Protein Adsorption on Solid Surfaces: Data Mining, Database, Molecular Surface-Derived Properties, and Semiempirical Relationships
Protein adsorption on solid surfaces is a process relevant to biological, medical, industrial, and environmental applications. Despite this wide interest and advancement in measurement techniques, the complexity of protein adsorption has frustrated its accurate prediction. To address this challenge,...
Saved in:
Published in | ACS applied materials & interfaces Vol. 16; no. 22; pp. 28290 - 28306 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Protein adsorption on solid surfaces is a process relevant to biological, medical, industrial, and environmental applications. Despite this wide interest and advancement in measurement techniques, the complexity of protein adsorption has frustrated its accurate prediction. To address this challenge, here, data regarding protein adsorption reported in the last four decades was collected, checked for completeness and correctness, organized, and archived in an upgraded, freely accessible Biomolecular Adsorption Database, which is equivalent to a large-scale, ad hoc, crowd-sourced multifactorial experiment. The shape and physicochemical properties of the proteins present in the database were quantified on their molecular surfaces using an in-house program (ProMS) operating as an add-on to the PyMol software. Machine learning-based analysis indicated that protein adsorption on hydrophobic and hydrophilic surfaces is modulated by different sets of operational, structural, and molecular surface-based physicochemical parameters. Separately, the adsorption data regarding four “benchmark” proteins, i.e., lysozyme, albumin, IgG, and fibrinogen, was processed by piecewise linear regression with the protein monolayer acting as breakpoint, using the linearization of the Langmuir isotherm formalism, resulting in semiempirical relationships predicting protein adsorption. These relationships, derived separately for hydrophilic and hydrophobic surfaces, described well the protein concentration on the surface as a function of the protein concentration in solution, adsorbing surface contact angle, ionic strength, pH, and temperature of the carrying fluid, and the difference between pH and the isoelectric point of the protein. When applying the semiempirical relationships derived for benchmark proteins to two other “test” proteins with known PDB structure, i.e., β-lactoglobulin and α-lactalbumin, the errors of this extrapolation were found to be in a linear relationship with the dissimilarity between the benchmark and the test proteins. The work presented here can be used for the estimation of operational parameters modulating protein adsorption for various applications such as diagnostic devices, pharmaceuticals, biomaterials, or the food industry. |
---|---|
AbstractList | Protein adsorption on solid surfaces is a process relevant to biological, medical, industrial, and environmental applications. Despite this wide interest and advancement in measurement techniques, the complexity of protein adsorption has frustrated its accurate prediction. To address this challenge, here, data regarding protein adsorption reported in the last four decades was collected, checked for completeness and correctness, organized, and archived in an upgraded, freely accessible Biomolecular Adsorption Database, which is equivalent to a large-scale, ad hoc, crowd-sourced multifactorial experiment. The shape and physicochemical properties of the proteins present in the database were quantified on their molecular surfaces using an in-house program (ProMS) operating as an add-on to the PyMol software. Machine learning-based analysis indicated that protein adsorption on hydrophobic and hydrophilic surfaces is modulated by different sets of operational, structural, and molecular surface-based physicochemical parameters. Separately, the adsorption data regarding four "benchmark" proteins, i.e., lysozyme, albumin, IgG, and fibrinogen, was processed by piecewise linear regression with the protein monolayer acting as breakpoint, using the linearization of the Langmuir isotherm formalism, resulting in semiempirical relationships predicting protein adsorption. These relationships, derived separately for hydrophilic and hydrophobic surfaces, described well the protein concentration on the surface as a function of the protein concentration in solution, adsorbing surface contact angle, ionic strength, pH, and temperature of the carrying fluid, and the difference between pH and the isoelectric point of the protein. When applying the semiempirical relationships derived for benchmark proteins to two other "test" proteins with known PDB structure, i.e., β-lactoglobulin and α-lactalbumin, the errors of this extrapolation were found to be in a linear relationship with the dissimilarity between the benchmark and the test proteins. The work presented here can be used for the estimation of operational parameters modulating protein adsorption for various applications such as diagnostic devices, pharmaceuticals, biomaterials, or the food industry. |
Author | Solana, Gerardin Mahmoodi, Zahra Arias Montecillo, Maru Shetty, Prasad Nicolau, Dan V. Cho, Matthew Harrison, Lauren R. Perumal, Ayyappasamy Sudalaiyadum |
AuthorAffiliation | Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Peter Gorer Department of Immunobiology Faculty of Engineering, Department of Bioengineering |
AuthorAffiliation_xml | – name: Faculty of Engineering, Department of Bioengineering – name: Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Peter Gorer Department of Immunobiology |
Author_xml | – sequence: 1 givenname: Matthew surname: Cho fullname: Cho, Matthew organization: Faculty of Engineering, Department of Bioengineering – sequence: 2 givenname: Zahra surname: Mahmoodi fullname: Mahmoodi, Zahra organization: Faculty of Engineering, Department of Bioengineering – sequence: 3 givenname: Prasad surname: Shetty fullname: Shetty, Prasad organization: Faculty of Engineering, Department of Bioengineering – sequence: 4 givenname: Lauren R. surname: Harrison fullname: Harrison, Lauren R. organization: Faculty of Engineering, Department of Bioengineering – sequence: 5 givenname: Maru surname: Arias Montecillo fullname: Arias Montecillo, Maru organization: Faculty of Engineering, Department of Bioengineering – sequence: 6 givenname: Ayyappasamy Sudalaiyadum surname: Perumal fullname: Perumal, Ayyappasamy Sudalaiyadum organization: Faculty of Engineering, Department of Bioengineering – sequence: 7 givenname: Gerardin surname: Solana fullname: Solana, Gerardin – sequence: 8 givenname: Dan V. surname: Nicolau fullname: Nicolau, Dan V. organization: Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Peter Gorer Department of Immunobiology – sequence: 9 givenname: Dan V. orcidid: 0000-0002-9956-0600 surname: Nicolau fullname: Nicolau, Dan V. email: dan.nicolau@mcgill.ca organization: Faculty of Engineering, Department of Bioengineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38787331$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kMtLxDAQh4Mo6qpXj5KjyHbNo21ab4tvcFF8nEuaTDXSJjVpBa_-5UZ39SYEJoFvvsz8JmjdOgsI7VMyo4TRY6mC7MwsVSQXWbmGtmmZpknBMrb-d0_TLTQJ4ZWQnDOSbaItXohCcE630eeddwMYi-c6ON8Pxlkcz4NrjcYPo2-kgnCCz-Qg8cJYY5-nP49aBpjihWtBja30v2hyBt68g8ZR24MfDIQpljaqoDPQ9cYbJVt8D638_iq8mD7soo1GtgH2VnUHPV2cP55eJTe3l9en85tEMpoNiRJx-FzmVCnQUtVlo0HTmoFOBaVC0DoOpYpc55CVTcMAoBZMsJLzmE6j-A46XHp7795GCEPVmaCgbaUFN4aKk5xwUWQFj-hsiSrvQvDQVL03nfQfFSXVd-7VMvdqlXtsOFi5x7oD_Yf_Bh2BoyUQG6tXN3obV_3P9gXGX5IJ |
Cites_doi | 10.1021/bk-2012-1120.ch001 10.1016/j.actbio.2019.06.022 10.1007/3-540-26578-3_14 10.1371/journal.pone.0058896 10.1016/S0304-4157(98)00021-5 10.1021/bk-1995-0602 10.1016/j.cis.2010.12.007 10.1098/rsfs.2012.0012 10.1517/17425247.2011.577062 10.1016/j.colsurfb.2020.110992 10.1007/s12274-020-2735-7 10.1038/s41598-018-36597-5 10.1002/jssc.202001188 10.1016/j.polymer.2005.03.012 10.3389/fcimb.2014.00171 10.1002/ceat.200800082 10.1016/S0927-7757(99)00069-2 10.1016/j.bios.2016.08.061 10.1111/aor.13274 10.1023/A:1025712326321 10.1016/j.colsurfb.2014.06.050 10.1039/b813475h 10.1093/protein/7.9.1059 10.1016/j.colsurfb.2017.12.006 10.1002/jbm.a.35235 10.1016/0032-5910(96)03106-3 10.1016/0263-7855(93)87010-3 10.2217/nnm-2017-0178 10.5301/JABB.2010.6093 10.1038/nrm1784 10.1016/j.chroma.2007.02.041 10.1088/1361-6528/ac5e6c 10.1038/srep12550 10.1039/D0RA09432C 10.1093/nar/28.1.235 10.1021/bk-1987-0343.ch001 10.1016/j.cej.2013.11.030 10.2217/nnm.15.188 10.1557/s43577-022-00417-z 10.1021/acs.langmuir.0c02260 10.1016/j.progsurf.2012.02.001 10.1126/science.6879170 10.1002/elsc.201300090 10.1016/j.impact.2020.100207 10.1021/acsbiomaterials.0c01008 10.1126/sciadv.abm0898 10.1073/pnas.1002347107 10.1002/9781119477891 10.1016/j.snb.2011.10.022 10.1016/j.surfcoat.2013.04.028 10.1016/S0022-1759(99)00051-4 10.1016/j.cocis.2018.11.004 10.1371/journal.pone.0114042 10.1073/pnas.85.8.2444 10.1186/s12951-015-0114-4 10.1021/ac0494275 10.1007/s10930-011-9384-3 10.1002/adma.200802057 10.1021/acsami.1c00642 10.3389/fbioe.2018.00060 10.1016/j.colsurfb.2019.110756 10.1016/j.cej.2021.129872 10.1039/C9NR10009A 10.1016/j.micron.2005.03.007 10.1088/0953-8984/18/18/S01 10.1006/abio.2000.4894 10.1016/j.cocis.2018.12.004 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1021/acsami.4c06759 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1944-8252 |
EndPage | 28306 |
ExternalDocumentID | 10_1021_acsami_4c06759 38787331 b179806737 |
Genre | Journal Article |
GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH ABFRP ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ EBS ED~ F5P GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-a215t-c73206a61ccedacb9fded1b2ed4711771babac86d6e59ff2eeeb72729334c0fc3 |
IEDL.DBID | ACS |
ISSN | 1944-8244 |
IngestDate | Sat Oct 26 05:01:03 EDT 2024 Fri Aug 23 01:14:23 EDT 2024 Sat Nov 02 12:25:51 EDT 2024 Tue Jun 25 16:50:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | protein adsorption database multilinear regression with breakpoint atomic hydrophobicity molecular surface Langmuir isotherm |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a215t-c73206a61ccedacb9fded1b2ed4711771babac86d6e59ff2eeeb72729334c0fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9956-0600 |
PMID | 38787331 |
PQID | 3060378583 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_3060378583 crossref_primary_10_1021_acsami_4c06759 pubmed_primary_38787331 acs_journals_10_1021_acsami_4c06759 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-24 |
PublicationDateYYYYMMDD | 2024-05-24 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied materials & interfaces |
PublicationTitleAlternate | ACS Appl. Mater. Interfaces |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref59/cit59 ref2/cit2 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 (ref28/cit28) 2021 ref61/cit61 ref67/cit67 ref24/cit24 ref38/cit38 Beynon R. (ref31/cit31) 2003 Eibl R. (ref69/cit69) 2019 ref50/cit50 ref64/cit64 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 Weiner H. (ref10/cit10) 2005 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 Horbett T. A. (ref34/cit34) 1987; 343 ref44/cit44 ref7/cit7 |
References_xml | – volume-title: The PyMOL Molecular Graphics System year: 2021 ident: ref28/cit28 – ident: ref36/cit36 doi: 10.1021/bk-2012-1120.ch001 – ident: ref56/cit56 doi: 10.1016/j.actbio.2019.06.022 – start-page: 279 volume-title: Microarray Technology and Its Applications year: 2005 ident: ref10/cit10 doi: 10.1007/3-540-26578-3_14 contributor: fullname: Weiner H. – ident: ref24/cit24 doi: 10.1371/journal.pone.0058896 – ident: ref27/cit27 doi: 10.1016/S0304-4157(98)00021-5 – ident: ref35/cit35 doi: 10.1021/bk-1995-0602 – ident: ref50/cit50 doi: 10.1016/j.cis.2010.12.007 – ident: ref49/cit49 doi: 10.1098/rsfs.2012.0012 – ident: ref5/cit5 doi: 10.1517/17425247.2011.577062 – ident: ref16/cit16 doi: 10.1016/j.colsurfb.2020.110992 – ident: ref37/cit37 doi: 10.1007/s12274-020-2735-7 – ident: ref42/cit42 doi: 10.1038/s41598-018-36597-5 – ident: ref64/cit64 doi: 10.1002/jssc.202001188 – ident: ref45/cit45 doi: 10.1016/j.polymer.2005.03.012 – ident: ref2/cit2 doi: 10.3389/fcimb.2014.00171 – ident: ref63/cit63 doi: 10.1002/ceat.200800082 – ident: ref30/cit30 doi: 10.1016/S0927-7757(99)00069-2 – ident: ref38/cit38 doi: 10.1016/j.bios.2016.08.061 – ident: ref4/cit4 doi: 10.1111/aor.13274 – ident: ref9/cit9 doi: 10.1023/A:1025712326321 – volume-title: Buffer Solutions year: 2003 ident: ref31/cit31 contributor: fullname: Beynon R. – ident: ref54/cit54 doi: 10.1016/j.colsurfb.2014.06.050 – ident: ref8/cit8 doi: 10.1039/b813475h – ident: ref17/cit17 doi: 10.1093/protein/7.9.1059 – ident: ref55/cit55 doi: 10.1016/j.colsurfb.2017.12.006 – ident: ref67/cit67 doi: 10.1002/jbm.a.35235 – ident: ref29/cit29 doi: 10.1016/0032-5910(96)03106-3 – ident: ref26/cit26 doi: 10.1016/0263-7855(93)87010-3 – ident: ref11/cit11 doi: 10.2217/nnm-2017-0178 – ident: ref52/cit52 doi: 10.5301/JABB.2010.6093 – ident: ref1/cit1 doi: 10.1038/nrm1784 – ident: ref58/cit58 doi: 10.1016/j.chroma.2007.02.041 – ident: ref18/cit18 doi: 10.1088/1361-6528/ac5e6c – ident: ref32/cit32 doi: 10.1038/srep12550 – ident: ref15/cit15 doi: 10.1039/D0RA09432C – ident: ref21/cit21 doi: 10.1093/nar/28.1.235 – volume: 343 start-page: 1 volume-title: Proteins at Interfaces year: 1987 ident: ref34/cit34 doi: 10.1021/bk-1987-0343.ch001 contributor: fullname: Horbett T. A. – ident: ref62/cit62 doi: 10.1016/j.cej.2013.11.030 – ident: ref12/cit12 doi: 10.2217/nnm.15.188 – ident: ref47/cit47 doi: 10.1557/s43577-022-00417-z – ident: ref20/cit20 doi: 10.1021/acs.langmuir.0c02260 – ident: ref48/cit48 doi: 10.1016/j.progsurf.2012.02.001 – ident: ref25/cit25 doi: 10.1126/science.6879170 – ident: ref59/cit59 doi: 10.1002/elsc.201300090 – ident: ref40/cit40 doi: 10.1016/j.impact.2020.100207 – ident: ref41/cit41 doi: 10.1021/acsbiomaterials.0c01008 – ident: ref39/cit39 doi: 10.1126/sciadv.abm0898 – ident: ref57/cit57 doi: 10.1073/pnas.1002347107 – volume-title: Single-use Technology In Biopharmaceutical Manufacture year: 2019 ident: ref69/cit69 doi: 10.1002/9781119477891 contributor: fullname: Eibl R. – ident: ref60/cit60 doi: 10.1016/j.snb.2011.10.022 – ident: ref3/cit3 doi: 10.1016/j.surfcoat.2013.04.028 – ident: ref6/cit6 doi: 10.1016/S0022-1759(99)00051-4 – ident: ref19/cit19 doi: 10.1016/j.cocis.2018.11.004 – ident: ref23/cit23 doi: 10.1371/journal.pone.0114042 – ident: ref22/cit22 doi: 10.1073/pnas.85.8.2444 – ident: ref13/cit13 doi: 10.1186/s12951-015-0114-4 – ident: ref7/cit7 doi: 10.1021/ac0494275 – ident: ref65/cit65 doi: 10.1007/s10930-011-9384-3 – ident: ref66/cit66 doi: 10.1002/adma.200802057 – ident: ref43/cit43 doi: 10.1021/acsami.1c00642 – ident: ref46/cit46 doi: 10.3389/fbioe.2018.00060 – ident: ref14/cit14 doi: 10.1016/j.colsurfb.2019.110756 – ident: ref44/cit44 doi: 10.1016/j.cej.2021.129872 – ident: ref53/cit53 doi: 10.1039/C9NR10009A – ident: ref33/cit33 doi: 10.1016/j.micron.2005.03.007 – ident: ref68/cit68 doi: 10.1088/0953-8984/18/18/S01 – ident: ref61/cit61 doi: 10.1006/abio.2000.4894 – ident: ref51/cit51 doi: 10.1016/j.cocis.2018.12.004 |
SSID | ssj0063205 |
Score | 2.485691 |
Snippet | Protein adsorption on solid surfaces is a process relevant to biological, medical, industrial, and environmental applications. Despite this wide interest and... |
SourceID | proquest crossref pubmed acs |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 28290 |
SubjectTerms | Biological and Medical Applications of Materials and Interfaces |
Title | Protein Adsorption on Solid Surfaces: Data Mining, Database, Molecular Surface-Derived Properties, and Semiempirical Relationships |
URI | http://dx.doi.org/10.1021/acsami.4c06759 https://www.ncbi.nlm.nih.gov/pubmed/38787331 https://www.proquest.com/docview/3060378583 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA4-Lnrw_VhfRBS8bNem6fbhTXwgwoqwLuytJOkUi2532XY9ePSXO0lbnywKvQTSECbJzDeZyTeEHCsmQdqQWBxYiA4K14Xc0VkJBPcUemOoAfXb4c6dd9Nzb_vt_ud9x88IvsNOhcp1KRxXaWwbzpJ5x8eToUHQRbfWuR53TLIieuSuFaDFqukZf_2vjZDKvxuhKcjSWJjr5ZLuKDfEhDqx5Kk1KWRLvf6mbfxz8itkqYKZ9LzcF6tkBrI1sviFfHCdvN1rioY0o-dxPhwbzUHx6w6f05h2J-NEJ2ud0UtRCNoxZSSapqHtXpN26rK6dVfrEsd9gZje6-v9seZpbVKR4VAwSGEwSg0XCf1IvntMR_kG6V1fPVzcWFVFBksgNCgs5aOgPeExpSAWSoZJDDGTDsRo45jvM4mTUIEXe9AOk8QBAKkjvSHnKIJE8U0ylw0z2CbU1yxBLEiSUPiukKFGftgABJjcE7bdIEcovKg6UXlkguUOi0qJRpVEG-SkXshoVNJzTO15WK9zhCdIh0VEBsNJHqHTZHM_aAe8QbbKDfAxFg9QoXHOdv41m12y4CDmMVe_9h6ZK8YT2EfMUsgDs13fAavB5_U |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57066,57116 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RONAeKI-2hJayCCQucch6HT96i6AoPIIiBSRu1u56rFoQJ4odDhz55Z3dxCkPIRXJl7XWq_HseuYb7-w3APuaK1RNTB2BPKIARZhC7hSshFL4mqIxsoDm7HD30u9ce2c3rZsFOKzOwpAQBY1U2E38f-wC_JDumYo4njYQN_oAS62AvKXBQkf9yvT6wrU5ixSYe05IjqtiaXz1vPFFunjui94AmNbRnHyG3lxEm19y25iUqqEfXrA3vuMdVmFlBjpZe7pK1mAB83X49ISKcAMee4awIctZOymGY2tHGF394V2WsP5knJrUrV_sWJaSdW1RibptGC9YZ92qyG7V1Tmmce8xYT3zs39sWFvrTOY0FA4yHIwyy0zC5ql4f7JR8QWuT35fHXWcWX0GRxJQKB0dkL596XOtMZFaRWmCCVcuJuTxeBBwRULo0E98bEVp6iKiMvu-kRCkglSLr7CYD3PcBBYYziAepmkkA0-qyOBAaiDBTeHLZrMGe6S8ePZ9FbHdOnd5PNVoPNNoDQ6q-YxHU7KON3vuVtMd0_dkNklkjsNJEVMI1RRB2ApFDb5N18F8LBGSeROCb_2XNDuw3LnqXsQXp5fn3-GjS2jIpB243g9YLMcT3CY0U6qfdgX_BfAo8Fs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB7aFEpzSPpMnPSxpYVerNSrlfXozcQ16cPB4ARyE_uYJSKJbCw5hxz7yzu7lkyaEmhBF4nVMJrdnYdm9huAj5orVD20gUCeUYAiXCN3ClZSKWJN0RhpQHd2eHwcH51G38_6Z805bncWhpioiFLlk_huV8-NbRAG-Gd67rriRNq5udlDeNRPuM_NDg6nrfqNRejrFik4j4KUjFeL1PjX-84e6epPe3SPk-mNzWgbTtZs-hqTi4NlrQ70zR0Ex__8jqew1TifbLBaLc_gAZbPYfMWJOEL-DVxwA1FyQammi28PmF0TWeXhWHT5cK6Eq4vbChryca-uUTX3zhr2GXjttluOzQYEt1rNGzifvovHHprl8mSSOFVgVfzwiOUsHVJ3nkxr17C6ejryeFR0PRpCCQ5DHWgE5J5LGOuNRqpVWYNGq5CNGT5eJJwRUzoNDYx9jNrQ0RULv-bCUEisFq8go1yVuIusMRhB_HU2kwmkVSZ8wfpBsntFLHs9TrwgYSXN_usyn0KPeT5SqJ5I9EOfGrnNJ-vQDvuHfm-nfKc9pVLlsgSZ8sqp1CqJ5K0n4oO7KzWwpqWSEnNCcH3_ombd_B4MhzlP78d_9iHJyE5Ra76IIxew0a9WOIbcmpq9dYv4t-gQfLV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein+Adsorption+on+Solid+Surfaces%3A+Data+Mining%2C+Database%2C+Molecular+Surface-Derived+Properties%2C+and+Semiempirical+Relationships&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Cho%2C+Matthew&rft.au=Mahmoodi%2C+Zahra&rft.au=Shetty%2C+Prasad&rft.au=Harrison%2C+Lauren+R&rft.date=2024-05-24&rft.eissn=1944-8252&rft_id=info:doi/10.1021%2Facsami.4c06759&rft_id=info%3Apmid%2F38787331&rft.externalDocID=38787331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon |