A New Feature Fusion Network for Student Behavior Recognition in Education

Behavior recognition is a research hotspot in the field of computer vision and it also is a challenging task. In particular, student behavior analysis has an impact on the efficiency of classroom education. Aiming at the complex student behavior recognition problem in the video, we propose a new fea...

Full description

Saved in:
Bibliographic Details
Published in淡江理工學刊 Vol. 24; no. 2; pp. 133 - 140
Main Authors Jisi A, Shoulin Yin
Format Journal Article
LanguageEnglish
Published 淡江大學 01.01.2021
Subjects
Online AccessGet full text
ISSN2708-9967
DOI10.6180/jase.202104_24(2).0002

Cover

Loading…
Abstract Behavior recognition is a research hotspot in the field of computer vision and it also is a challenging task. In particular, student behavior analysis has an impact on the efficiency of classroom education. Aiming at the complex student behavior recognition problem in the video, we propose a new feature fusion network for student behavior recognition in education in this paper. The new feature fusion network contains two main stages: feature extraction and classification. First, we combine spatial affine transformation network with convolutional neural network to extract more detailed features. Then, the weighted sum method is adopted to fuse the spatial-temporal features, and the softmax classifier is improved for classification recognition to improve the final recognition result. Experiments are carried out on standard human behavior data HMDB51, UCF101 and real student behavior data. The results show that the proposed algorithm can achieve better recognition effect than other state-of-the-art recognition algorithms.
AbstractList Behavior recognition is a research hotspot in the field of computer vision and it also is a challenging task. In particular, student behavior analysis has an impact on the efficiency of classroom education. Aiming at the complex student behavior recognition problem in the video, we propose a new feature fusion network for student behavior recognition in education in this paper. The new feature fusion network contains two main stages: feature extraction and classification. First, we combine spatial affine transformation network with convolutional neural network to extract more detailed features. Then, the weighted sum method is adopted to fuse the spatial-temporal features, and the softmax classifier is improved for classification recognition to improve the final recognition result. Experiments are carried out on standard human behavior data HMDB51, UCF101 and real student behavior data. The results show that the proposed algorithm can achieve better recognition effect than other state-of-the-art recognition algorithms.
Author Shoulin Yin
Jisi A
Author_xml – sequence: 1
  fullname: Jisi A
– sequence: 2
  fullname: Shoulin Yin
BookMark eNpVUMtOwzAQ9KFIlNJfQD7CIWG9ju34WKqmBVUg8ThHS7KBFORIedDfJxFw4LAazWg0O5ozMQtNYCEuFMRWpXB9oI5jBFSQ5Jhc4lUMADgTc3SQRt5bdyqWXVe_ggGntfY4F3crec9HmTH1Q8syG7q6CaPUH5v2Q1ZNK5_6oeTQyxt-p696FB65aN5C3U_GOshNORQ0kXNxUtFnx8tfXIiXbPO83kX7h-3terWPCBH6yChK2SVgEkZUxIUBTYAAGi147xOjnAIiW6ZF6pG88ugMaa6MYlOUeiF2P7lUt2OL_NAMbRgf5spYsDa1-d8GEzhlxhX0f6L0eAnob2kvV1I
ContentType Journal Article
DBID 188
DOI 10.6180/jase.202104_24(2).0002
DatabaseName Chinese Electronic Periodical Services (CEPS)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EndPage 140
ExternalDocumentID 15606686_202104_202107150003_202107150003_133_140
GroupedDBID 188
2UF
ALMA_UNASSIGNED_HOLDINGS
ID FETCH-LOGICAL-a220t-51a8e74054e221aec503a02003260999451710aa6d8c892a919275a3ef51e5cd3
ISSN 2708-9967
IngestDate Tue Oct 01 22:51:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords spatial affine transformation
feature fusion
Behavior recognition
spatial-temporal feature
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a220t-51a8e74054e221aec503a02003260999451710aa6d8c892a919275a3ef51e5cd3
PageCount 8
ParticipantIDs airiti_journals_15606686_202104_202107150003_202107150003_133_140
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle 淡江理工學刊
PublicationTitle_FL Journal of Applied Science and Engineering
PublicationYear 2021
Publisher 淡江大學
Publisher_xml – name: 淡江大學
SSID ssib050733392
ssib053285227
Score 2.4019728
Snippet Behavior recognition is a research hotspot in the field of computer vision and it also is a challenging task. In particular, student behavior analysis has an...
SourceID airiti
SourceType Publisher
StartPage 133
Title A New Feature Fusion Network for Student Behavior Recognition in Education
URI https://www.airitilibrary.com/Article/Detail/15606686-202104-202107150003-202107150003-133-140
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLbKuHBBIEDABvIBS3DIsB3bsY8ZpJoqjcs2aZwqN3VFOXTS1l44sH-d92znx6YdGOKSuqkaO3pfnr_nfO-ZkA9u2Sq1UlUhFkYXCjxesZA2FCstlworI69iJaaTb-b4XM0u9MVkcjNSLe22i8P21715Jf9iVTgHdsUs2QdYtr8onIA22BeOYGE4_pWN6yhPRBaHrwGmO1z5whReFFtF_eBpqlzZVUG8QpaY9EJJ4djLO8YclTWGHVWsFrEhmJuypmKOM2tYo-NPGhv1V3ZksWEtsz0QZuvr9bBAevrjMkrdv-cC33l9QYo76wv39Qk9KFZXfVeDz5IVB__p0g4bnYNNSdIZSHLkLUWqgZEnXpHqNt316UZEEeRPmNQPcXxczaUC9i2ZxFKjXA4zWa8vxPRwY6yZd3_Aj0rg5g_l7S8wBIh--CPyWEKcgZ795HfTOSSNO1qWw2tnXUoLfBVT8PsbTVnnOMjPt4f4UX6KwwNq49dYoGrEW86ekac54KB1Qs9zMgmbF2RWU0AOzcihCTk0I4cCcmhGDu2QQ0fIoesN7ZHzkpxPm7Mvx0XeVaPwUvJtoYW3oQKeroKUwodW89Jz1ChCaAvhAj6hgntvlra1TnoHMUClfRlWWgTdLstXZG9zuQmvCXWta4EEmZarUikfnAsBKGRrJIqaZfmG1OnW5_mhuZ4_2DJv_8M19smTAdkHZG97tQvvgEtuF--jvf8AxBFUWw
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Feature+Fusion+Network+for+Student+Behavior+Recognition+in+Education&rft.jtitle=%E6%B7%A1%E6%B1%9F%E7%90%86%E5%B7%A5%E5%AD%B8%E5%88%8A&rft.au=Jisi+A&rft.au=Shoulin+Yin&rft.date=2021-01-01&rft.pub=%E6%B7%A1%E6%B1%9F%E5%A4%A7%E5%AD%B8&rft.issn=2708-9967&rft.volume=24&rft.issue=2&rft.spage=133&rft.epage=140&rft_id=info:doi/10.6180%2Fjase.202104_24%282%29.0002&rft.externalDocID=15606686_202104_202107150003_202107150003_133_140
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F15606686-c.jpg