Machine Learning in Medical Imaging 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings

This book constitutes the refereed proceedings of the 8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017, held in conjunction with MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 44 full papers presented in this volume were carefully reviewed and selected fr...

Full description

Saved in:
Bibliographic Details
Main Authors Wang, Qian, Shi, Yinghuan, Suk, Heung-Il, Suzuki, Kenji
Format eBook Conference Proceeding
LanguageEnglish
Published Cham Springer Nature 2017
Springer International Publishing AG
Springer International Publishing
Springer
Edition1
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This book constitutes the refereed proceedings of the 8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017, held in conjunction with MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 44 full papers presented in this volume were carefully reviewed and selected from 63 submissions. The main aim of this workshop is to help advance scientific research within the broad field of machine learning in medical imaging. The workshop focuses on major trends and challenges in this area, and presents works aimed to identify new cutting-edge techniques and their use in medical imaging.
AbstractList This book constitutes the refereed proceedings of the 8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017, held in conjunction with MICCAI 2017, in Quebec City, QC, Canada, in September 2017. The 44 full papers presented in this volume were carefully reviewed and selected from 63 submissions. The main aim of this workshop is to help advance scientific research within the broad field of machine learning in medical imaging. The workshop focuses on major trends and challenges in this area, and presents works aimed to identify new cutting-edge techniques and their use in medical imaging.
Author Wang, Qian
Suzuki, Kenji
Shi, Yinghuan
Suk, Heung-Il
Author_xml – sequence: 1
  fullname: Wang, Qian
– sequence: 2
  fullname: Shi, Yinghuan
– sequence: 3
  fullname: Suk, Heung-Il
– sequence: 4
  fullname: Suzuki, Kenji
BookMark eNqNkD9PwzAQxQ0URFv6AdgqGBCDqS_-F49QFajUigWxWk5it6HBKXGBr4_TIMTIdHp3v_d0dwPU87W3CJ0DuQFC5ETJFFNMQWEhaaqwOkADGuVekUPUBwGAKWXq6O-gh_qEkgQryegJGsQoKpgALk_RKIRXQgikUhAu--hyafJ16e14YU3jS78al368tEWZm2o8fzOr2DpDx85UwY5-6hC93M-ep4948fQwn94usEkSRjlWxoJkVuYKYoe6wlBppHBQGFVAkUmXJizPnOAOMgGZIxZUkjLqcpUxyekQXXfBJmzsV1jX1S7oz8pmdb0JOj7j90QV2UnHhm0Td7SN7iggun1dS2uqI6_3Bt06rjrHtqnfP2zY6X1wbv2uMZWe3U1FEtMT-Q-Sc5kK1pIXHZmbYKrSl_qt9vWqMdt10JxBCjyh3-2Nf9U
ContentType eBook
Conference Proceeding
Copyright Springer International Publishing AG 2017
Copyright_xml – notice: Springer International Publishing AG 2017
DBID I4C
DEWEY 616.07540285631
DOI 10.1007/978-3-319-67389-9
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
Medicine
Engineering
EISBN 3319673890
9783319673899
EISSN 1611-3349
Edition 1
Editor Suzuki, Kenji
Wang, Qian
Shi, Yinghuan
Suk, Heung-Il
Editor_xml – sequence: 1
  fullname: Shi, Yinghuan
– sequence: 2
  fullname: Suk, Heung-Il
– sequence: 3
  fullname: Suzuki, Kenji
– sequence: 4
  fullname: Wang, Qian
ExternalDocumentID 9783319673899
454062
EBC6296727
EBC5578647
5418152
GroupedDBID 0D6
0DA
38.
AABBV
AALVI
ABBVZ
ABHTH
ABQUB
ACDJR
ADCXD
AEDXK
AEKFX
AETDV
AEZAY
AGIGN
AGYGE
AIODD
ALBAV
ALMA_UNASSIGNED_HOLDINGS
AZZ
BATQV
BBABE
CVWCR
CZZ
I4C
IEZ
LDH
NUC
SAO
SBO
SWYDZ
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
AEJLV
-DT
-~X
29L
2HA
2HV
ACGFS
EJD
F5P
LAS
P2P
RSU
~02
ID FETCH-LOGICAL-a22435-9ae174e7c91a223fda37a76f1da9d1db7f824cbf65f1b61bf0e192843fc9b4753
ISBN 3319673890
9783319673899
9783319673882
3319673882
ISSN 0302-9743
IngestDate Fri Nov 08 04:09:26 EST 2024
Tue Oct 01 19:42:10 EDT 2024
Fri May 30 22:01:52 EDT 2025
Fri May 30 23:21:47 EDT 2025
Tue Nov 14 22:53:18 EST 2023
IsPeerReviewed true
IsScholarly true
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MeetingName International Workshop on Machine Learning in Medical Imaging
MergedId FETCHMERGED-LOGICAL-a22435-9ae174e7c91a223fda37a76f1da9d1db7f824cbf65f1b61bf0e192843fc9b4753
OCLC 1003646157
PQID EBC5578647
PageCount 404
ParticipantIDs askewsholts_vlebooks_9783319673899
springer_books_10_1007_978_3_319_67389_9
proquest_ebookcentral_EBC6296727
proquest_ebookcentral_EBC5578647
casalini_monographs_5418152
PublicationCentury 2000
PublicationDate 2017
20170907
2017-09-06
PublicationDateYYYYMMDD 2017-01-01
2017-09-07
2017-09-06
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Netherlands
– name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationYear 2017
Publisher Springer Nature
Springer International Publishing AG
Springer International Publishing
Springer
Publisher_xml – name: Springer Nature
– name: Springer International Publishing AG
– name: Springer International Publishing
– name: Springer
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001876057
ssj0002792
Score 2.3882585
Snippet This book constitutes the refereed proceedings of the 8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017, held in conjunction with...
SourceID askewsholts
springer
proquest
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Computer programming, programs, data
Computer Science
Data Mining and Knowledge Discovery
Diagnostic imaging
Health Informatics
Image Processing and Computer Vision
Machine learning
Software engineering
Software Engineering/Programming and Operating Systems
Subtitle 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings
TableOfContents 3D U-net with Multi-level Deep Supervision: Fully Automatic Segmentation of Proximal Femur in 3D MR Images
Intro -- Preface -- Organization -- Contents -- From Large to Small Organ Segmentation in CT Using Regional Context -- 1 Introduction -- 2 Methods -- 2.1 Vantage Point Forest -- 2.2 Initial Labelling -- 2.3 Iterated Forest with Regional Context Descriptors -- 2.4 Final Shape Voting (SV) -- 3 Experiments -- 4 Conclusion -- References -- Motion Corruption Detection in Breast DCE-MRI -- Abstract -- 1 Introduction -- 2 Methodology -- 2.1 Data Acquisition -- 2.2 Generating Deformation Estimates for Unlabeled Images -- 2.3 Preprocessing Data -- 2.4 Training a Supervised Learning Model -- 3 Results -- 3.1 Comparing Learning Models -- 3.2 Visualizing Neural Networks -- 4 Conclusion -- References -- Detection and Localization of Drosophila Egg Chambers in Microscopy Images -- 1 Introduction -- 2 Methodology -- 2.1 Superpixel Segmentation -- 2.2 Center Detection -- 2.3 Ellipse Fitting and Segmentation -- 3 Materials and Experiments -- 3.1 Center Detection Performance -- 3.2 Egg Chamber Detection -- 4 Conclusions -- References -- Growing a Random Forest with Fuzzy Spatial Features for Fully Automatic Artery-Specific Coronary Calcium Scoring -- 1 Introduction -- 2 Material and Methods -- 2.1 Data -- 2.2 CAC Candidates -- 2.3 Atlas Creation -- 2.4 Feature Generation -- 3 Experiments and Results -- 4 Discussion and Conclusions -- References -- Atlas of Classifiers for Brain MRI Segmentation -- 1 Introduction -- 2 The Atlas of Classifier Approach -- 2.1 AoC Model Overview -- 2.2 Multi-Class Segmentation -- 2.3 Features -- 2.4 Registration -- 3 Experimental Results -- 4 Discussion -- References -- Dictionary Learning and Sparse Coding-Based Denoising for High-Resolution Task Functional Connectivity MRI Analysis -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Dictionary Learning and Sparse Coding (DLSC)-Based Denoising -- 3 Results -- 4 Discussion
Finding Dense Supervoxel Correspondence of Cone-Beam Computed Tomography Images -- 1 Introduction -- 2 Methods -- 2.1 Clustering Forest -- 2.2 Tree Pruning -- 3 Experiments -- 3.1 Correspondence Results -- 4 Conclusion -- References -- Multi-scale Volumetric ConvNet with Nested Residual Connections for Segmentation of Anterior Cranial Base -- 1 Introduction -- 2 Methods -- 2.1 Network Architecture -- 2.2 Training -- 3 Experiments -- 4 Discussion and Conclusion -- References -- Feature Learning and Fusion of Multimodality Neuroimaging and Genetic Data for Multi-status Dementia Diagnosis -- 1 Introduction -- 2 Methodology -- 3 Experimental Results and Analysis -- 3.1 Dataset -- 3.2 Experimental Setup -- 4 Conclusion -- References -- 3D Convolutional Neural Networks with Graph Refinement for Airway Segmentation Using Incomplete Data Labels -- 1 Introduction -- 2 Method -- 2.1 3D FCN Architecture -- 2.2 Training with Incomplete Labeling -- 2.3 Graph-Based Refinement -- 3 Experiments and Results -- 4 Conclusion -- References -- Efficient Groupwise Registration for Brain MRI by Fast Initialization -- Abstract -- 1 Introduction -- 2 Method -- 2.1 Training Dataset Augmentation -- 2.2 Efficient Groupwise Registration by Fast Initialization -- 3 Experiments and Results -- 4 Conclusion -- References -- Sparse Multi-view Task-Centralized Learning for ASD Diagnosis -- Abstract -- 1 Introduction -- 2 Method -- 2.1 Sparse Multi-view Task-Centralized (Sparse-MVTC) Learning -- 2.2 Iterative Optimization in Sparse-MVTC -- 2.3 Ensemble Implementation of Sparse-MVTC -- 3 Experimental Results -- 3.1 Experimental Settings -- 3.2 Comparisons with State-of-the-Art Methods -- 4 Conclusion -- References -- Inter-subject Similarity Guided Brain Network Modeling for MCI Diagnosis -- Abstract -- 1 Introduction -- 2 Methods -- 2.1 GSR for Brain Network Modeling
A Point Says a Lot: An Interactive Segmentation Method for MR Prostate via One-Point Labeling -- 1 Introduction -- 2 Our Method -- 3 Experimental Results -- 4 Conclusion -- References -- Collage CNN for Renal Cell Carcinoma Detection from CT -- 1 Introduction -- 2 Materials and Methods -- 2.1 Data -- 2.2 Collage Representation of 3D Image Data -- 2.3 Pathological vs Healthy Kidney Classification -- 3 Results -- 4 Conclusions -- References -- Aggregating Deep Convolutional Features for Melanoma Recognition in Dermoscopy Images -- Abstract -- 1 Introduction -- 2 Methodology -- 2.1 Image Preprocessing and Data Augmentation -- 2.2 Extraction of Local Convolutional Features -- 2.3 Fisher Vector Encoding Strategy -- 2.4 Kernel-Based Classification -- 3 Experimental Setting and Results -- 4 Conclusion -- Acknowledgment -- References -- Localizing Cardiac Structures in Fetal Heart Ultrasound Video -- 1 Introduction -- 2 Partitioned Particle Filters -- 3 A Fourier Model for Structure Trajectories -- 4 A Filtering Architecture for Structure Localization -- 4.1 Structure Visibility Prediction Potential, ga(st st-1 ) -- 4.2 Structure Position Prediction Potential, a(st st-1 ) -- 4.3 Observation Potential, Da(st,zt) -- 5 Experiments and Results -- 6 Conclusions -- References -- Deformable Registration Through Learning of Context-Specific Metric Aggregation -- 1 Introduction -- 2 The Deformable Registration Problem -- 3 Learning the Parameters -- 4 Results and Discussion -- References -- Segmentation of Craniomaxillofacial Bony Structures from MRI with a 3D Deep-Learning Based Cascade Framework -- 1 Introduction -- 2 Methods -- 2.1 Data Acquisition and Preprocessing -- 2.2 Coarse Segmentation with Anatomical Constraint -- 2.3 Fine-Grained Segmentation -- 2.4 Implementation Details -- 3 Experiments and Results -- 4 Discussion and Conclusions -- References
References -- Yet Another ADNI Machine Learning Paper? Paving the Way Towards Fully-Reproducible Research on Classification of Alzheimer's Disease -- 1 Introduction -- 2 Material and Methods -- 2.1 Dataset -- 2.2 A Standardized Data Structure -- 2.3 Preprocessing and Feature Extraction Pipelines -- 2.4 Classification Methods -- 2.5 Validation -- 3 Results -- 4 Conclusions -- References -- Multi-factorial Age Estimation from Skeletal and Dental MRI Volumes -- 1 Introduction -- 2 Method -- 3 Experimental Setup and Results -- 4 Discussion and Conclusion -- References -- Automatic Classification of Proximal Femur Fractures Based on Attention Models -- 1 Introduction -- 2 Method -- 2.1 Attention Model -- 3 Experimental Validation -- 4 Conclusion -- References -- Joint Supervoxel Classification Forest for Weakly-Supervised Organ Segmentation -- 1 Introduction -- 2 Method -- 2.1 Object-Sized Supervoxels -- 2.2 Joint Supervoxel Random Classification Forest -- 2.3 Weakly-Supervised Segmentation -- 3 Experiments and Results -- 4 Discussion and Conclusion -- References -- Accurate and Consistent Hippocampus Segmentation Through Convolutional LSTM and View Ensemble -- 1 Introduction -- 2 Method -- 2.1 U-Seg-Net+CLSTM -- 3 Implementation Details -- 4 Experimental Results -- 5 Conclusion -- References -- STAR: Spatio-Temporal Architecture for Super-Resolution in Low-Dose CT Perfusion -- 1 Introduction -- 2 Methodology -- 3 Experiments and Results -- 4 Conclusion -- References -- Classification of Alzheimer's Disease by Cascaded Convolutional Neural Networks Using PET Images -- Abstract -- 1 Introduction -- 2 Materials and Proposed Method -- 2.1 Image Acquisition and Processing -- 2.2 Feature Extraction with Multiple 3D CNNs -- 2.3 Cascaded Ensemble Classification for AD Diagnosis -- 3 Experimental Results -- 4 Conclusions -- Acknowledgement -- References
2.2 Inter-subject Similarity-Guided GSR for Brain Network Modeling -- 3 Experiments -- 3.1 Data Preprocessing -- 3.2 Performance Evaluation -- 3.3 Experimental Results -- 4 Conclusion -- Acknowledgements -- References -- Scalable and Fault Tolerant Platform for Distributed Learning on Private Medical Data -- 1 Introduction -- 2 Methodology -- 3 Results and Discussions -- 4 Conclusions -- References -- Triple-Crossing 2.5D Convolutional Neural Network for Detecting Neuronal Arbours in 3D Microscopic Images -- 1 Introduction -- 2 Methods -- 2.1 Scale-Space Distance Transform of Neuronal Centreline -- 2.2 Triple-Crossing Patches for 2.5D CNN -- 2.3 Triple-Crossing 2.5D CNNs with Residual-Blocks -- 2.4 Gradient-Based Intensity Normalisation -- 3 Experiments and Results -- 4 Conclusion -- References -- Longitudinally-Consistent Parcellation of Infant Population Cortical Surfaces Based on Functional Connectivity -- Abstract -- 1 Introduction -- 2 Methods -- 3 Results -- 4 Conclusion -- References -- Gradient Boosted Trees for Corrective Learning -- 1 Introduction -- 2 Methods -- 2.1 Host Segmentation Methods -- 2.2 Construction of Candidate Locations -- 2.3 Raw Feature Set -- 2.4 Feature Engineering -- 2.5 Gradient Boosted Trees -- 3 Experimental Methods -- 3.1 Data and Cross-Validation -- 3.2 Evaluation Metrics -- 4 Results -- 5 Discussion -- References -- Self-paced Convolutional Neural Network for Computer Aided Detection in Medical Imaging Analysis -- Abstract -- 1 Introduction -- 2 Materials and Methods -- 2.1 Method Overview -- 2.2 Architecture of the CNN Applied in the Framework -- 2.3 Bootstrapping Module for Virtual Sample Selection -- 3 Experimental Results -- 3.1 Data Acquisition and Preprocessing -- 3.2 Performance Comparisons -- 3.3 Time Cost for the Virtual Sample Selection -- 4 Conclusion and Discussion -- References
Title Machine Learning in Medical Imaging
URI http://digital.casalini.it/9783319673899
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5578647
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6296727
http://link.springer.com/10.1007/978-3-319-67389-9
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783319673899
Volume 10541
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Lb9MwGLdgXNhlPIYoAxQBByQUlLfjAweYisa0TRzGtJtlO7aEgE4iGQf-en5-JWmpEHCJWjdNv_p7P03IC5rbIVHSpPgYDorSXSoNK1IB415RWcPpsHHI07Pm6FN1fFlfTqd7uu6SQb5WP7f2lfwPVrEGvNou2X_A7PhQLOA18IsrMIzrhvG7Vc-cukJIHWekut6UmHj58M0dP-SFhh1m3L85CemCs6vBVWG9iic6RAafRwCgVWw-g_4WAdyIIU5hrDWXsbQ8R8u2nUcVS4hFOBZe0mgvCRs737D080RHUQkDL98qeOe1FrYvyv4ES9mkZcbaPzvyzyrNm7SFIL31dnl8cjFFxSCc3RmmQZfa8YY-D-QBtN054x_w85Om9zFpHeYGrwGyS3ZF_wV6Azpl6K0RInphe0_XPIuNZLizMc7vkP2p-zL5OOL7LrmhV_fIXnAXkoCrHksRf3HtPnkeSCKJJJF8XiWBJJJAEvvk4v3y_PAoDcdggGEKWLMpExp-o6aK5VgpTSdKKmhj8k6wLu8kNW1RKWma2uSyyaXJNOz2tiqNYrKCP_qA7KyuVvohSbrM1IWumMpUXcm6kGBhnXXayE6oTGQL8my2TfzHV5ey7_lsnxlbkIO4exwc5Uer9xyk0cIaXJAkbih33w5Vxnz57rCGfmgq-qdbmoLZ4oAFeRlxwT0Icb42QOElBzDcQcPZo7-_9YDcnhjoMdkZvl_rJzAqB_k0UOIvFaprww
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Machine+Learning+in+Medical+Imaging&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2017-09-07&rft.pub=Springer+International+Publishing&rft.isbn=9783319673882&rft.issn=0302-9743&rft.eissn=1611-3349&rft.volume=10541&rft_id=info:doi/10.1007%2F978-3-319-67389-9&rft.externalDocID=454062
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97833196%2F9783319673899.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-319-67389-9