Physical validation of simulators in computer graphics a new framework dedicated to slender elastic structures and frictional contact

We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on graphics Vol. 40; no. 4; pp. 1 - 19
Main Authors Romero, Victor, Ly, Mickaël, Rasheed, Abdullah Haroon, Charrondière, Raphaël, Lazarus, Arnaud, Neukirch, Sébastien, Bertails-Descoubes, Florence
Format Journal Article
LanguageEnglish
Published New York, NY, USA ACM 01.08.2021
Association for Computing Machinery
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual effects, they are more and more used as virtual design tools for predicting the shape and deformation of real objects; hence the need for a careful, quantitative validation. Our tests, experimentally verified, are designed to evaluate carefully the predictability of these simulators on various aspects, such as bending elasticity, bend-twist coupling, and frictional contact. We have passed a number of popular codes of Computer Graphics through our benchmarks by defining a rigorous, consistent, and as fair as possible methodology. Our results show that while some popular simulators for plates/shells and frictional contact fail even on the simplest scenarios, more recent ones, as well as well-known codes for rods, generally perform well and sometimes even better than some reference commercial tools of Mechanical Engineering. To make our validation protocols easily applicable to any simulator, we provide an extensive description of our methodology, and we shall distribute all the necessary model data to be compared against.
AbstractList We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic structures possibly subject to dry frictional contact. Although these simulators were primarily intended for feature film animation and visual effects, they are more and more used as virtual design tools for predicting the shape and deformation of real objects; hence the need for a careful, quantitative validation. Our tests, experimentally verified, are designed to evaluate carefully the predictability of these simulators on various aspects, such as bending elasticity, bend-twist coupling, and frictional contact. We have passed a number of popular codes of Computer Graphics through our benchmarks by defining a rigorous, consistent, and as fair as possible methodology. Our results show that while some popular simulators for plates/shells and frictional contact fail even on the simplest scenarios, more recent ones, as well as well-known codes for rods, generally perform well and sometimes even better than some reference commercial tools of Mechanical Engineering. To make our validation protocols easily applicable to any simulator, we provide an extensive description of our methodology, and we shall distribute all the necessary model data to be compared against.
ArticleNumber 66
Author Neukirch, Sébastien
Rasheed, Abdullah Haroon
Romero, Victor
Bertails-Descoubes, Florence
Lazarus, Arnaud
Ly, Mickaël
Charrondière, Raphaël
Author_xml – sequence: 1
  givenname: Victor
  surname: Romero
  fullname: Romero, Victor
  email: victor.romero@inria.fr
  organization: Univ. Grenoble Alpes, France
– sequence: 2
  givenname: Mickaël
  surname: Ly
  fullname: Ly, Mickaël
  email: mickael.ly@inria.fr
  organization: Univ. Grenoble Alpes, France
– sequence: 3
  givenname: Abdullah Haroon
  surname: Rasheed
  fullname: Rasheed, Abdullah Haroon
  email: haroon.rasheed@inria.fr
  organization: Univ. Grenoble Alpes, France
– sequence: 4
  givenname: Raphaël
  surname: Charrondière
  fullname: Charrondière, Raphaël
  email: raphael.charrondiere@inria.fr
  organization: Univ. Grenoble Alpes, France
– sequence: 5
  givenname: Arnaud
  surname: Lazarus
  fullname: Lazarus, Arnaud
  email: arnaud.lazarus@upmc.fr
  organization: Sorbonne Université, France
– sequence: 6
  givenname: Sébastien
  surname: Neukirch
  fullname: Neukirch, Sébastien
  email: sebastien.neukirch@upmc.fr
  organization: Sorbonne Université, France
– sequence: 7
  givenname: Florence
  surname: Bertails-Descoubes
  fullname: Bertails-Descoubes, Florence
  email: florence.descoubes@inria.fr
  organization: Univ. Grenoble Alpes, France
BackLink https://inria.hal.science/hal-03217459$$DView record in HAL
BookMark eNp1kM1LAzEQxYNUsK2eBU979bBtvndzLEWtUNCDnsM0m9jI7qYk20L_e7v98CB4ejDzfjO8N0KDNrQWoXuCJ4RwMWVcYEnl5KBKMXKFhkSIIi-YLAdoiAuGc8wwuUGjlL4xxpJzOUTyfb1P3kCd7aD2FXQ-tFlwWfLNtoYuxJT5NjOh2Ww7G7OvCJu1N-kWXTuok7076xh9Pj99zBf58u3ldT5b5kAp73JplS15qawqqVwxZ1cMjJDYmtKBq3hVVIqSiirpCLeSMGPAWSqcdMY5StkYPZ7urqHWm-gbiHsdwOvFbKn7GWaUFIfEu94rTl4TQ0rROm18dwzURfC1Jlj3RelzUfpc1IGb_uEuj_4nHk4EmObXfFn-AJDLc_Y
CitedBy_id crossref_primary_10_1016_j_cad_2024_103734
crossref_primary_10_1016_j_ijsolstr_2022_111619
crossref_primary_10_3390_electronics12020430
crossref_primary_10_1145_3550454_3555510
crossref_primary_10_1145_3550454_3555464
crossref_primary_10_1038_s43246_023_00383_2
crossref_primary_10_1016_j_eml_2022_101823
crossref_primary_10_1145_3618372
crossref_primary_10_1103_PhysRevResearch_6_013100
crossref_primary_10_1145_3687758
crossref_primary_10_1016_j_ymssp_2023_110342
crossref_primary_10_1145_3528223_3530167
crossref_primary_10_1145_3658191
Cites_doi 10.1145/2508363.2508398
10.1090/S0025-5718-97-00785-0
10.1142/S0218127491000397
10.1073/pnas.1409118111
10.1111/j.1467-8659.2012.03064.x
10.1145/2185520.2185565
10.1145/1531326.1531393
10.1145/2070781.2024173
10.1093/qjmam/45.4.567
10.1016/j.finel.2003.11.001
10.1145/1360612.1360662
10.1109/TVCG.2015.2505285
10.1080/14786443409462419
10.1145/2601097.2601116
10.1145/3197517.3201278
10.2312/SCA/SCA06/091-100
10.1016/j.cma.2020.112922
10.1145/3197517.3201320
10.1145/3306346.3323040
10.1002/zamm.19950750816
10.1080/00405008908659184
10.1137/1.9781611971231
10.1007/s10659-014-9487-0
10.1038/s41467-019-14015-2
10.1016/j.compstruc.2018.08.001
10.1145/3386569.3392439
10.1115/1.4031456.111001
10.1145/882262.882357
10.1145/3099564.3099577
10.1145/1141911.1142012
10.1007/s10659-014-9490-5
10.1145/2366145.2366171
10.1111/j.1467-8659.2006.00974.x
10.1145/2601097.2601166
10.1145/3306346.3322989
10.1145/1778765.1778800
10.1145/3386569.3392396
10.1145/2897824.2925896
10.1145/3197517.3201395
10.1016/S0022-5096(02)00028-5
10.1109/TRO.2020.3036618
10.1145/3197517.3201308
10.1145/1531326.1531368
10.1007/s10659-006-9055-3
10.1145/2010324.1964966
10.1007/978-94-017-7300-3
10.1145/2185520.2185602
10.1145/1778765.1778776
10.1103/PhysRevLett.112.068103
10.1145/2461912.2461962
10.1111/j.1467-8659.2012.03031.x
10.1007/BF01299052
10.1145/2601097.2601100
10.1145/2461912.2462010
10.1080/14786449908621336
10.1038/488146a
10.1111/1467-8659.00594
10.1109/LRA.2020.2969926
10.1103/PhysRevLett.118.178001
10.1111/cgf.13126
10.1145/566654.566623
10.1145/1360612.1360622
10.1145/1531326.1531395
10.1103/PhysRev.4.345
10.1145/3414685.3417843
ContentType Journal Article
Copyright ACM
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: ACM
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1145/3450626.3459931
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1557-7368
EndPage 19
ExternalDocumentID oai_HAL_hal_03217459v2
10_1145_3450626_3459931
3459931
GrantInformation_xml – fundername: European Research Council
  grantid: StG-2014-639139
  funderid: http://dx.doi.org/10.13039/501100000781
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
ADPZR
AEBYY
AENEX
AENSD
AFWIH
AFWXC
AIKLT
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CS3
F5P
FEDTE
GUFHI
HGAVV
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TWZ
UHB
UPT
W7O
WH7
XSW
ZCA
~02
AAYXX
AEFXT
AEJOY
AETEA
AKRVB
CITATION
1XC
VOOES
ID FETCH-LOGICAL-a224t-6e9e8489e9826b3feb3ac560ec8fafd4d7d921d296f14e613ccafe25f6fcff223
ISSN 0730-0301
IngestDate Fri May 09 12:22:54 EDT 2025
Thu Jul 03 08:43:32 EDT 2025
Thu Apr 24 23:08:07 EDT 2025
Fri Feb 21 01:28:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords code benchmarking
slender elastic structures
dry frictional contact
experimental validation
Dry frictional contact
Experimental validation
Code benchmarking
Slender elastic structures
Language English
License Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a224t-6e9e8489e9826b3feb3ac560ec8fafd4d7d921d296f14e613ccafe25f6fcff223
ORCID 0000-0002-4985-1127
0000-0003-0665-9634
0000-0001-8930-3048
0000-0003-3300-4115
0000-0001-6697-9918
OpenAccessLink https://inria.hal.science/hal-03217459
PageCount 19
ParticipantIDs hal_primary_oai_HAL_hal_03217459v2
crossref_citationtrail_10_1145_3450626_3459931
crossref_primary_10_1145_3450626_3459931
acm_primary_3459931
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York, NY, USA
PublicationPlace_xml – name: New York, NY, USA
PublicationTitle ACM transactions on graphics
PublicationTitleAbbrev ACM TOG
PublicationYear 2021
Publisher ACM
Association for Computing Machinery
Publisher_xml – name: ACM
– name: Association for Computing Machinery
References T. Sano, T. Yamaguchi, and H. Wada. 2017. Slip Morphology of Elastic Strips on Frictional Rigid Substrates. Physical Review Letters 118, 17 (2017), 178001--5.
S. Hadap. 2006. Oriented Strands - Dynamics of Stiff Multi-Body System. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation. 10.2312/SCA/SCA06/091-100
J. Liang, M.C. Lin, and V. Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Conference on Neural Information Processing Systems.
M. Habera, J. S. Hale, A. Logg, C. Richardson, J. Ring, M. E. Rognes, N. Sime, and G. N. Wells. 2018. The Fenics Project. https://fenicsproject.org
L. D. Landau and E. M. Lifshitz. 1959. Theory of elasticity. Pergamon London.
H.-Y. Chen, A. Sastry, W. van Rees, and E. Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (July 2018), 13 pages. 10.1145/3197517.3201395
S. Yang, J. Liang, and M. C. Lin. 2017. Learning-based cloth material recovery from video. In Proceedings of the IEEE International Conference on Computer Vision. 4383--4393.
B. Audoly and Y. Pomeau. 2010. Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press.
M. A. Crisfield and G. Jelenić. 1998. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. Royal Society of London, Series A 455, 1983 (1998), 1125--1147.
L. Hu, D. Bradley, H. Li, and T. Beeler. 2017. Simulation-Ready Hair Capture. Computer Graphics Forum (2017). 10.1111/cgf.13126
W.G. Bickley. 1934. The heavy elastica. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 113 (1934), 603--622. 10.1080/14786443409462419
W. Wunderlich. 1962. Über ein abwickelbares Möbiusband. Monatshefte für Mathematik 66, 3 (June 1962), 276--289. 10.1007/BF01299052
D. K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347--352. 10.1111/1467-8659.00594
D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Computer Graphics Proceedings. 43--54. http://www.cs.cmu.edu/~baraff/papers/sig98.pdf
A. G. M. Michell. 1899. Elastic stability of long beams under transverse forces. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48, 292 (1899), 298--309.
Dassault-Systems. 2005. Simulia Abaqus. https://www.3ds.com/products-services/simulia/products/abaqus
M. Ly, J. Jouve, L. Boissieux, and F. Bertails-Descoubes. 2020. Projective Dynamics with Dry Frictional Contact. ACM Transactions on Graphics 39, 4 (2020), 1--8. 10.1145/3386569.3392396
D. Baraff, A. Witkin, and M. Kass. 2003. Untangling Cloth. ACM Transactions on Graphics 22, 3 (2003), 862--870.
B. Bickel, M. Bächer, M. Otaduy, H. Richard Lee, H. Pfister, M. Gross, and W. Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. 10.1145/1778765.1778800
M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete elastic rods. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'08) 27, 3 (2008), 1--12. 10.1145/1360612.1360662
A. Bartle, A. Sheffer, V. Kim, D. Kaufman, N. Vining, and F. Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages.
R. Narain, A. Samii, and J. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.
E. Buckingham. 1914. On physically similar systems; illustrations of the use of dimensional equations. Physical Review 4, 4 (1914), 345--376.
B. Smith, D. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans. Graph. 31, 4, Article 106 (July 2012), 12 pages. 10.1145/2185520.2185602
R. Fosdick and E. Fried (Eds.). 2015. The Mechanics of Ribbons and Moebius Bands. Springer.
D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans. Graph. 27, 3, Article 23 (Aug. 2008), 4 pages. 10.1145/1360612.1360622
M. Li, D. Kaufman, and C. Jiang. 2020. Codimensional Incremental Potential Contact. https://arxiv.org/pdf/2012.04457.pdf
D. Arnold and F. Brezzi. 1997. Locking free finite element for shells. Math. Comput. 66 (Jan. 1997), 1--14. 10.1090/S0025-5718-97-00785-0
E. Reissner. 1995. The problem of lateral buckling of cantilever plates. ZAMM - Journal of Applied Mathematics and Mechanics 8 (1995), 615--621.
M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. 10.1145/2601097.2601166
H. Pham. 1999. Software reliability. Springer.
D. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Trans. Graph. 33, 4, Article 123 (July 2014), 12 pages.
K. Museth. 2020. Physics simulations: Is it Hollywood magic or rocket science. http://computeranimation.org/2020/program.html#keynote1
K Sze, X. Liu, and S. Lo. 2004. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design 40, 11 (2004), 1551 -- 1569. 10.1016/j.finel.2003.11.001
A. Goriely. 2006. Twisted Elastic Rings and the Rediscoveries of Michell's Instability. Journal of Elasticity 84 (September 2006), 281--299. 10.1007/s10659-006-9055-3
S. Kawabata and Masako Niwa. 1989. Fabric Performance in Clothing and Clothing Manufacture. The Journal of The Textile Institute 80, 1 (1989), 19--50. 10.1080/00405008908659184
J. Martínez, M. Skouras, C. Schumacher, S. Hornus, S. Lefebvre, and B. Thomaszewski. 2019. Star-Shaped Metrics for Mechanical Metamaterial Design. ACM Transactions on Graphics 38, 4 (July 2019), Article No. 82:1--13. 10.1145/3306346.3322989
D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. 2009. Asynchronous Contact Mechanics. ACM Trans. Graph. 28, 3, Article 87 (July 2009), 12 pages. 10.1145/1531326.1531393
S. Timoshenko. 1953. History of strength of materials. The McGraw-Hill Book Company, Inc.
L. Virgin. 2007. Vibration of axially loaded structures. Cambridge University Press.
J. M. Gere. 2004. Mechancis of Materials (6th ed.). Thomson-Brooks/Cole.
U. Ascher, R. Mattheij, and R. Russell. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM.
E. Coevoet, A. Escande, and C. Duriez. 2019. Soft robots locomotion and manipulation control using FEM simulation and quadratic programming. In RoboSoft 2019 - IEEE International Conference on Soft Robotics. Seoul, South Korea. https://hal.inria.fr/hal-02079151
J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (July 2019), 15 pages. 10.1145/3306346.3323040
F. Laccone, L. Malomo, J. Pérez, N. Pietroni, F. Ponchio, B. Bickel, and P. Cignoni. 2019. FlexMaps Pavilion: a twisted arc made of mesostructured flat flexible panels. In FORM and FORCE, IASS Symposium 2019, Structural Membranes 2019. CIMNE, 498--504. http://vcg.isti.cnr.it/Publications/2019/LMPPPBC19
J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07). ACM-EG SCA, 63--72.
A.-H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer, J.-S. Franco, and A. Lazarus. 2020. Learning to Measure the Static Friction Coefficient in Cloth Contact. In CVPR 2020 - IEEE Conference on Computer Vision and Pattern Recognition. Seattle, United States, 1--10. https://hal.inria.fr/hal-02511646
H. Wang, R. Ramamoorthi, and J. O'Brien. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4, Article 71 (Aug. 2011), 12 pages.
C. Schumacher, S. Marschner, M. Gross, and B. Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. 37, 4, Article 148 (July 2018), 15 pages. 10.1145/3197517.3201278
M. Dias and B. Audoly. 2015. "Wunderlich, Meet Kirchhoff": A General and Unified Description of Elastic Ribbons and Thin Rods. Journal of Elasticity 119, 1 (Apr 2015), 49--66. 10.1007/s10659-014-9487-0
M. Jawed, F. Da, J. Joo, E. Grinspun, and P. Reis. 2014. Coiling of elastic rods on rigid substrates. Proceedings of the National Academy of Sciences 111, 41 (2014), 14663--14668. http://www.cs.columbia.edu/cg/elastic_coiling. 10.1073/pnas.1409118111
E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'03). ACM-EG SCA, 62--67. http://www.multires.caltech.edu/pubs/ds.pdf
E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Computer Graphics Forum 31, 2 (may 2012). 10.1111/j.1467-8659.2012.03031.x
K. Gavriil, R. Guseinov, J. Pérez, D. Pellis, P. Henderson, F. Rist, H. Pottmann, and B. Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6, Article 208 (Dec 2020), 16 pages.
S. Yang and M.C. Lin. 2016. MaterialCloning: Acquiring elasticity parameters from images for medical applications. IEEE Transactions on Visualization and Computer Graphics 22, 9 (2016), 2122--2135.
A. Fargette. 2017. Soft Interfaces: from elastocapillary snap-through to droplet dynamics on elastomers. Ph.D. Dissertation. Université Pierre et Marie Curie - Paris VI.
H. Wang. 2018. Rule-Free Sewing Pattern Adjustment with Precision and Efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages.
F. Boyer, V. Lebastard, F. Candelier, and F. Renda. 2020. Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach. IEEE Transactions on Robotics (2020), 1--17. 10.1109/TRO.2020.3036618
E. Doedel,
e_1_2_2_24_1
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_1
e_1_2_2_20_1
e_1_2_2_2_1
Rasheed A.-H. (e_1_2_2_71_1)
e_1_2_2_41_1
e_1_2_2_62_1
e_1_2_2_87_1
e_1_2_2_43_1
e_1_2_2_64_1
e_1_2_2_85_1
e_1_2_2_8_1
e_1_2_2_28_1
e_1_2_2_45_1
Laccone F. (e_1_2_2_52_1) 2019
e_1_2_2_66_1
Sadowsky M. (e_1_2_2_75_1) 1929
e_1_2_2_26_1
e_1_2_2_47_1
e_1_2_2_68_1
e_1_2_2_89_1
Gere J. M. (e_1_2_2_36_1)
Spillmann J. (e_1_2_2_82_1)
e_1_2_2_83_1
e_1_2_2_60_1
e_1_2_2_81_1
e_1_2_2_13_1
e_1_2_2_38_1
e_1_2_2_59_1
e_1_2_2_11_1
Coevoet E. (e_1_2_2_23_1) 2079
e_1_2_2_30_1
e_1_2_2_51_1
e_1_2_2_76_1
e_1_2_2_19_1
e_1_2_2_53_1
e_1_2_2_74_1
e_1_2_2_17_1
e_1_2_2_34_1
e_1_2_2_55_1
Liang J. (e_1_2_2_56_1)
e_1_2_2_15_1
e_1_2_2_57_1
Pham H. (e_1_2_2_70_1)
e_1_2_2_78_1
Baraff D. (e_1_2_2_4_1)
e_1_2_2_72_1
Yang S. (e_1_2_2_91_1)
e_1_2_2_48_1
e_1_2_2_5_1
e_1_2_2_21_1
e_1_2_2_1_1
e_1_2_2_3_1
e_1_2_2_40_1
e_1_2_2_42_1
e_1_2_2_65_1
Bergou M. (e_1_2_2_7_1) 2010
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_44_1
e_1_2_2_67_1
Virgin L. (e_1_2_2_86_1)
e_1_2_2_27_1
e_1_2_2_46_1
e_1_2_2_69_1
e_1_2_2_88_1
Mikata Y (e_1_2_2_63_1) 2006
e_1_2_2_61_1
e_1_2_2_80_1
Timoshenko S. (e_1_2_2_84_1)
e_1_2_2_14_1
e_1_2_2_37_1
e_1_2_2_12_1
Grinspun E. (e_1_2_2_39_1)
e_1_2_2_10_1
Bridson R. (e_1_2_2_16_1)
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_73_1
e_1_2_2_18_1
e_1_2_2_79_1
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_77_1
e_1_2_2_90_1
e_1_2_2_50_1
e_1_2_2_92_1
Crisfield M. A. (e_1_2_2_25_1) 1998
References_xml – reference: G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM Trans. Graph. 30, 6 (Dec. 2011), 1--12.
– reference: D. Kaufman, R. Tamstorf, B. Smith, J.-M. Aubry, and E. Grinspun. 2014. Adaptive Nonlinearity for Collisions in Complex Rod Assemblies. ACM Trans. Graph. 33, 4, Article 123 (July 2014), 12 pages.
– reference: E. Doedel, H. Keller, and J.-P. Kernevez. 1991. Numerical Analysis and Control of Bifurcation Problems (I) Bifurcation in Finite Dimensions. International Journal of Bifurcation and Chaos 1, 3 (1991), 493--520.
– reference: E. Miguel, D. Bradley, B. Thomaszewski, B. Bickel, W. Matusik, M. Otaduy, and S. Marschner. 2012. Data-Driven Estimation of Cloth Simulation Models. Computer Graphics Forum 31, 2 (may 2012). 10.1111/j.1467-8659.2012.03031.x
– reference: R. Fosdick and E. Fried (Eds.). 2015. The Mechanics of Ribbons and Moebius Bands. Springer.
– reference: D. Harmon, E. Vouga, R. Tamstorf, and E. Grinspun. 2008. Robust Treatment of Simultaneous Collisions. ACM Trans. Graph. 27, 3, Article 23 (Aug. 2008), 4 pages. 10.1145/1360612.1360622
– reference: M. Bergou, B. Audoly, E. Vouga, M. Wardetzky, and E. Grinspun. 2010. Discrete Viscous Threads. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'10) 29, 4 (2010). http://www.cs.columbia.edu/cg/threads
– reference: S. Hadap. 2006. Oriented Strands - Dynamics of Stiff Multi-Body System. In ACM SIGGRAPH / Eurographics Symposium on Computer Animation. 10.2312/SCA/SCA06/091-100
– reference: F. Boyer, V. Lebastard, F. Candelier, and F. Renda. 2020. Dynamics of Continuum and Soft Robots: A Strain Parameterization Based Approach. IEEE Transactions on Robotics (2020), 1--17. 10.1109/TRO.2020.3036618
– reference: J. S. Hale, M. Brunetti, S. Bordas, and C. Maurini. 2018. Simple and extensible plate and shell finite element models through automatic code generation tools. Computers & Structures 209 (2018), 163--181.
– reference: B. Bickel, M. Bächer, M. Otaduy, W. Matusik, H. Pfister, and M. Gross. 2009. Capture and Modeling of Non-Linear Heterogeneous Soft Tissue. ACM Trans. Graph. 28, 3, Article 89 (July 2009), 9 pages. 10.1145/1531326.1531395
– reference: S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages.
– reference: D. Clyde, J. Teran, and R. Tamstorf. 2017. Modeling and Data-Driven Parameter Estimation for Woven Fabrics. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA '17). Association for Computing Machinery, New York, NY, USA, Article 17, 11 pages. 10.1145/3099564.3099577
– reference: K. Museth. 2020. Physics simulations: Is it Hollywood magic or rocket science. http://computeranimation.org/2020/program.html#keynote1
– reference: C. Schumacher, S. Marschner, M. Gross, and B. Thomaszewski. 2018. Mechanical Characterization of Structured Sheet Materials. ACM Trans. Graph. 37, 4, Article 148 (July 2018), 15 pages. 10.1145/3197517.3201278
– reference: A. G. M. Michell. 1899. Elastic stability of long beams under transverse forces. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 48, 292 (1899), 298--309.
– reference: R. Narain, A. Samii, and J. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6, Article 152 (Nov. 2012), 10 pages.
– reference: J. Liang, M.C. Lin, and V. Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Conference on Neural Information Processing Systems.
– reference: M. A. Crisfield and G. Jelenić. 1998. Objectivity of strain measures in the geometrically exact three-dimensional beam theory and its finite-element implementation. Proc. Royal Society of London, Series A 455, 1983 (1998), 1125--1147.
– reference: E. Grinspun, Y. Gingold, J. Reisman, and D. Zorin. 2006. Computing discrete shape operators on general meshes. Computer Graphics Forum 25, 3 (2006), 547--556. 10.1111/j.1467-8659.2006.00974.x
– reference: J. Li, G. Daviet, R. Narain, F. Bertails-Descoubes, M. Overby, G. Brown, and L. Boissieux. 2018. An Implicit Frictional Contact Solver for Adaptive Cloth Simulation. ACM Trans. Graph. 37, 4, Article 52 (Aug. 2018), 15 pages.
– reference: S. Martin, P. Kaufmann, Mario Botsch, E. Grinspun, and M. Gross. 2010. Unified Simulation of Elastic Rods, Shells, and Solids. ACM Trans. Graph. 29, 4, Article 39 (July 2010), 10 pages. 10.1145/1778765.1778776
– reference: J. Martínez, M. Skouras, C. Schumacher, S. Hornus, S. Lefebvre, and B. Thomaszewski. 2019. Star-Shaped Metrics for Mechanical Metamaterial Design. ACM Transactions on Graphics 38, 4 (July 2019), Article No. 82:1--13. 10.1145/3306346.3322989
– reference: M. Sadowsky. 1929. Die Differentialgleichungen des MÖBIUSschen Bandes. Jahresbericht der Deutschen Mathematiker-Vereinigung (1929), 49--51., translated in [Hinz and Fried 2015].
– reference: E. Grinspun, A. Hirani, M. Desbrun, and P. Schröder. 2003. Discrete Shells. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'03). ACM-EG SCA, 62--67. http://www.multires.caltech.edu/pubs/ds.pdf
– reference: A. Fargette. 2017. Soft Interfaces: from elastocapillary snap-through to droplet dynamics on elastomers. Ph.D. Dissertation. Université Pierre et Marie Curie - Paris VI.
– reference: D. Hinz and E. Fried. 2015. Translation of Michael Sadowsky's Paper 'An Elementary Proof for the Existence of a Developable Möbius Band and the Attribution of the Geometric Problem to a Variational Problem'. Journal of Elasticity 119, 1 (2015), 3--6.
– reference: D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. 2009. Asynchronous Contact Mechanics. ACM Trans. Graph. 28, 3, Article 87 (July 2009), 12 pages. 10.1145/1531326.1531393
– reference: A. McAdams, A. Selle, K. Ward, E. Sifakis, and J. Teran. 2009. Detail preserving continuum simulation of straight hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'09) 28, 3 (2009), 1--6. 10.1145/1531326.1531368
– reference: P. M. Reis. 2015. A Perspective on the Revival of Structural (In) Stability With Novel Opportunities for Function: From Buckliphobia to Buckliphilia. Journal of Applied Mechanics 82, 11 (Sept. 2015). 10.1115/1.4031456.111001
– reference: S. Coros, S. Martin, B. Thomaszewski, C. Schumacher, R. Sumner, and M. Gross. 2012. Deformable Objects Alive! ACM Trans. Graph. 31, 4, Article 69 (July 2012), 9 pages. 10.1145/2185520.2185565
– reference: E. Reissner. 1995. The problem of lateral buckling of cantilever plates. ZAMM - Journal of Applied Mathematics and Mechanics 8 (1995), 615--621.
– reference: K. Gavriil, R. Guseinov, J. Pérez, D. Pellis, P. Henderson, F. Rist, H. Pottmann, and B. Bickel. 2020. Computational Design of Cold Bent Glass Façades. ACM Transactions on Graphics (SIGGRAPH Asia 2020) 39, 6, Article 208 (Dec 2020), 16 pages.
– reference: M. Jawed, F. Da, J. Joo, E. Grinspun, and P. Reis. 2014. Coiling of elastic rods on rigid substrates. Proceedings of the National Academy of Sciences 111, 41 (2014), 14663--14668. http://www.cs.columbia.edu/cg/elastic_coiling. 10.1073/pnas.1409118111
– reference: D. Arnold and F. Brezzi. 1997. Locking free finite element for shells. Math. Comput. 66 (Jan. 1997), 1--14. 10.1090/S0025-5718-97-00785-0
– reference: Y Mikata. 2006. Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta mechanica 190, 1-4 (Oct. 2006), 133--150.
– reference: K. Krieger. 2012. Extreme mechanics: buckling down. Nature 488, 7410 (Aug. 2012), 146--147.
– reference: F. Laccone, L. Malomo, J. Pérez, N. Pietroni, F. Ponchio, B. Bickel, and P. Cignoni. 2019. FlexMaps Pavilion: a twisted arc made of mesostructured flat flexible panels. In FORM and FORCE, IASS Symposium 2019, Structural Membranes 2019. CIMNE, 498--504. http://vcg.isti.cnr.it/Publications/2019/LMPPPBC19
– reference: L. D. Landau and E. M. Lifshitz. 1959. Theory of elasticity. Pergamon London.
– reference: E. Coevoet, A. Escande, and C. Duriez. 2019. Soft robots locomotion and manipulation control using FEM simulation and quadratic programming. In RoboSoft 2019 - IEEE International Conference on Soft Robotics. Seoul, South Korea. https://hal.inria.fr/hal-02079151
– reference: T. Sano, T. Yamaguchi, and H. Wada. 2017. Slip Morphology of Elastic Strips on Frictional Rigid Substrates. Physical Review Letters 118, 17 (2017), 178001--5.
– reference: M. Li, D. Kaufman, and C. Jiang. 2020. Codimensional Incremental Potential Contact. https://arxiv.org/pdf/2012.04457.pdf
– reference: K Sze, X. Liu, and S. Lo. 2004. Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elements in Analysis and Design 40, 11 (2004), 1551 -- 1569. 10.1016/j.finel.2003.11.001
– reference: W.G. Bickley. 1934. The heavy elastica. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 17, 113 (1934), 603--622. 10.1080/14786443409462419
– reference: R. Charrondière, F. Bertails-Descoubes, S. Neukirch, and V. Romero. 2020. Numerical modeling of inextensible elastic ribbons with curvature-based elements. Computer Methods in Applied Mechanics and Engineering 364 (2020), 112922. 10.1016/j.cma.2020.112922
– reference: H. Wang, R. Ramamoorthi, and J. O'Brien. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Trans. Graph. 30, 4, Article 71 (Aug. 2011), 12 pages.
– reference: A.-H. Rasheed, V. Romero, F. Bertails-Descoubes, S. Wuhrer, J.-S. Franco, and A. Lazarus. 2020. Learning to Measure the Static Friction Coefficient in Cloth Contact. In CVPR 2020 - IEEE Conference on Computer Vision and Pattern Recognition. Seattle, United States, 1--10. https://hal.inria.fr/hal-02511646
– reference: F. Vanneste, O. Goury, J. Martinez, S. Lefebvre, H. Delingette, and C. Duriez. 2020. Anisotropic soft robots based on 3D printed meso-structured materials: design, modeling by homogenization and simulation. IEEE Robotics and Automation Letters 5, 2 (Jan. 2020), 2380--2386. 10.1109/LRA.2020.2969926
– reference: F. Bertails, B. Audoly, M.-P. Cani, B. Querleux, F. Leroy, and J.-L. Lévêque. 2006. Super-Helices for Predicting the Dynamics of Natural Hair. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'06) 25 (2006), 1180--1187. Issue 3. 10.1145/1141911.1142012
– reference: R. Bridson, S. Marino, and R. Fedkiw. 2003. Simulation of Clothing with Folds and Wrinkles. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '03). 28--36. http://dl.acm.org/citation.cfm?id=846276.846281
– reference: U. Ascher, R. Mattheij, and R. Russell. 1995. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM.
– reference: R. Bridson, R. Fedkiw, and R. Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3 (2002), 594--603. http://www.cs.ubc.ca/~rbridson/docs/cloth2002.pdf
– reference: R. Guseinov, C. McMahan, J. Pérez, C. Daraio, and B. Bickel. 2020. Programming temporal morphing of self-actuated shells. Nature Communications 11 (Jan. 2020). 10.1038/s41467-019-14015-2
– reference: R. T. Shield. 1992. Bending of a beam or wide strip. Quarterly Journal of Mechanics and Applied Mathematics 45, 4 (1992), 567--573.
– reference: L. Hu, D. Bradley, H. Li, and T. Beeler. 2017. Simulation-Ready Hair Capture. Computer Graphics Forum (2017). 10.1111/cgf.13126
– reference: Dassault-Systems. 2005. Simulia Abaqus. https://www.3ds.com/products-services/simulia/products/abaqus
– reference: S. Yang and M.C. Lin. 2016. MaterialCloning: Acquiring elasticity parameters from images for medical applications. IEEE Transactions on Visualization and Computer Graphics 22, 9 (2016), 2122--2135.
– reference: V. Duclaux. 2006. Pulmonary occlusions, eyelid entropion and aneurysm : a physical insight in physiology. Ph.D. Dissertation. Université de Provence - Aix-Marseille I. https://tel.archives-ouvertes.fr/tel-00130610
– reference: D. K. Pai. 2002. STRANDS: Interactive Simulation of Thin Solids using Cosserat Models. Computer Graphics Forum 21, 3 (2002), 347--352. 10.1111/1467-8659.00594
– reference: B. Roman and A Pocheau. 2002. Postbuckling of bilaterally constrained rectangular thin plates. Journal of the Mechanics and Physics of Solids 50, 1 (2002), 2379--2401.
– reference: L. Virgin. 2007. Vibration of axially loaded structures. Cambridge University Press.
– reference: A. Goriely. 2006. Twisted Elastic Rings and the Rediscoveries of Michell's Instability. Journal of Elasticity 84 (September 2006), 281--299. 10.1007/s10659-006-9055-3
– reference: J. Miller, A. Lazarus, B. Audoly, and P. Reis. 2014. Shapes of a Suspended Curly Hair. Physical Review Letters 112, 6 (2014).
– reference: H. Wang. 2018. Rule-Free Sewing Pattern Adjustment with Precision and Efficiency. ACM Trans. Graph. 37, 4, Article 53 (July 2018), 13 pages.
– reference: M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. 2008. Discrete elastic rods. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'08) 27, 3 (2008), 1--12. 10.1145/1360612.1360662
– reference: J. Panetta, M. Konaković-Luković, F. Isvoranu, E. Bouleau, and M. Pauly. 2019. X-Shells: A New Class of Deployable Beam Structures. ACM Trans. Graph. 38, 4, Article 83 (July 2019), 15 pages. 10.1145/3306346.3323040
– reference: W. Wunderlich. 1962. Über ein abwickelbares Möbiusband. Monatshefte für Mathematik 66, 3 (June 1962), 276--289. 10.1007/BF01299052
– reference: G. Daviet. 2020. Simple and Scalable Frictional Contacts for Thin Nodal Objects. ACM Trans. Graph. 39, 4, Article 61 (July 2020), 16 pages. 10.1145/3386569.3392439
– reference: H. Pham. 1999. Software reliability. Springer.
– reference: J. M. Gere. 2004. Mechancis of Materials (6th ed.). Thomson-Brooks/Cole.
– reference: S. Kawabata and Masako Niwa. 1989. Fabric Performance in Clothing and Clothing Manufacture. The Journal of The Textile Institute 80, 1 (1989), 19--50. 10.1080/00405008908659184
– reference: R. Casati and F. Bertails-Descoubes. 2013. Super Space Clothoids. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'13) 32, 4, Article 48 (July 2013), 12 pages. http://www.inrialpes.fr/bipop/people/casati/research.html#ssc. 10.1145/2461912.2461962
– reference: R. Narain, T. Pfaff, and J. O'Brien. 2013. Folding and Crumpling Adaptive Sheets. ACM Trans. Graph. 32, 4 (2013), 51.
– reference: M. Dias and B. Audoly. 2015. "Wunderlich, Meet Kirchhoff": A General and Unified Description of Elastic Ribbons and Thin Rods. Journal of Elasticity 119, 1 (Apr 2015), 49--66. 10.1007/s10659-014-9487-0
– reference: M. Brunetti, J. S. Hale, and C. Maurini. 2018. Fenics-Shells demos. https://fenics-shells.readthedocs.io/en/latest/demo/nonlinear-naghdi-cylindrical/demo_nonlinear-naghdi-cylindrical.py.html
– reference: M. Habera, J. S. Hale, A. Logg, C. Richardson, J. Ring, M. E. Rognes, N. Sime, and G. N. Wells. 2018. The Fenics Project. https://fenicsproject.org
– reference: M. Skouras, B. Thomaszewski, P. Kaufmann, A. Garg, B. Bickel, E. Grinspun, and M. Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. 10.1145/2601097.2601166
– reference: A. Derouet-Jourdan, F. Bertails-Descoubes, G. Daviet, and J. Thollot. 2013. Inverse Dynamic Hair Modeling with Frictional Contact. ACM Trans. Graph. 32, 6, Article 159 (Nov. 2013), 10 pages. 10.1145/2508363.2508398
– reference: E. Buckingham. 1914. On physically similar systems; illustrations of the use of dimensional equations. Physical Review 4, 4 (1914), 345--376.
– reference: B. Smith, D. Kaufman, E. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans. Graph. 31, 4, Article 106 (July 2012), 12 pages. 10.1145/2185520.2185602
– reference: M. Skouras, B. Thomaszewski, B. Bickel, and M. Gross. 2012. Computational Design of Rubber Balloons. Comput. Graphics Forum (Proc. Eurographics) (2012).
– reference: B. Audoly and Y. Pomeau. 2010. Elasticity and Geometry: From Hair Curls to the Nonlinear Response of Shells. Oxford University Press.
– reference: S. Timoshenko. 1953. History of strength of materials. The McGraw-Hill Book Company, Inc.
– reference: A. Bartle, A. Sheffer, V. Kim, D. Kaufman, N. Vining, and F. Berthouzoz. 2016. Physics-driven Pattern Adjustment for Direct 3D Garment Editing. ACM Trans. Graph. 35, 4, Article 50 (July 2016), 11 pages.
– reference: D. Baraff, A. Witkin, and M. Kass. 2003. Untangling Cloth. ACM Transactions on Graphics 22, 3 (2003), 862--870.
– reference: H.-Y. Chen, A. Sastry, W. van Rees, and E. Vouga. 2018. Physical Simulation of Environmentally Induced Thin Shell Deformation. ACM Trans. Graph. 37, 4, Article 146 (July 2018), 13 pages. 10.1145/3197517.3201395
– reference: C. Weischedel. 2012. A discrete geometric view on shear-deformable shell models.
– reference: B. Bickel, M. Bächer, M. Otaduy, H. Richard Lee, H. Pfister, M. Gross, and W. Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. 10.1145/1778765.1778800
– reference: S. Yang, J. Liang, and M. C. Lin. 2017. Learning-based cloth material recovery from video. In Proceedings of the IEEE International Conference on Computer Vision. 4383--4393.
– reference: M. Ly, J. Jouve, L. Boissieux, and F. Bertails-Descoubes. 2020. Projective Dynamics with Dry Frictional Contact. ACM Transactions on Graphics 39, 4 (2020), 1--8. 10.1145/3386569.3392396
– reference: J. Spillmann and M. Teschner. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07). ACM-EG SCA, 63--72.
– reference: D. Baraff and A. Witkin. 1998. Large Steps in Cloth Simulation. In Computer Graphics Proceedings. 43--54. http://www.cs.cmu.edu/~baraff/papers/sig98.pdf
– volume-title: Software reliability
  ident: e_1_2_2_70_1
– ident: e_1_2_2_29_1
  doi: 10.1145/2508363.2508398
– ident: e_1_2_2_1_1
  doi: 10.1090/S0025-5718-97-00785-0
– ident: e_1_2_2_31_1
  doi: 10.1142/S0218127491000397
– volume-title: Proceedings of the IEEE International Conference on Computer Vision. 4383--4393
  ident: e_1_2_2_91_1
– ident: e_1_2_2_48_1
  doi: 10.1073/pnas.1409118111
– ident: e_1_2_2_79_1
  doi: 10.1111/j.1467-8659.2012.03064.x
– ident: e_1_2_2_24_1
  doi: 10.1145/2185520.2185565
– ident: e_1_2_2_44_1
  doi: 10.1145/1531326.1531393
– ident: e_1_2_2_28_1
  doi: 10.1145/2070781.2024173
– volume-title: CVPR 2020 - IEEE Conference on Computer Vision and Pattern Recognition
  ident: e_1_2_2_71_1
– ident: e_1_2_2_78_1
  doi: 10.1093/qjmam/45.4.567
– ident: e_1_2_2_83_1
  doi: 10.1016/j.finel.2003.11.001
– ident: e_1_2_2_8_1
  doi: 10.1145/1360612.1360662
– volume-title: Vibration of axially loaded structures
  ident: e_1_2_2_86_1
– ident: e_1_2_2_92_1
  doi: 10.1109/TVCG.2015.2505285
– ident: e_1_2_2_12_1
  doi: 10.1080/14786443409462419
– ident: e_1_2_2_13_1
  doi: 10.1145/2601097.2601116
– ident: e_1_2_2_77_1
  doi: 10.1145/3197517.3201278
– ident: e_1_2_2_42_1
  doi: 10.2312/SCA/SCA06/091-100
– volume-title: Proc. Royal Society of London, Series A 455, 1983
  year: 1998
  ident: e_1_2_2_25_1
– ident: e_1_2_2_20_1
  doi: 10.1016/j.cma.2020.112922
– ident: e_1_2_2_87_1
  doi: 10.1145/3197517.3201320
– ident: e_1_2_2_69_1
  doi: 10.1145/3306346.3323040
– ident: e_1_2_2_73_1
  doi: 10.1002/zamm.19950750816
– ident: e_1_2_2_50_1
  doi: 10.1080/00405008908659184
– ident: e_1_2_2_3_1
– ident: e_1_2_2_17_1
– volume-title: RoboSoft 2019 - IEEE International Conference on Soft Robotics
  year: 2079
  ident: e_1_2_2_23_1
– ident: e_1_2_2_2_1
  doi: 10.1137/1.9781611971231
– ident: e_1_2_2_55_1
– ident: e_1_2_2_41_1
– ident: e_1_2_2_30_1
  doi: 10.1007/s10659-014-9487-0
– ident: e_1_2_2_40_1
  doi: 10.1038/s41467-019-14015-2
– ident: e_1_2_2_43_1
  doi: 10.1016/j.compstruc.2018.08.001
– ident: e_1_2_2_27_1
  doi: 10.1145/3386569.3392439
– volume-title: Differentiable Cloth Simulation for Inverse Problems. In Conference on Neural Information Processing Systems.
  ident: e_1_2_2_56_1
– ident: e_1_2_2_72_1
  doi: 10.1115/1.4031456.111001
– volume-title: Die Differentialgleichungen des MÖBIUSschen Bandes. Jahresbericht der Deutschen Mathematiker-Vereinigung
  year: 1929
  ident: e_1_2_2_75_1
– volume-title: Discrete Viscous Threads. ACM Transactions on Graphics (Proc. ACM SIGGRAPH'10)
  year: 2010
  ident: e_1_2_2_7_1
– ident: e_1_2_2_5_1
  doi: 10.1145/882262.882357
– volume-title: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '03)
  ident: e_1_2_2_16_1
– volume-title: Discrete Shells. In ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'03)
  ident: e_1_2_2_39_1
– ident: e_1_2_2_22_1
  doi: 10.1145/3099564.3099577
– ident: e_1_2_2_9_1
  doi: 10.1145/1141911.1142012
– ident: e_1_2_2_46_1
  doi: 10.1007/s10659-014-9490-5
– ident: e_1_2_2_67_1
  doi: 10.1145/2366145.2366171
– ident: e_1_2_2_38_1
  doi: 10.1111/j.1467-8659.2006.00974.x
– ident: e_1_2_2_80_1
  doi: 10.1145/2601097.2601166
– ident: e_1_2_2_59_1
  doi: 10.1145/3306346.3322989
– ident: e_1_2_2_10_1
  doi: 10.1145/1778765.1778800
– ident: e_1_2_2_57_1
  doi: 10.1145/3386569.3392396
– ident: e_1_2_2_6_1
  doi: 10.1145/2897824.2925896
– ident: e_1_2_2_21_1
  doi: 10.1145/3197517.3201395
– volume-title: Complete solution of elastica for a clamped-hinged beam, and its applications to a carbon nanotube. Acta mechanica 190, 1-4 (Oct
  year: 2006
  ident: e_1_2_2_63_1
– ident: e_1_2_2_74_1
  doi: 10.1016/S0022-5096(02)00028-5
– ident: e_1_2_2_14_1
  doi: 10.1109/TRO.2020.3036618
– ident: e_1_2_2_65_1
– volume-title: History of strength of materials
  ident: e_1_2_2_84_1
– ident: e_1_2_2_54_1
  doi: 10.1145/3197517.3201308
– ident: e_1_2_2_60_1
  doi: 10.1145/1531326.1531368
– ident: e_1_2_2_37_1
  doi: 10.1007/s10659-006-9055-3
– ident: e_1_2_2_88_1
  doi: 10.1145/2010324.1964966
– ident: e_1_2_2_34_1
  doi: 10.1007/978-94-017-7300-3
– ident: e_1_2_2_81_1
  doi: 10.1145/2185520.2185602
– ident: e_1_2_2_26_1
– ident: e_1_2_2_58_1
  doi: 10.1145/1778765.1778776
– ident: e_1_2_2_64_1
  doi: 10.1103/PhysRevLett.112.068103
– ident: e_1_2_2_19_1
  doi: 10.1145/2461912.2461962
– ident: e_1_2_2_62_1
  doi: 10.1111/j.1467-8659.2012.03031.x
– ident: e_1_2_2_53_1
– volume-title: ACM SIGGRAPH - EG Symposium on Computer Animation (SCA'07)
  ident: e_1_2_2_82_1
– ident: e_1_2_2_90_1
  doi: 10.1007/BF01299052
– ident: e_1_2_2_49_1
  doi: 10.1145/2601097.2601100
– ident: e_1_2_2_66_1
  doi: 10.1145/2461912.2462010
– ident: e_1_2_2_61_1
  doi: 10.1080/14786449908621336
– ident: e_1_2_2_51_1
  doi: 10.1038/488146a
– volume-title: IASS Symposium 2019
  year: 2019
  ident: e_1_2_2_52_1
– volume-title: Large Steps in Cloth Simulation. In Computer Graphics Proceedings. 43--54
  ident: e_1_2_2_4_1
– ident: e_1_2_2_68_1
  doi: 10.1111/1467-8659.00594
– ident: e_1_2_2_85_1
  doi: 10.1109/LRA.2020.2969926
– ident: e_1_2_2_76_1
  doi: 10.1103/PhysRevLett.118.178001
– ident: e_1_2_2_47_1
  doi: 10.1111/cgf.13126
– ident: e_1_2_2_15_1
  doi: 10.1145/566654.566623
– ident: e_1_2_2_89_1
– ident: e_1_2_2_45_1
  doi: 10.1145/1360612.1360622
– ident: e_1_2_2_11_1
  doi: 10.1145/1531326.1531395
– ident: e_1_2_2_18_1
  doi: 10.1103/PhysRev.4.345
– volume-title: Mechancis of Materials
  ident: e_1_2_2_36_1
– ident: e_1_2_2_35_1
  doi: 10.1145/3414685.3417843
SSID ssj0006446
Score 2.4862478
Snippet We introduce a selected set of protocols inspired from the Soft Matter Physics community in order to validate Computer Graphics simulators of slender elastic...
SourceID hal
crossref
acm
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Animation
Computer graphics
Computer Science
Computing methodologies
Graphics
Materials and structures in mechanics
Mechanics
Physical simulation
Physics
SubjectTermsDisplay Computing methodologies -- Computer graphics -- Animation
Computing methodologies -- Computer graphics -- Animation -- Physical simulation
Subtitle a new framework dedicated to slender elastic structures and frictional contact
Title Physical validation of simulators in computer graphics
URI https://dl.acm.org/doi/10.1145/3450626.3459931
https://inria.hal.science/hal-03217459
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZ2eYEHBBuIAUPRtIdJk0ucOKn92A1QhVaEdkF7ixxf1Gg0RVuZNH49x7ekhSHBXtLKdU4jn5Pj7_jcENo3qdBKSYJLISSmpaCY55pjIfJaAgQW1DnaJ5_L8QX9dFlc9gf6LrtkUQ_kz3vzSh7CVRgDvtos2f_gbEcUBuA78BeuwGG4_hOPv8RFBqKN6sDfTTOzTblsG50QZW77Nhy62tQxuD0Wnj2e2C4RsWW48x2szHO-mJn22TBfG-mLE_sYnrsQd38lnLv9qAvWOBU3U-1PUUe1AiNXTG220Lx3-Vsv__W8VY27k_mD8FP43xVS4TQiI10sXJSfyZICA-2Brcnl95qgYIshHua-lU7UwL5gU5A0uqROydK-7DXrnxqf2uIYOS1SMM0G8AmAi_SbWxdyGH5ZR5sZGBSgETdH7ycnZ92uDbjQ-bXjM4cyUED-3W_ELY6RsxUcsz6Nx_AOlpw_RU-CPZGMvHA8Q2u63UKPl6pMbqMyiknSi0kyN0kvJknTJlFMksj-5-ji44fz4zEO7TKwABy2wKXmmlHGNQeTsc6NrnMhAdBqyYwwiqqh4hlRGS8NoRpgHLy8RmeFKY00BmDiC7TRzlv9EiWUyFSmgvGSKiplal9bzpgmOWWGKbKDtmAJqu--IEoVFmYHDeKSVDJUmLeNTr5VPvu9qMJK9jccdDdEWn-dugdr3M2yRdHHo5PKjqW5NasLfpu9uvexXqNHvaS-QRuL6x96F5Dkon4bhOAXNGZujQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physical+validation+of+simulators+in+computer+graphics&rft.jtitle=ACM+transactions+on+graphics&rft.au=Romero%2C+Victor&rft.au=Ly%2C+Micka%C3%ABl&rft.au=Rasheed%2C+Abdullah+Haroon&rft.au=Charrondi%C3%A8re%2C+Rapha%C3%ABl&rft.date=2021-08-01&rft.pub=ACM&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=40&rft.issue=4&rft.spage=1&rft.epage=19&rft_id=info:doi/10.1145%2F3450626.3459931&rft.externalDocID=3459931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon