membranes 2019. CIMNE, 498--504. http://vcg.isti.cnr.it/Publications/2019/LMPPPBC19 – reference: L. D. Landau and E. M. Lifshitz. 1959. Theory of elasticity. Pergamon London. – reference: E. Coevoet, A. Escande, and C. Duriez. 2019. Soft robots locomotion and manipulation control using FEM simulation and quadratic programming. In RoboSoft 2019 - IEEE International Conference on Soft Robotics. Seoul, South Korea. https://hal.inria.fr/hal-02079151 – reference: T. Sano, T. Yamaguchi, and H. Wada. 2017. Slip Morphology of Elastic Strips on Frictional Rigid Substrates. Physical Review Letters 118, 17 (2017), 178001--5. – reference: M. Li, D. Kaufman, and C. Jiang. 2020. Codimensional Incremental Potential Contact. https://arxiv.org/pdf/2012.04457.pdf – reference: K Sze, X. Liu, and S. Lo. 2004. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design 40, 11 (2004), 1551 -- 1569. 10.1016/j.finel.2003.11.001 – reference: W.G. Bickley. 1934. The heavy elastica. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 113 (1934), 603--622. 10.1080/14786443409462419 – reference: R. Charrondière, F. Bertails-Descoubes, S. Neukirch, and V. Romero. 2020. Numerical modeling of inextensible elastic ribbons with curvature-based elements. Computer Methods in Applied Mechanics and Engineering 364 (2020), 112922. 10.1016/j.cma.2020.112922 – reference: H. Wang, R. Ramamoorthi, and J. O'Brien. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4, Article 71 (Aug. 2011), 12 pages. – reference: A.-H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer, J.-S. Franco, and A. Lazarus. 2020. Learning to Measure the Static Friction Coefficient in Cloth Contact. In CVPR 2020 - IEEE Conference on Computer Vision and Pattern Recognition. Seattle, United States, 1--10. https://hal.inria.fr/hal-02511646 – reference: F. Vanneste, O. Goury, J. Martinez, S. Lefebvre, H. Delingette, and C. Duriez. 2020. Anisotropic soft robots based on 3D printed meso-structured materials: design, modeling by homogenization and simulation. IEEE Robotics and Automation Letters 5, 2 (Jan. 2020), 2380--2386. 10.1109/LRA.2020.2969926 – reference: F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-L. Lévêque. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'06) 25 (2006), 1180--1187. Issue 3. 10.1145/1141911.1142012 – reference: R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '03). 28--36. http://dl.acm.org/citation.cfm?id=846276.846281 – reference: U. Ascher, R. Mattheij, and R. Russell. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM. – reference: R. Bridson, R. Fedkiw, and R. Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (2002), 594--603. http://www.cs.ubc.ca/~rbridson/docs/cloth2002.pdf – reference: R. Guseinov, C. McMahan, J. Pérez, C. Daraio, and B. Bickel. 2020. Programming temporal morphing of self-actuated shells. Nature Communications 11 (Jan. 2020). 10.1038/s41467-019-14015-2 – reference: R. T. Shield. 1992. Bending of a beam or wide strip. Quarterly Journal of Mechanics and Applied Mathematics 45, 4 (1992), 567--573. – reference: L. Hu, D. Bradley, H. Li, and T. Beeler. 2017. Simulation-Ready Hair Capture. Computer Graphics Forum (2017). 10.1111/cgf.13126 – reference: Dassault-Systems. 2005. Simulia Abaqus. https://www.3ds.com/products-services/simulia/products/abaqus – reference: S. Yang and M.C. Lin. 2016. MaterialCloning: Acquiring elasticity parameters from images for medical applications. IEEE Transactions on Visualization and Computer Graphics 22, 9 (2016), 2122--2135. – reference: V. Duclaux. 2006. Pulmonary occlusions, eyelid entropion and aneurysm : a physical insight in physiology. Ph.D. Dissertation. Université de Provence - Aix-Marseille I. https://tel.archives-ouvertes.fr/tel-00130610 – reference: D. K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347--352. 10.1111/1467-8659.00594 – reference: B. Roman and A Pocheau. 2002. Postbuckling of bilaterally constrained rectangular thin plates. Journal of the Mechanics and Physics of Solids 50, 1 (2002), 2379--2401. – reference: L. Virgin. 2007. Vibration of axially loaded structures. Cambridge University Press. – reference: A. Goriely. 2006. Twisted Elastic Rings and the Rediscoveries of Michell's Instability. Journal of Elasticity 84 (September 2006), 281--299. 10.1007/s10659-006-9055-3 – reference: J. Miller, A. Lazarus, B. Audoly, and P. Reis. 2014. Shapes of a Suspended Curly Hair. Physical Review Letters 112, 6 (2014). – reference: H. Wang. 2018. Rule-Free Sewing Pattern Adjustment with Precision and Efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages. – reference: M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete elastic rods. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'08) 27, 3 (2008), 1--12. 10.1145/1360612.1360662 – reference: J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (July 2019), 15 pages. 10.1145/3306346.3323040 – reference: W. Wunderlich. 1962. Über ein abwickelbares Möbiusband. Monatshefte für Mathematik 66, 3 (June 1962), 276--289. 10.1007/BF01299052 – reference: G. Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects. ACM Trans. Graph. 39, 4, Article 61 (July 2020), 16 pages. 10.1145/3386569.3392439 – reference: H. Pham. 1999. Software reliability. Springer. – reference: J. M. Gere. 2004. Mechancis of Materials (6th ed.). Thomson-Brooks/Cole. – reference: S. Kawabata and Masako Niwa. 1989. Fabric Performance in Clothing and Clothing Manufacture. The Journal of The Textile Institute 80, 1 (1989), 19--50. 10.1080/00405008908659184 – reference: R. Casati and F. Bertails-Descoubes. 2013. Super Space Clothoids. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'13) 32, 4, Article 48 (July 2013), 12 pages. http://www.inrialpes.fr/bipop/people/casati/research.html#ssc. 10.1145/2461912.2461962 – reference: R. Narain, T. Pfaff, and J. O'Brien. 2013. Folding and Crumpling Adaptive Sheets. ACM Trans. Graph. 32, 4 (2013), 51. – reference: M. Dias and B. Audoly. 2015. "Wunderlich, Meet Kirchhoff": A General and Unified Description of Elastic Ribbons and Thin Rods. Journal of Elasticity 119, 1 (Apr 2015), 49--66. 10.1007/s10659-014-9487-0 – reference: M. Brunetti, J. S. Hale, and C. Maurini. 2018. Fenics-Shells demos. https://fenics-shells.readthedocs.io/en/latest/demo/nonlinear-naghdi-cylindrical/demo_nonlinear-naghdi-cylindrical.py.html – reference: M. Habera, J. S. Hale, A. Logg, C. Richardson, J. Ring, M. E. Rognes, N. Sime, and G. N. Wells. 2018. The Fenics Project. https://fenicsproject.org – reference: M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. 10.1145/2601097.2601166 – reference: A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans. Graph. 32, 6, Article 159 (Nov. 2013), 10 pages. 10.1145/2508363.2508398 – reference: E. Buckingham. 1914. On physically similar systems; illustrations of the use of dimensional equations. Physical Review 4, 4 (1914), 345--376. – reference: B. Smith, D. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans. Graph. 31, 4, Article 106 (July 2012), 12 pages. 10.1145/2185520.2185602 – reference: M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross. 2012. Computational Design of Rubber Balloons. Comput. Graphics Forum (Proc. Eurographics) (2012). – reference: B. Audoly and Y. Pomeau. 2010. Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press. – reference: S. Timoshenko. 1953. History of strength of materials. The McGraw-Hill Book Company, Inc. – reference: A. Bartle, A. Sheffer, V. Kim, D. Kaufman, N. Vining, and F. Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages. – reference: D. Baraff, A. Witkin, and M. Kass. 2003. Untangling Cloth. ACM Transactions on Graphics 22, 3 (2003), 862--870. – reference: H.-Y. Chen, A. Sastry, W. van Rees, and E. Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (July 2018), 13 pages. 10.1145/3197517.3201395 – reference: C. Weischedel. 2012. A discrete geometric view on shear-deformable shell models. – reference: B. Bickel, M. Bächer, M. Otaduy, H. Richard Lee, H. Pfister, M. Gross, and W. Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. 10.1145/1778765.1778800 – reference: S. Yang, J. Liang, and M. C. Lin. 2017. Learning-based cloth material recovery from video. In Proceedings of the IEEE International Conference on Computer Vision. 4383--4393. – reference: M. Ly, J. Jouve, L. Boissieux, and F. Bertails-Descoubes. 2020. Projective Dynamics with Dry Frictional Contact. ACM Transactions on Graphics 39, 4 (2020), 1--8. 10.1145/3386569.3392396 – reference: J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07). ACM-EG SCA, 63--72. – reference: D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Computer Graphics Proceedings. 43--54. http://www.cs.cmu.edu/~baraff/papers/sig98.pdf – volume-title: Software reliability ident: e_1_2_2_70_1 – ident: e_1_2_2_29_1 doi: 10.1145/2508363.2508398 – ident: e_1_2_2_1_1 doi: 10.1090/S0025-5718-97-00785-0 – ident: e_1_2_2_31_1 doi: 10.1142/S0218127491000397 – volume-title: Proceedings of the IEEE International Conference on Computer Vision. 4383--4393 ident: e_1_2_2_91_1 – ident: e_1_2_2_48_1 doi: 10.1073/pnas.1409118111 – ident: e_1_2_2_79_1 doi: 10.1111/j.1467-8659.2012.03064.x – ident: e_1_2_2_24_1 doi: 10.1145/2185520.2185565 – ident: e_1_2_2_44_1 doi: 10.1145/1531326.1531393 – ident: e_1_2_2_28_1 doi: 10.1145/2070781.2024173 – volume-title: CVPR 2020 - IEEE Conference on Computer Vision and Pattern Recognition ident: e_1_2_2_71_1 – ident: e_1_2_2_78_1 doi: 10.1093/qjmam/45.4.567 – ident: e_1_2_2_83_1 doi: 10.1016/j.finel.2003.11.001 – ident: e_1_2_2_8_1 doi: 10.1145/1360612.1360662 – volume-title: Vibration of axially loaded structures ident: e_1_2_2_86_1 – ident: e_1_2_2_92_1 doi: 10.1109/TVCG.2015.2505285 – ident: e_1_2_2_12_1 doi: 10.1080/14786443409462419 – ident: e_1_2_2_13_1 doi: 10.1145/2601097.2601116 – ident: e_1_2_2_77_1 doi: 10.1145/3197517.3201278 – ident: e_1_2_2_42_1 doi: 10.2312/SCA/SCA06/091-100 – volume-title: Proc. Royal Society of London, Series A 455, 1983 year: 1998 ident: e_1_2_2_25_1 – ident: e_1_2_2_20_1 doi: 10.1016/j.cma.2020.112922 – ident: e_1_2_2_87_1 doi: 10.1145/3197517.3201320 – ident: e_1_2_2_69_1 doi: 10.1145/3306346.3323040 – ident: e_1_2_2_73_1 doi: 10.1002/zamm.19950750816 – ident: e_1_2_2_50_1 doi: 10.1080/00405008908659184 – ident: e_1_2_2_3_1 – ident: e_1_2_2_17_1 – volume-title: RoboSoft 2019 - IEEE International Conference on Soft Robotics year: 2079 ident: e_1_2_2_23_1 – ident: e_1_2_2_2_1 doi: 10.1137/1.9781611971231 – ident: e_1_2_2_55_1 – ident: e_1_2_2_41_1 – ident: e_1_2_2_30_1 doi: 10.1007/s10659-014-9487-0 – ident: e_1_2_2_40_1 doi: 10.1038/s41467-019-14015-2 – ident: e_1_2_2_43_1 doi: 10.1016/j.compstruc.2018.08.001 – ident: e_1_2_2_27_1 doi: 10.1145/3386569.3392439 – volume-title: Differentiable Cloth Simulation for Inverse Problems. In Conference on Neural Information Processing Systems. ident: e_1_2_2_56_1 – ident: e_1_2_2_72_1 doi: 10.1115/1.4031456.111001 – volume-title: Die Differentialgleichungen des MÖBIUSschen Bandes. Jahresbericht der Deutschen Mathematiker-Vereinigung year: 1929 ident: e_1_2_2_75_1 – volume-title: Discrete Viscous Threads. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'10) year: 2010 ident: e_1_2_2_7_1 – ident: e_1_2_2_5_1 doi: 10.1145/882262.882357 – volume-title: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '03) ident: e_1_2_2_16_1 – volume-title: Discrete Shells. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'03) ident: e_1_2_2_39_1 – ident: e_1_2_2_22_1 doi: 10.1145/3099564.3099577 – ident: e_1_2_2_9_1 doi: 10.1145/1141911.1142012 – ident: e_1_2_2_46_1 doi: 10.1007/s10659-014-9490-5 – ident: e_1_2_2_67_1 doi: 10.1145/2366145.2366171 – ident: e_1_2_2_38_1 doi: 10.1111/j.1467-8659.2006.00974.x – ident: e_1_2_2_80_1 doi: 10.1145/2601097.2601166 – ident: e_1_2_2_59_1 doi: 10.1145/3306346.3322989 – ident: e_1_2_2_10_1 doi: 10.1145/1778765.1778800 – ident: e_1_2_2_57_1 doi: 10.1145/3386569.3392396 – ident: e_1_2_2_6_1 doi: 10.1145/2897824.2925896 – ident: e_1_2_2_21_1 doi: 10.1145/3197517.3201395 – volume-title: Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta mechanica 190, 1-4 (Oct year: 2006 ident: e_1_2_2_63_1 – ident: e_1_2_2_74_1 doi: 10.1016/S0022-5096(02)00028-5 – ident: e_1_2_2_14_1 doi: 10.1109/TRO.2020.3036618 – ident: e_1_2_2_65_1 – volume-title: History of strength of materials ident: e_1_2_2_84_1 – ident: e_1_2_2_54_1 doi: 10.1145/3197517.3201308 – ident: e_1_2_2_60_1 doi: 10.1145/1531326.1531368 – ident: e_1_2_2_37_1 doi: 10.1007/s10659-006-9055-3 – ident: e_1_2_2_88_1 doi: 10.1145/2010324.1964966 – ident: e_1_2_2_34_1 doi: 10.1007/978-94-017-7300-3 – ident: e_1_2_2_81_1 doi: 10.1145/2185520.2185602 – ident: e_1_2_2_26_1 – ident: e_1_2_2_58_1 doi: 10.1145/1778765.1778776 – ident: e_1_2_2_64_1 doi: 10.1103/PhysRevLett.112.068103 – ident: e_1_2_2_19_1 doi: 10.1145/2461912.2461962 – ident: e_1_2_2_62_1 doi: 10.1111/j.1467-8659.2012.03031.x – ident: e_1_2_2_53_1 – volume-title: ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07) ident: e_1_2_2_82_1 – ident: e_1_2_2_90_1 doi: 10.1007/BF01299052 – ident: e_1_2_2_49_1 doi: 10.1145/2601097.2601100 – ident: e_1_2_2_66_1 doi: 10.1145/2461912.2462010 – ident: e_1_2_2_61_1 doi: 10.1080/14786449908621336 – ident: e_1_2_2_51_1 doi: 10.1038/488146a – volume-title: IASS Symposium 2019 year: 2019 ident: e_1_2_2_52_1 – volume-title: Large Steps in Cloth Simulation. In Computer Graphics Proceedings. 43--54 ident: e_1_2_2_4_1 – ident: e_1_2_2_68_1 doi: 10.1111/1467-8659.00594 – ident: e_1_2_2_85_1 doi: 10.1109/LRA.2020.2969926 – ident: e_1_2_2_76_1 doi: 10.1103/PhysRevLett.118.178001 – ident: e_1_2_2_47_1 doi: 10.1111/cgf.13126 – ident: e_1_2_2_15_1 doi: 10.1145/566654.566623 – ident: e_1_2_2_89_1 – ident: e_1_2_2_45_1 doi: 10.1145/1360612.1360622 – ident: e_1_2_2_11_1 doi: 10.1145/1531326.1531395 – ident: e_1_2_2_18_1 doi: 10.1103/PhysRev.4.345 – volume-title: Mechancis of Materials ident: e_1_2_2_36_1 – ident: e_1_2_2_35_1 doi: 10.1145/3414685.3417843 |
SSID | ssj0006446 |
Score | 2.4862478 |
Snippet | We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic... |
SourceID | hal crossref acm |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Animation Computer graphics Computer Science Computing methodologies Graphics Materials and structures in mechanics Mechanics Physical simulation Physics |
SubjectTermsDisplay | Computing methodologies -- Computer graphics -- Animation Computing methodologies -- Computer graphics -- Animation -- Physical simulation |
Subtitle | a new framework dedicated to slender elastic structures and frictional contact |
Title | Physical validation of simulators in computer graphics |
URI | https://dl.acm.org/doi/10.1145/3450626.3459931 https://inria.hal.science/hal-03217459 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2eYEHBBuIAUPRtIdJk0ucOKn92A1QhVaEdkF7ixxf1Gg0RVuZNH49x7ekhSHBXtLKdU4jn5Pj7_jcENo3qdBKSYJLISSmpaCY55pjIfJaAgQW1DnaJ5_L8QX9dFlc9gf6LrtkUQ_kz3vzSh7CVRgDvtos2f_gbEcUBuA78BeuwGG4_hOPv8RFBqKN6sDfTTOzTblsG50QZW77Nhy62tQxuD0Wnj2e2C4RsWW48x2szHO-mJn22TBfG-mLE_sYnrsQd38lnLv9qAvWOBU3U-1PUUe1AiNXTG220Lx3-Vsv__W8VY27k_mD8FP43xVS4TQiI10sXJSfyZICA-2Brcnl95qgYIshHua-lU7UwL5gU5A0uqROydK-7DXrnxqf2uIYOS1SMM0G8AmAi_SbWxdyGH5ZR5sZGBSgETdH7ycnZ92uDbjQ-bXjM4cyUED-3W_ELY6RsxUcsz6Nx_AOlpw_RU-CPZGMvHA8Q2u63UKPl6pMbqMyiknSi0kyN0kvJknTJlFMksj-5-ji44fz4zEO7TKwABy2wKXmmlHGNQeTsc6NrnMhAdBqyYwwiqqh4hlRGS8NoRpgHLy8RmeFKY00BmDiC7TRzlv9EiWUyFSmgvGSKiplal9bzpgmOWWGKbKDtmAJqu--IEoVFmYHDeKSVDJUmLeNTr5VPvu9qMJK9jccdDdEWn-dugdr3M2yRdHHo5PKjqW5NasLfpu9uvexXqNHvaS-QRuL6x96F5Dkon4bhOAXNGZujQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+validation+of+simulators+in+computer+graphics&rft.jtitle=ACM+transactions+on+graphics&rft.au=Romero%2C+Victor&rft.au=Ly%2C+Micka%C3%ABl&rft.au=Rasheed%2C+Abdullah+Haroon&rft.au=Charrondi%C3%A8re%2C+Rapha%C3%ABl&rft.date=2021-08-01&rft.pub=ACM&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=40&rft.issue=4&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1145%2F3450626.3459931&rft.externalDocID=3459931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon |