Conductance Response of Tin Nanowires to the External Axial Pressure Load
Five different optimized Sn nanowires embedded in single-walled carbon nanotubes (SWCNTs) are obtained by means of molecular dynamics (MD) simulation. Growth of Sn nanowires follows a helical or parallel pattern in confined space. Optimized Sn nanowires subject to compression are investigated. Resul...
Saved in:
Published in | Journal of physical chemistry. C Vol. 114; no. 9; pp. 3770 - 3775 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
11.03.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Five different optimized Sn nanowires embedded in single-walled carbon nanotubes (SWCNTs) are obtained by means of molecular dynamics (MD) simulation. Growth of Sn nanowires follows a helical or parallel pattern in confined space. Optimized Sn nanowires subject to compression are investigated. Results reveal that a four-strand-parallel nanowire can resist the highest pressure load among these five kinds of nanowires studied. The growth pattern of a nanowire determines its conductance response to the pressure load. Interestingly, conductance of double-helical and four-strand-parallel nanowires (which have an even number of atomic chains) increases with pressure load, while the conductance of three-strand-helical and five-strand-helical nanowires (which have an odd number of atomic chains) is found to decrease with pressure load. On the basis of the conductance response of the nanowire to the external pressure load, nanosensors can be fabricated to detect the stress and strain of nanostructured materials. |
---|---|
AbstractList | Five different optimized Sn nanowires embedded in single-walled carbon nanotubes (SWCNTs) are obtained by means of molecular dynamics (MD) simulation. Growth of Sn nanowires follows a helical or parallel pattern in confined space. Optimized Sn nanowires subject to compression are investigated. Results reveal that a four-strand-parallel nanowire can resist the highest pressure load among these five kinds of nanowires studied. The growth pattern of a nanowire determines its conductance response to the pressure load. Interestingly, conductance of double-helical and four-strand-parallel nanowires (which have an even number of atomic chains) increases with pressure load, while the conductance of three-strand-helical and five-strand-helical nanowires (which have an odd number of atomic chains) is found to decrease with pressure load. On the basis of the conductance response of the nanowire to the external pressure load, nanosensors can be fabricated to detect the stress and strain of nanostructured materials. |
Author | Li, H Zhang, X. Q Li, Y. F Liew, K. M Gao, F |
Author_xml | – sequence: 1 givenname: F surname: Gao fullname: Gao, F – sequence: 2 givenname: H surname: Li fullname: Li, H email: lihuilmy@hotmail.com – sequence: 3 givenname: X. Q surname: Zhang fullname: Zhang, X. Q – sequence: 4 givenname: Y. F surname: Li fullname: Li, Y. F – sequence: 5 givenname: K. M surname: Liew fullname: Liew, K. M |
BookMark | eNptkMFKAzEQhoNUsK0efINcPHhYnUmazeZYSq2FoiL1vKSbCW6pSUm2WN_elkpPXuYf-D-G4RuwXoiBGLtFeEAQ-LjeGjBCqO6C9dFIUeiRUr3zPtJXbJDzGkBJQNln80kMbtd0NjTE3ylvY8jEo-fLNvAXG-J3myjzLvLuk_h031EKdsPH-_Yw3w5V3iXii2jdNbv0dpPp5i-H7ONpupw8F4vX2XwyXhRWoOkK6agUFdqV1wrBawMKyKMGWbqqcmU50sYb4yqlS-VNha5CJRUYBLMiL-SQ3Z_uNinmnMjX29R-2fRTI9RHB_XZwYG9O7G2yfU67o6_53-4X6dwW2c |
Cites_doi | 10.1103/PhysRevB.71.115441 10.1063/1.1601692 10.1063/1.2750413 10.1063/1.2787150 10.1103/PhysRevB.75.195127 10.1063/1.448799 10.1103/RevModPhys.71.S306 10.1103/PhysRevB.69.214526 10.1557/mrs2007.47 10.1038/27405 10.1038/27399 10.1103/PhysRevLett.85.4124 10.1103/PhysRevLett.69.140 10.1063/1.2759471 10.1103/PhysRevB.64.035416 10.1063/1.1592313 10.1016/S0301-0104(02)00496-2 10.1021/cm052219o 10.1002/adma.200390087 10.1063/1.2345061 10.1103/PhysRevLett.84.979 10.1002/qua.21946 10.1126/science.285.5426.391 10.1063/1.1826237 10.1002/smll.200500303 10.1021/nl080850t 10.1103/PhysRevB.71.104521 10.1021/nl060245v 10.1103/PhysRevLett.88.176804 10.1103/PhysRevB.58.6775 10.1063/1.464913 10.1021/cm0504337 10.1038/nature04796 10.1021/nl0602387 10.1103/PhysRevLett.79.2316 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/jp909225t |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Response of Tin Nanowires to Pressure Load |
EISSN | 1932-7455 |
EndPage | 3775 |
ExternalDocumentID | 10_1021_jp909225t i21491523 |
GroupedDBID | .K2 4.4 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL UI2 UKR VF5 VG9 VQA W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a219t-3de6281abf7510f79050ef17036d88d66479f99d85765f981d8153509109bef23 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Tue Jul 01 03:35:34 EDT 2025 Thu Aug 27 13:43:20 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a219t-3de6281abf7510f79050ef17036d88d66479f99d85765f981d8153509109bef23 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1021_jp909225t acs_journals_10_1021_jp909225t |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20100311 2010-03-11 |
PublicationDateYYYYMMDD | 2010-03-11 |
PublicationDate_xml | – month: 03 year: 2010 text: 20100311 day: 11 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Tian M. (ref7/cit7) 2003; 83 Muller C. J. (ref22/cit22) 1992; 69 Zhang Y. H. (ref26/cit26) 2009; 109 Han J. E. (ref8/cit8) 2004; 69 Xiang J. (ref18/cit18) 2006; 441 Noh M. (ref5/cit5) 2005; 17 Hu J. (ref3/cit3) 2006; 6 Yin X. (ref27/cit27) 2006; 125 Paulsson M. (ref39/cit39) 2001; 64 Collier C. P. (ref38/cit38) 1999; 285 Patolsky F. (ref17/cit17) 2007; 32 Rogachev A. (ref9/cit9) 2003; 83 Hsu Y. J. (ref4/cit4) 2006; 2 Imry Y. (ref35/cit35) 1999; 71 Rodrigues V. (ref19/cit19) 2000; 85 Yanson A. I. (ref21/cit21) 1998; 395 Molaresa M. T. (ref13/cit13) 2004; 85 Li C. Z. (ref24/cit24) 1998; 58 Kang Y. J. (ref1/cit1) 2005; 71 Li H. (ref34/cit34) 2007; 102 Jankovic L. (ref10/cit10) 2006; 6 Tombros N. (ref14/cit14) 2008; 8 García-Mochales P. (ref23/cit23) 1997; 79 Wang Y. (ref6/cit6) 2006; 18 Xia Y. (ref2/cit2) 2003; 15 Di Ventra M. (ref37/cit37) 2000; 84 Damle P. S. (ref29/cit29) 2002; 281 Zheng X. (ref15/cit15) 2007; 75 Hay P. (ref31/cit31) 1985; 82 Tian M. (ref11/cit11) 2005; 71 Becke A. D. (ref32/cit32) 1993; 98 ref33/cit33 Damle P. S. (ref36/cit36) 2002; 281 ref30/cit30 Ohnishi H. (ref20/cit20) 1998; 395 Lucot D. (ref12/cit12) 2007; 91 Reichert J. (ref16/cit16) 2002; 88 Zhang X. Q. (ref25/cit25) 2007; 102 |
References_xml | – volume: 71 start-page: 115441 year: 2005 ident: ref1/cit1 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.115441 – volume: 83 start-page: 1620 year: 2003 ident: ref7/cit7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1601692 – volume: 102 start-page: 013702 year: 2007 ident: ref34/cit34 publication-title: J. Appl. Phys. doi: 10.1063/1.2750413 – volume: 102 start-page: 073709 year: 2007 ident: ref25/cit25 publication-title: J. Appl. Phys. doi: 10.1063/1.2787150 – volume: 75 start-page: 195127 year: 2007 ident: ref15/cit15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.195127 – volume: 82 start-page: 270 year: 1985 ident: ref31/cit31 publication-title: J. Chem. Phys. doi: 10.1063/1.448799 – volume: 71 start-page: S306 year: 1999 ident: ref35/cit35 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.71.S306 – volume: 69 start-page: 214526 year: 2004 ident: ref8/cit8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.69.214526 – volume: 32 start-page: 142 year: 2007 ident: ref17/cit17 publication-title: MRS Bull. doi: 10.1557/mrs2007.47 – volume: 395 start-page: 783 year: 1998 ident: ref21/cit21 publication-title: Nature doi: 10.1038/27405 – volume: 395 start-page: 780 year: 1998 ident: ref20/cit20 publication-title: Nature doi: 10.1038/27399 – volume: 85 start-page: 4124 year: 2000 ident: ref19/cit19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.4124 – volume: 69 start-page: 140 year: 1992 ident: ref22/cit22 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.140 – volume: 91 start-page: 042502 year: 2007 ident: ref12/cit12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2759471 – ident: ref33/cit33 – volume: 64 start-page: 035416 year: 2001 ident: ref39/cit39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.64.035416 – volume: 83 start-page: 512 year: 2003 ident: ref9/cit9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1592313 – volume: 281 start-page: 171 year: 2002 ident: ref36/cit36 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(02)00496-2 – volume: 18 start-page: 1347 year: 2006 ident: ref6/cit6 publication-title: Chem. Mater. doi: 10.1021/cm052219o – volume: 15 start-page: 353 year: 2003 ident: ref2/cit2 publication-title: Adv. Mater. doi: 10.1002/adma.200390087 – volume: 125 start-page: 094711 year: 2006 ident: ref27/cit27 publication-title: J. Chem. Phys. doi: 10.1063/1.2345061 – volume: 84 start-page: 979 year: 2000 ident: ref37/cit37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.979 – volume: 109 start-page: 1385 year: 2009 ident: ref26/cit26 publication-title: Int. J. Quantum Chem. doi: 10.1002/qua.21946 – volume: 285 start-page: 391 year: 1999 ident: ref38/cit38 publication-title: Science doi: 10.1126/science.285.5426.391 – volume: 85 start-page: 5337 year: 2004 ident: ref13/cit13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1826237 – volume: 2 start-page: 268 year: 2006 ident: ref4/cit4 publication-title: Small doi: 10.1002/smll.200500303 – volume: 8 start-page: 3060 issue: 9 year: 2008 ident: ref14/cit14 publication-title: Nano Lett. doi: 10.1021/nl080850t – volume: 71 start-page: 104521 year: 2005 ident: ref11/cit11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.104521 – volume: 6 start-page: 1136 year: 2006 ident: ref3/cit3 publication-title: Nano Lett. doi: 10.1021/nl060245v – volume: 88 start-page: 176804 year: 2002 ident: ref16/cit16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.176804 – volume: 58 start-page: 6775 year: 1998 ident: ref24/cit24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.58.6775 – volume: 98 start-page: 5648 year: 1993 ident: ref32/cit32 publication-title: J. Chem. Phys. doi: 10.1063/1.464913 – volume: 17 start-page: 3320 year: 2005 ident: ref5/cit5 publication-title: Chem. Mater. doi: 10.1021/cm0504337 – volume: 441 start-page: 489 year: 2006 ident: ref18/cit18 publication-title: Nature doi: 10.1038/nature04796 – volume: 6 start-page: 1131 year: 2006 ident: ref10/cit10 publication-title: Nano Lett. doi: 10.1021/nl0602387 – volume: 79 start-page: 2316 year: 1997 ident: ref23/cit23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.2316 – ident: ref30/cit30 – volume: 281 start-page: 171 year: 2002 ident: ref29/cit29 publication-title: Chem. Phys. doi: 10.1016/S0301-0104(02)00496-2 |
SSID | ssj0053013 |
Score | 1.9425544 |
Snippet | Five different optimized Sn nanowires embedded in single-walled carbon nanotubes (SWCNTs) are obtained by means of molecular dynamics (MD) simulation. Growth... |
SourceID | crossref acs |
SourceType | Index Database Publisher |
StartPage | 3770 |
SubjectTerms | C: Nanops and Nanostructures |
Title | Conductance Response of Tin Nanowires to the External Axial Pressure Load |
URI | http://dx.doi.org/10.1021/jp909225t |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8NAEB5qPejFt1gfZVGvqd3NY5NjiS1V1IO20FvJvkCFpLQpiL_e2W4ChaLueTeE2Xl8w-x8A3DLFRqNCrSn7VSTQHO0Oakjz894aJjEEJTYbuTnl2g4Dh4n4aQBN79U8Bm9-5jhftS6cgu2WRRzm2H10rfa3Yaoob4rHSNUDAJe0wetH7WhRy7WQs9aDBnsw33dieOejnx2lqXoyO9NYsa_fu8A9ioMSXru0g-hofMj2Enr0W3H8JAWueVxtTdKXt0rWE0KQ0bvOUF_WliC4gUpC4Lwj_QrImjS-0JlJK5hcK7JU5GpExgP-qN06FUzE7wMfU_p-UpHLKaZMBytzVj6ra421NJsqThWURTwxCSJijHPCE2CaDVGn7dCDYnQhvmn0MyLXJ8BkTTQJsxkyDVDdyoS3hV2ScWl4FS1oI1CnVY6v5iuytkM04laIi24ruU9nTnujM1N5_995QJ2XcXe9yi9hGY5X-orBAKlaK8U4QcweKx4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB1V5VAu7IiyFAvBMaVZnRw4VKFVS5cDtFJvJYltCZCSqknF8in8Cj_HOAtUcOBUiZwTy84s7408fgY4pwyDhhlc4fJWE4NTjLmAW4ruUVNoAUKQI08jD4ZWZ2zcTMxJCd6LszA4iRhHitNN_G91AfXycYafofMleQNlj78-Y3kWX3Wv0ZYXmtZujdyOkt8goHgYiYmiM25ptur5gqLvCSlG1eBClaJTzLaZZRnUEY7DbGTdpnCQu9mYAVIMdXwupKgBpvc1JD2aLOya7l2R5U0MDD3bsUaGahi0UC1anqpEvCBeQrwl6GpvwsfXotOOlaf6IvHrwdsPPcj_-Ve2YCNnzKSZufg2lHi4AxW3uKhuF7puFErVWum_5Dbr-eUkEmT0EBJEj0jKMcckiQiSXdLKZa9J8wVDj2THI-ec9COP7cF4JSvZh3IYhfwASKAaXJheYFKuIXj4Dm348gkYDXyqsirU0ADTPMLjabp5r2HxVFigCmeFmaezTCnk90uHf41yCpXOaNCf9rvD3hGsZ70KuqKqx1BO5gt-ghQo8WupLxK4X7WZPwEI3wtX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LS8NAEB5KBfXiW6yPuogeU5vnJgcPJW1pbS2iLfRWk-wuqJCUJsXHj_Gv-NeczUOKHjwVzDlZdjPz7TfLzHwLcE4ZgoYZXOHyVhODU8RcwC1F96gptAApyJHdyDcDqzMyrsfmuAQfRS8MTiLGkeI0iS9RPWUiVxhQL5-m-Ck6YJIXUfb42wse0eKrbhPteaFp7dbQ7Sj5LQKKh2hMFJ1xS7NVzxcU_U9IQao6F6oUnmK2zSzLoI5wHGZj5G0KB-M3G3eBlEcdnwspbIBb_IpMD8rDXcO9L3Z6E8GhZ1lrjFINgxbKRYtTlawXxAust0Bf7U34_F54WrXyXJsnfi14_6EJ-X__zBZs5JEzaWSuvg0lHu7AmltcWLcLXTcKpXqt9GNyl9X-chIJMnwMCbJIJGWZY5JEBINe0srlr0njFSFIsjbJGSf9yGN7MFrKSvahHEYhPwASqAYXpheYlGtIIr5D6758AkYDn6qsAlU0wiRHejxJk_gaHqIKC1TgrDD1ZJophvx-6fCvUU5h9bbZnvS7g94RrGclC7qiqsdQTmZzfoKRUOJXU3ck8LBsK38BSDMN2g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conductance+Response+of+Tin+Nanowires+to+the+External+Axial+Pressure+Load&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Gao%2C+F.&rft.au=Li%2C+H.&rft.au=Zhang%2C+X.+Q.&rft.au=Li%2C+Y.+F.&rft.date=2010-03-11&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=114&rft.issue=9&rft.spage=3770&rft.epage=3775&rft_id=info:doi/10.1021%2Fjp909225t&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jp909225t |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |