Heuristic Search The Emerging Science of Problem Solving

This book aims to provide a general overview of heuristic search, to present the basic steps of the most popular heuristics, and to stress their hidden difficulties as well as their opportunities. It provides a comprehensive understanding of Heuristic search, the applications of which are now widely...

Full description

Saved in:
Bibliographic Details
Main Author Salhi, Saïd
Format eBook Publication
LanguageEnglish
Published Cham Springer International Publishing 2017
Springer International Publishing AG
Palgrave Macmillan
Edition1
SeriesSpringerLink
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • A Simple Example of a Basic SA Implementation -- SA Key Elements -- Initial Value of the Temperature -- The Final Temperature Tf -- The Updating of the Temperature -- Flexibility in Resetting the Temperature -- The Evaluation Function Speed Ups -- Stopping Criteria -- Some Thoughts -- 3.2 TA Heuristics -- Algorithm 3.2: A Basic TA Heuristic -- Record to Record Heuristic -- List-Based TA -- Some Thoughts -- 3.3 Tabu Search (TS) -- Basic Terminology -- The TS Algorithm -- Algorithm 3.3: A Basic TS Heuristic -- Basic Explanations of the Steps -- TS Key Elements -- Tabu Restrictions -- Tabu List Size |Ts| -- Constant |Ts| -- Dynamic Changes in |Ts| -- Soft Aspiration Level -- Softer Aspiration Level -- Diversification and Intensification -- Strategic Oscillation (SO) -- Some Thoughts -- 3.4 Summary -- References -- 4: Population-Based Heuristics -- 4.1 Genetic Algorithms -- Algorithm 4.1: A Basic Genetic Algorithm -- Chromosome Representation -- Integer/Real Numbers Representation -- GA Operators -- Bit Mutation -- Inversion -- Crossover Operators -- One Point Crossover -- Multi Points Crossover -- PMX Operator -- Reproduction/Selection Mechanisms -- Tournament Selection -- Matching Issues -- Flexible Reproduction -- Effect of Migration -- Fitness Function Representation -- Some Thoughts -- 4.2 Scatter Search -- Algorithm 4.2: A Basic Scatter Search Heuristic -- Some Thoughts -- 4.3 Harmony Search -- Illustrative Example -- Algorithm 4.3: Basic Harmony Search Heuristic -- Discrete Case -- Some Thoughts -- 4.4 Differential Evolution -- Algorithm 4.4: A Basic Differential Evolution Heuristic -- Some Thoughts -- 4.5 Ant Colonies -- Introduction to Ant System -- Selection Rule -- Local Updating -- Global Updating -- The AS Algorithm -- Algorithm 4.5: A Basic AS Heuristic -- Ant Colony System -- Modified Transition Rule -- Local Updating -- Other Variants
  • Intro -- Preface -- Acknowledgements -- Contents -- List of Algorithms -- List of Figures -- List of Table -- 1: Introduction -- 1.1 Introduction -- 1.2 The Optimisation Problem -- Local versus Global Optimality -- Local Search -- 1.3 Possible Methodological Approaches -- Algorithm 1.1: A Possible Recursive Methodological Approach -- 1.4 Need for Heuristics -- 1.5 Some Characteristics of Heuristics -- 1.6 Complexity and Performance of Heuristics -- Solution Quality -- Computational Effort -- Time Complexity -- Space Complexity -- `Real´ Meaning of Large or Small Computing Time -- 1.7 A Possible Heuristic Classification -- 1.8 Summary -- References -- 2: Improvement-Only Heuristics -- 2.1 Neighbourhood Definition and Examples -- The Travelling Salesman Problem -- The p-Median Problem -- The Bin Packing Problem -- The Vehicle Routing Problem -- Non-linear Optimisation Problems -- 2.2 Basic Descent or Hill Climbing Method -- Algorithm 2.1: The Basic Descent Method -- Initial Solutions (Step 1) -- Construction-Based Heuristics for the TSP -- Basic Enhancement of Step 1 in BDM -- Improvement Phase of the BDM (Step 2) -- Selection Strategies -- 2.3 Classical Multi-Start -- 2.4 GRASP -- Algorithm 2.2: A Basic GRASP -- Some Thoughts -- 2.5 Simple Composite Heuristics -- Algorithm 2.3: A Basic Composite Heuristic -- 2.6 A Multi-Level Composite Heuristic -- Algorithm 2.4: A Basic Multi-level Heuristic -- Some Thoughts -- 2.7 Variable Neighbourhood Search -- Algorithm 2.5: A Basic VNS Heuristic -- Some Thoughts -- 2.8 Problem Perturbation Heuristics -- Related Approaches -- Some Thoughts -- 2.9 Other Improving Only Methods -- Large Neighbourhood Search -- Iterated Local Search -- Guided Local Search -- 2.10 Summary -- References -- 3: Not Necessary Improving Heuristics -- 3.1 Simulated Annealing -- The Physical Analogy -- Algorithm 3.1: A Basic SA Heuristic
  • A Simple Implementation and Adaptation -- 6.5 Parameters Estimation/Adaptive Search -- 6.6 Constraint Handling via SO -- 6.7 Impact of Parallelisation -- Master-Slaves Model -- Speed of Parallel Processing -- Internal Parallel Processing -- Effect of GPU -- 6.8 Fuzzy Logic -- 6.9 Dealing with Multiple Objectives -- 6.10 Summary -- References -- 7: Applications, Conclusion and Research Challenges -- 7.1 Real-Life Applications -- Radiotherapy -- Sport Management -- Manpower Scheduling -- Computational Chemistry -- Distribution Management (Routing) -- Location Issues -- Financial Portfolio Management -- Civil Engineering -- Chemical Engineering -- Other Engineering Applications -- General/Academic Type Applications -- 7.2 Conclusion -- 7.3 Research Challenges -- References -- Index
  • Some Thoughts -- 4.6 The Bees Algorithm -- Algorithm 4.6: A Basic Bees Algorithm -- Algorithm 4.7: The ABC Algorithm -- Some Thoughts -- 4.7 Particle Swarm Optimisation -- Algorithm 4.8: A Basic PSO Heuristic -- Some Thoughts -- 4.8 A Brief on Other Population-Based Approaches -- Path Relinking -- CE-Based Algorithms -- Artificial Immune Systems -- The Plant Propagation Algorithm -- Psycho-Clonal Algorithm -- 4.9 Summary -- References -- 5: Hybridisation Search -- 5.1 Hybridisation of Heuristics with Heuristics -- Hyper-Heuristics -- Constructive Hyper-Heuristics -- A Brute Force Approach -- A Random Scheme -- A Learning-Based Approach -- Improvement Metaheuristics -- MA and Its Variants -- A Brief on Other Metaheuristic Hybridisations -- 5.2 Integrating Heuristics Within Exact Methods -- Injection of UB -- Tightening of LB and UB -- Lagrangean Relaxation Heuristics (LRH) -- Illustrative Example -- Reduction/Relaxation-Based Schemes -- Kernel Search -- Regular Seeking of New UBs -- Local Branching -- 5.3 Integration of ILP Within Heuristics/Metaheuristics -- Problem Decomposition -- Heuristic Concentration (HC) -- Multi-level Decomposition -- 5.4 Data Mining Hybridisation Search -- 5.5 Summary -- References -- 6: Implementation Issues -- 6.1 Data Structure -- Avoidance of the Recomputation of Already Computed Information -- Elimination of Common Tasks Which Are Used in Several Parts of the Method -- Avoidance of Extra Computation -- Tree-Based DS -- 6.2 Duplication Identification -- Hashing Function -- Simultaneous Use of Multiple Simple Performance Functions -- String-Based Checks -- Set-Based Identifications -- 6.3 Approximation Effect on Cost Function Evaluation -- 6.4 Reduction Tests/Neighbourhood Reduction -- Proximity-Based Scheme (Rule 1) -- Relaxing Flag(i,j) Due to Depot Location (Rule 2) -- Angle-Based Scheme (Rule 3)