Conductance Response of Tin Nanowires to the External Axial Pressure Load

Five different optimized Sn nanowires embedded in single-walled carbon nanotubes (SWCNTs) are obtained by means of molecular dynamics (MD) simulation. Growth of Sn nanowires follows a helical or parallel pattern in confined space. Optimized Sn nanowires subject to compression are investigated. Resul...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 114; no. 9; pp. 3770 - 3775
Main Authors Gao, F, Li, H, Zhang, X. Q, Li, Y. F, Liew, K. M
Format Journal Article
LanguageEnglish
Published American Chemical Society 11.03.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Five different optimized Sn nanowires embedded in single-walled carbon nanotubes (SWCNTs) are obtained by means of molecular dynamics (MD) simulation. Growth of Sn nanowires follows a helical or parallel pattern in confined space. Optimized Sn nanowires subject to compression are investigated. Results reveal that a four-strand-parallel nanowire can resist the highest pressure load among these five kinds of nanowires studied. The growth pattern of a nanowire determines its conductance response to the pressure load. Interestingly, conductance of double-helical and four-strand-parallel nanowires (which have an even number of atomic chains) increases with pressure load, while the conductance of three-strand-helical and five-strand-helical nanowires (which have an odd number of atomic chains) is found to decrease with pressure load. On the basis of the conductance response of the nanowire to the external pressure load, nanosensors can be fabricated to detect the stress and strain of nanostructured materials.
AbstractList Five different optimized Sn nanowires embedded in single-walled carbon nanotubes (SWCNTs) are obtained by means of molecular dynamics (MD) simulation. Growth of Sn nanowires follows a helical or parallel pattern in confined space. Optimized Sn nanowires subject to compression are investigated. Results reveal that a four-strand-parallel nanowire can resist the highest pressure load among these five kinds of nanowires studied. The growth pattern of a nanowire determines its conductance response to the pressure load. Interestingly, conductance of double-helical and four-strand-parallel nanowires (which have an even number of atomic chains) increases with pressure load, while the conductance of three-strand-helical and five-strand-helical nanowires (which have an odd number of atomic chains) is found to decrease with pressure load. On the basis of the conductance response of the nanowire to the external pressure load, nanosensors can be fabricated to detect the stress and strain of nanostructured materials.
Author Li, H
Zhang, X. Q
Li, Y. F
Liew, K. M
Gao, F
Author_xml – sequence: 1
  givenname: F
  surname: Gao
  fullname: Gao, F
– sequence: 2
  givenname: H
  surname: Li
  fullname: Li, H
  email: lihuilmy@hotmail.com
– sequence: 3
  givenname: X. Q
  surname: Zhang
  fullname: Zhang, X. Q
– sequence: 4
  givenname: Y. F
  surname: Li
  fullname: Li, Y. F
– sequence: 5
  givenname: K. M
  surname: Liew
  fullname: Liew, K. M
BookMark eNptkMFKAzEQhoNUsK0efINcPHhYnUmazeZYSq2FoiL1vKSbCW6pSUm2WN_elkpPXuYf-D-G4RuwXoiBGLtFeEAQ-LjeGjBCqO6C9dFIUeiRUr3zPtJXbJDzGkBJQNln80kMbtd0NjTE3ylvY8jEo-fLNvAXG-J3myjzLvLuk_h031EKdsPH-_Yw3w5V3iXii2jdNbv0dpPp5i-H7ONpupw8F4vX2XwyXhRWoOkK6agUFdqV1wrBawMKyKMGWbqqcmU50sYb4yqlS-VNha5CJRUYBLMiL-SQ3Z_uNinmnMjX29R-2fRTI9RHB_XZwYG9O7G2yfU67o6_53-4X6dwW2c
Cites_doi 10.1103/PhysRevB.71.115441
10.1063/1.1601692
10.1063/1.2750413
10.1063/1.2787150
10.1103/PhysRevB.75.195127
10.1063/1.448799
10.1103/RevModPhys.71.S306
10.1103/PhysRevB.69.214526
10.1557/mrs2007.47
10.1038/27405
10.1038/27399
10.1103/PhysRevLett.85.4124
10.1103/PhysRevLett.69.140
10.1063/1.2759471
10.1103/PhysRevB.64.035416
10.1063/1.1592313
10.1016/S0301-0104(02)00496-2
10.1021/cm052219o
10.1002/adma.200390087
10.1063/1.2345061
10.1103/PhysRevLett.84.979
10.1002/qua.21946
10.1126/science.285.5426.391
10.1063/1.1826237
10.1002/smll.200500303
10.1021/nl080850t
10.1103/PhysRevB.71.104521
10.1021/nl060245v
10.1103/PhysRevLett.88.176804
10.1103/PhysRevB.58.6775
10.1063/1.464913
10.1021/cm0504337
10.1038/nature04796
10.1021/nl0602387
10.1103/PhysRevLett.79.2316
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/jp909225t
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Response of Tin Nanowires to Pressure Load
EISSN 1932-7455
EndPage 3775
ExternalDocumentID 10_1021_jp909225t
i21491523
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a219t-3de6281abf7510f79050ef17036d88d66479f99d85765f981d8153509109bef23
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 03:35:34 EDT 2025
Thu Aug 27 13:43:20 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a219t-3de6281abf7510f79050ef17036d88d66479f99d85765f981d8153509109bef23
PageCount 6
ParticipantIDs crossref_primary_10_1021_jp909225t
acs_journals_10_1021_jp909225t
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20100311
2010-03-11
PublicationDateYYYYMMDD 2010-03-11
PublicationDate_xml – month: 03
  year: 2010
  text: 20100311
  day: 11
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Tian M. (ref7/cit7) 2003; 83
Muller C. J. (ref22/cit22) 1992; 69
Zhang Y. H. (ref26/cit26) 2009; 109
Han J. E. (ref8/cit8) 2004; 69
Xiang J. (ref18/cit18) 2006; 441
Noh M. (ref5/cit5) 2005; 17
Hu J. (ref3/cit3) 2006; 6
Yin X. (ref27/cit27) 2006; 125
Paulsson M. (ref39/cit39) 2001; 64
Collier C. P. (ref38/cit38) 1999; 285
Patolsky F. (ref17/cit17) 2007; 32
Rogachev A. (ref9/cit9) 2003; 83
Hsu Y. J. (ref4/cit4) 2006; 2
Imry Y. (ref35/cit35) 1999; 71
Rodrigues V. (ref19/cit19) 2000; 85
Yanson A. I. (ref21/cit21) 1998; 395
Molaresa M. T. (ref13/cit13) 2004; 85
Li C. Z. (ref24/cit24) 1998; 58
Kang Y. J. (ref1/cit1) 2005; 71
Li H. (ref34/cit34) 2007; 102
Jankovic L. (ref10/cit10) 2006; 6
Tombros N. (ref14/cit14) 2008; 8
García-Mochales P. (ref23/cit23) 1997; 79
Wang Y. (ref6/cit6) 2006; 18
Xia Y. (ref2/cit2) 2003; 15
Di Ventra M. (ref37/cit37) 2000; 84
Damle P. S. (ref29/cit29) 2002; 281
Zheng X. (ref15/cit15) 2007; 75
Hay P. (ref31/cit31) 1985; 82
Tian M. (ref11/cit11) 2005; 71
Becke A. D. (ref32/cit32) 1993; 98
ref33/cit33
Damle P. S. (ref36/cit36) 2002; 281
ref30/cit30
Ohnishi H. (ref20/cit20) 1998; 395
Lucot D. (ref12/cit12) 2007; 91
Reichert J. (ref16/cit16) 2002; 88
Zhang X. Q. (ref25/cit25) 2007; 102
References_xml – volume: 71
  start-page: 115441
  year: 2005
  ident: ref1/cit1
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.115441
– volume: 83
  start-page: 1620
  year: 2003
  ident: ref7/cit7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1601692
– volume: 102
  start-page: 013702
  year: 2007
  ident: ref34/cit34
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2750413
– volume: 102
  start-page: 073709
  year: 2007
  ident: ref25/cit25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2787150
– volume: 75
  start-page: 195127
  year: 2007
  ident: ref15/cit15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.195127
– volume: 82
  start-page: 270
  year: 1985
  ident: ref31/cit31
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.448799
– volume: 71
  start-page: S306
  year: 1999
  ident: ref35/cit35
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.71.S306
– volume: 69
  start-page: 214526
  year: 2004
  ident: ref8/cit8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.214526
– volume: 32
  start-page: 142
  year: 2007
  ident: ref17/cit17
  publication-title: MRS Bull.
  doi: 10.1557/mrs2007.47
– volume: 395
  start-page: 783
  year: 1998
  ident: ref21/cit21
  publication-title: Nature
  doi: 10.1038/27405
– volume: 395
  start-page: 780
  year: 1998
  ident: ref20/cit20
  publication-title: Nature
  doi: 10.1038/27399
– volume: 85
  start-page: 4124
  year: 2000
  ident: ref19/cit19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.4124
– volume: 69
  start-page: 140
  year: 1992
  ident: ref22/cit22
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.140
– volume: 91
  start-page: 042502
  year: 2007
  ident: ref12/cit12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2759471
– ident: ref33/cit33
– volume: 64
  start-page: 035416
  year: 2001
  ident: ref39/cit39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.035416
– volume: 83
  start-page: 512
  year: 2003
  ident: ref9/cit9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1592313
– volume: 281
  start-page: 171
  year: 2002
  ident: ref36/cit36
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(02)00496-2
– volume: 18
  start-page: 1347
  year: 2006
  ident: ref6/cit6
  publication-title: Chem. Mater.
  doi: 10.1021/cm052219o
– volume: 15
  start-page: 353
  year: 2003
  ident: ref2/cit2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200390087
– volume: 125
  start-page: 094711
  year: 2006
  ident: ref27/cit27
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2345061
– volume: 84
  start-page: 979
  year: 2000
  ident: ref37/cit37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.979
– volume: 109
  start-page: 1385
  year: 2009
  ident: ref26/cit26
  publication-title: Int. J. Quantum Chem.
  doi: 10.1002/qua.21946
– volume: 285
  start-page: 391
  year: 1999
  ident: ref38/cit38
  publication-title: Science
  doi: 10.1126/science.285.5426.391
– volume: 85
  start-page: 5337
  year: 2004
  ident: ref13/cit13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1826237
– volume: 2
  start-page: 268
  year: 2006
  ident: ref4/cit4
  publication-title: Small
  doi: 10.1002/smll.200500303
– volume: 8
  start-page: 3060
  issue: 9
  year: 2008
  ident: ref14/cit14
  publication-title: Nano Lett.
  doi: 10.1021/nl080850t
– volume: 71
  start-page: 104521
  year: 2005
  ident: ref11/cit11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.104521
– volume: 6
  start-page: 1136
  year: 2006
  ident: ref3/cit3
  publication-title: Nano Lett.
  doi: 10.1021/nl060245v
– volume: 88
  start-page: 176804
  year: 2002
  ident: ref16/cit16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.176804
– volume: 58
  start-page: 6775
  year: 1998
  ident: ref24/cit24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.58.6775
– volume: 98
  start-page: 5648
  year: 1993
  ident: ref32/cit32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.464913
– volume: 17
  start-page: 3320
  year: 2005
  ident: ref5/cit5
  publication-title: Chem. Mater.
  doi: 10.1021/cm0504337
– volume: 441
  start-page: 489
  year: 2006
  ident: ref18/cit18
  publication-title: Nature
  doi: 10.1038/nature04796
– volume: 6
  start-page: 1131
  year: 2006
  ident: ref10/cit10
  publication-title: Nano Lett.
  doi: 10.1021/nl0602387
– volume: 79
  start-page: 2316
  year: 1997
  ident: ref23/cit23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.2316
– ident: ref30/cit30
– volume: 281
  start-page: 171
  year: 2002
  ident: ref29/cit29
  publication-title: Chem. Phys.
  doi: 10.1016/S0301-0104(02)00496-2
SSID ssj0053013
Score 1.9425544
Snippet Five different optimized Sn nanowires embedded in single-walled carbon nanotubes (SWCNTs) are obtained by means of molecular dynamics (MD) simulation. Growth...
SourceID crossref
acs
SourceType Index Database
Publisher
StartPage 3770
SubjectTerms C: Nanops and Nanostructures
Title Conductance Response of Tin Nanowires to the External Axial Pressure Load
URI http://dx.doi.org/10.1021/jp909225t
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB5qPejFt1gfZVGvqd3NY5NjiS1V1IO20FvJvkCFpLQpiL_e2W4ChaLueTeE2Xl8w-x8A3DLFRqNCrSn7VSTQHO0Oakjz894aJjEEJTYbuTnl2g4Dh4n4aQBN79U8Bm9-5jhftS6cgu2WRRzm2H10rfa3Yaoob4rHSNUDAJe0wetH7WhRy7WQs9aDBnsw33dieOejnx2lqXoyO9NYsa_fu8A9ioMSXru0g-hofMj2Enr0W3H8JAWueVxtTdKXt0rWE0KQ0bvOUF_WliC4gUpC4Lwj_QrImjS-0JlJK5hcK7JU5GpExgP-qN06FUzE7wMfU_p-UpHLKaZMBytzVj6ra421NJsqThWURTwxCSJijHPCE2CaDVGn7dCDYnQhvmn0MyLXJ8BkTTQJsxkyDVDdyoS3hV2ScWl4FS1oI1CnVY6v5iuytkM04laIi24ruU9nTnujM1N5_995QJ2XcXe9yi9hGY5X-orBAKlaK8U4QcweKx4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1V5VAu7IiyFAvBMaVZnRw4VKFVS5cDtFJvJYltCZCSqknF8in8Cj_HOAtUcOBUiZwTy84s7408fgY4pwyDhhlc4fJWE4NTjLmAW4ruUVNoAUKQI08jD4ZWZ2zcTMxJCd6LszA4iRhHitNN_G91AfXycYafofMleQNlj78-Y3kWX3Wv0ZYXmtZujdyOkt8goHgYiYmiM25ptur5gqLvCSlG1eBClaJTzLaZZRnUEY7DbGTdpnCQu9mYAVIMdXwupKgBpvc1JD2aLOya7l2R5U0MDD3bsUaGahi0UC1anqpEvCBeQrwl6GpvwsfXotOOlaf6IvHrwdsPPcj_-Ve2YCNnzKSZufg2lHi4AxW3uKhuF7puFErVWum_5Dbr-eUkEmT0EBJEj0jKMcckiQiSXdLKZa9J8wVDj2THI-ec9COP7cF4JSvZh3IYhfwASKAaXJheYFKuIXj4Dm348gkYDXyqsirU0ADTPMLjabp5r2HxVFigCmeFmaezTCnk90uHf41yCpXOaNCf9rvD3hGsZ70KuqKqx1BO5gt-ghQo8WupLxK4X7WZPwEI3wtX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8NAEB5KBfXiW6yPuogeU5vnJgcPJW1pbS2iLfRWk-wuqJCUJsXHj_Gv-NeczUOKHjwVzDlZdjPz7TfLzHwLcE4ZgoYZXOHyVhODU8RcwC1F96gptAApyJHdyDcDqzMyrsfmuAQfRS8MTiLGkeI0iS9RPWUiVxhQL5-m-Ck6YJIXUfb42wse0eKrbhPteaFp7dbQ7Sj5LQKKh2hMFJ1xS7NVzxcU_U9IQao6F6oUnmK2zSzLoI5wHGZj5G0KB-M3G3eBlEcdnwspbIBb_IpMD8rDXcO9L3Z6E8GhZ1lrjFINgxbKRYtTlawXxAust0Bf7U34_F54WrXyXJsnfi14_6EJ-X__zBZs5JEzaWSuvg0lHu7AmltcWLcLXTcKpXqt9GNyl9X-chIJMnwMCbJIJGWZY5JEBINe0srlr0njFSFIsjbJGSf9yGN7MFrKSvahHEYhPwASqAYXpheYlGtIIr5D6758AkYDn6qsAlU0wiRHejxJk_gaHqIKC1TgrDD1ZJophvx-6fCvUU5h9bbZnvS7g94RrGclC7qiqsdQTmZzfoKRUOJXU3ck8LBsK38BSDMN2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductance+Response+of+Tin+Nanowires+to+the+External+Axial+Pressure+Load&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Gao%2C+F.&rft.au=Li%2C+H.&rft.au=Zhang%2C+X.+Q.&rft.au=Li%2C+Y.+F.&rft.date=2010-03-11&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=114&rft.issue=9&rft.spage=3770&rft.epage=3775&rft_id=info:doi/10.1021%2Fjp909225t&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jp909225t
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon