Supramolecular Assembly of Hydrogen-Bonded Organic Frameworks with Carbon Dots: Realizing Ultralong Aqueous Room-Temperature Phosphorescence for Anticounterfeiting

Room-temperature phosphorescent carbon dots (RTP-CDs) have received increasing attention due to their excellent optical properties and potential applications. Nevertheless, the realization of RTP-CDs in aqueous solutions remains a considerable challenge due to the water-molecule- and oxygen-induced...

Full description

Saved in:
Bibliographic Details
Published inACS applied materials & interfaces Vol. 16; no. 35; pp. 46609 - 46618
Main Authors Cai, Minjuan, Qiu, Yijie, Li, Feiming, Cai, Shunyou, Cai, Zhixiong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Room-temperature phosphorescent carbon dots (RTP-CDs) have received increasing attention due to their excellent optical properties and potential applications. Nevertheless, the realization of RTP-CDs in aqueous solutions remains a considerable challenge due to the water-molecule- and oxygen-induced deactivation of the triplet excitons, which leads to phosphorescence quenching. In this study, ultralong phosphorescence in water was achieved by in situ self-assembly of CDs encapsulated in a rigid hydrogen-bonded organic framework (HOF). The phosphorescence lifetime reaches an impressive 956.96 ms and exhibits long-lasting optical and structural stability in water for more than 90 days. The composite material not only has ultralong luminescence life and excellent luminescence stability but also has two-color phosphorescence emission, as well as excellent antiphotobleaching and phosphorescence stability in aqueous solution, which can solve the current problem that RTP is easily burst out by water and moisture. In addition, this study introduced a fluorescent dye based on the triplet–singlet Förster resonance energy transfer system (TS-FRET) to fine-tune the afterglow properties. This work will inspire the design of RTP systems with dual phosphor light sources and provide new strategies for the development of smart RTP materials in water.
AbstractList Room-temperature phosphorescent carbon dots (RTP-CDs) have received increasing attention due to their excellent optical properties and potential applications. Nevertheless, the realization of RTP-CDs in aqueous solutions remains a considerable challenge due to the water-molecule- and oxygen-induced deactivation of the triplet excitons, which leads to phosphorescence quenching. In this study, ultralong phosphorescence in water was achieved by in situ self-assembly of CDs encapsulated in a rigid hydrogen-bonded organic framework (HOF). The phosphorescence lifetime reaches an impressive 956.96 ms and exhibits long-lasting optical and structural stability in water for more than 90 days. The composite material not only has ultralong luminescence life and excellent luminescence stability but also has two-color phosphorescence emission, as well as excellent antiphotobleaching and phosphorescence stability in aqueous solution, which can solve the current problem that RTP is easily burst out by water and moisture. In addition, this study introduced a fluorescent dye based on the triplet-singlet Förster resonance energy transfer system (TS-FRET) to fine-tune the afterglow properties. This work will inspire the design of RTP systems with dual phosphor light sources and provide new strategies for the development of smart RTP materials in water.
Room-temperature phosphorescent carbon dots (RTP-CDs) have received increasing attention due to their excellent optical properties and potential applications. Nevertheless, the realization of RTP-CDs in aqueous solutions remains a considerable challenge due to the water-molecule- and oxygen-induced deactivation of the triplet excitons, which leads to phosphorescence quenching. In this study, ultralong phosphorescence in water was achieved by in situ self-assembly of CDs encapsulated in a rigid hydrogen-bonded organic framework (HOF). The phosphorescence lifetime reaches an impressive 956.96 ms and exhibits long-lasting optical and structural stability in water for more than 90 days. The composite material not only has ultralong luminescence life and excellent luminescence stability but also has two-color phosphorescence emission, as well as excellent antiphotobleaching and phosphorescence stability in aqueous solution, which can solve the current problem that RTP is easily burst out by water and moisture. In addition, this study introduced a fluorescent dye based on the triplet–singlet Förster resonance energy transfer system (TS-FRET) to fine-tune the afterglow properties. This work will inspire the design of RTP systems with dual phosphor light sources and provide new strategies for the development of smart RTP materials in water.
Room-temperature phosphorescent carbon dots (RTP-CDs) have received increasing attention due to their excellent optical properties and potential applications. Nevertheless, the realization of RTP-CDs in aqueous solutions remains a considerable challenge due to the water-molecule- and oxygen-induced deactivation of the triplet excitons, which leads to phosphorescence quenching. In this study, ultralong phosphorescence in water was achieved by in situ self-assembly of CDs encapsulated in a rigid hydrogen-bonded organic framework (HOF). The phosphorescence lifetime reaches an impressive 956.96 ms and exhibits long-lasting optical and structural stability in water for more than 90 days. The composite material not only has ultralong luminescence life and excellent luminescence stability but also has two-color phosphorescence emission, as well as excellent antiphotobleaching and phosphorescence stability in aqueous solution, which can solve the current problem that RTP is easily burst out by water and moisture. In addition, this study introduced a fluorescent dye based on the triplet-singlet Förster resonance energy transfer system (TS-FRET) to fine-tune the afterglow properties. This work will inspire the design of RTP systems with dual phosphor light sources and provide new strategies for the development of smart RTP materials in water.Room-temperature phosphorescent carbon dots (RTP-CDs) have received increasing attention due to their excellent optical properties and potential applications. Nevertheless, the realization of RTP-CDs in aqueous solutions remains a considerable challenge due to the water-molecule- and oxygen-induced deactivation of the triplet excitons, which leads to phosphorescence quenching. In this study, ultralong phosphorescence in water was achieved by in situ self-assembly of CDs encapsulated in a rigid hydrogen-bonded organic framework (HOF). The phosphorescence lifetime reaches an impressive 956.96 ms and exhibits long-lasting optical and structural stability in water for more than 90 days. The composite material not only has ultralong luminescence life and excellent luminescence stability but also has two-color phosphorescence emission, as well as excellent antiphotobleaching and phosphorescence stability in aqueous solution, which can solve the current problem that RTP is easily burst out by water and moisture. In addition, this study introduced a fluorescent dye based on the triplet-singlet Förster resonance energy transfer system (TS-FRET) to fine-tune the afterglow properties. This work will inspire the design of RTP systems with dual phosphor light sources and provide new strategies for the development of smart RTP materials in water.
Author Cai, Minjuan
Qiu, Yijie
Li, Feiming
Cai, Zhixiong
Cai, Shunyou
AuthorAffiliation College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology
Minnan Normal University
Micro-Nano Organic Optical Materials Laboratory
AuthorAffiliation_xml – name: College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology
– name: Micro-Nano Organic Optical Materials Laboratory
– name: Minnan Normal University
Author_xml – sequence: 1
  givenname: Minjuan
  surname: Cai
  fullname: Cai, Minjuan
  organization: College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology
– sequence: 2
  givenname: Yijie
  surname: Qiu
  fullname: Qiu, Yijie
  organization: College of Chemistry, Chemical Engineering and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology
– sequence: 3
  givenname: Feiming
  surname: Li
  fullname: Li, Feiming
  organization: Minnan Normal University
– sequence: 4
  givenname: Shunyou
  orcidid: 0000-0001-8959-245X
  surname: Cai
  fullname: Cai, Shunyou
  organization: Minnan Normal University
– sequence: 5
  givenname: Zhixiong
  orcidid: 0000-0002-6458-870X
  surname: Cai
  fullname: Cai, Zhixiong
  email: czx1816@mnnu.edu.cn
  organization: Minnan Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39171831$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9v1DAQxS1URP_AlSPyESFlsWMnG3NbFkqRKhWV9hw5znjXJfGktqNq-Tp8UbzapTdOM4ffe3oz75ycePRAyFvOFpyV_KM2UY9uIQ1TVb18Qc64krJoyqo8ed6lPCXnMT4wVouSVa_IqVB8yRvBz8ifn_MU9IgDmHnQga5ihLEbdhQtvdr1ATfgi8_oe-jpTdho7wy9zAJ4wvAr0ieXtnStQ4eefsEUP9Fb0IP77fyG3g8p6AHztnqcAedIbxHH4g7GCYJOcwD6Y4tx2mKAaMAboBZzAp-cwdknCBZcyk6vyUurhwhvjvOC3F9-vVtfFdc3376vV9eFLnmVipopWwvWVRWzViooe8tqrYwSkpWqVp1oVNfVzLLGGCaXynLJFJhe9JJDbcQFeX_wnQLmxDG1o8vBhkH7ffxW7H_clEKJjC4OqAkYYwDbTsGNOuxaztp9Me2hmPZYTBa8O3rP3Qj9M_6viQx8OABZ2D7gHHw-9X9ufwEEn55L
Cites_doi 10.1016/j.jcis.2021.10.018
10.1016/j.jclepro.2023.136250
10.1021/acscentsci.8b00844
10.1038/s41467-023-43133-1
10.1016/j.nanoen.2023.108623
10.1002/adfm.202111941
10.1002/anie.201814629
10.1002/adma.202204415
10.1021/acsanm.8b01355
10.1002/adfm.201504357
10.1002/sstr.202200327
10.1002/adma.202206712
10.1002/adma.202001348
10.1002/advs.202100125
10.1021/acsami.3c13244
10.1002/advs.201800795
10.1002/adma.201870092
10.1016/j.ccr.2019.213107
10.1016/j.mattod.2021.07.028
10.1016/j.cej.2019.123200
10.1016/j.bios.2023.115607
10.1002/adom.202070086
10.1038/s41467-020-18572-9
10.1016/j.jclepro.2017.07.187
10.1016/j.cej.2023.148018
10.1016/j.snb.2022.132761
10.1002/anie.202004109
10.1016/j.cej.2020.127647
10.1021/jacs.8b03867
10.1002/adfm.202300735
10.1016/j.nantod.2019.03.005
10.1002/smll.201805087
10.1002/anie.202203254
10.1021/acs.chemrev.3c00581
10.1002/adma.202007811
10.1016/j.mattod.2015.11.008
10.1021/jacs.7b03963
10.1002/agt2.123
10.1002/smll.202207403
10.1038/s41565-021-01051-7
10.1038/s41467-021-27914-0
10.1016/j.apcatb.2017.05.049
10.1002/smll.201901161
10.1016/j.nanoen.2015.02.013
10.1038/s41467-024-47378-2
10.1016/j.tifs.2021.11.029
10.1016/j.cej.2022.136525
10.1021/acsnano.8b07087
10.1002/advs.201901316
10.1002/smll.202103374
10.1016/S0040-4020(02)00202-8
10.1002/anie.201602445
10.1002/smll.202201223
10.1016/j.talanta.2023.124399
10.1002/anie.201611879
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright_xml – notice: 2024 American Chemical Society
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1021/acsami.4c09567
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
EndPage 46618
ExternalDocumentID 10_1021_acsami_4c09567
39171831
e11676033
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
F5P
GGK
GNL
IH9
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-a215t-609f630b550ff49e2df06a9c93402969b389bb60f08cc0479f1409ecd3d41e6c3
IEDL.DBID ACS
ISSN 1944-8244
1944-8252
IngestDate Thu Sep 05 16:31:24 EDT 2024
Wed Sep 11 13:51:26 EDT 2024
Wed Oct 02 05:16:52 EDT 2024
Thu Sep 05 05:48:57 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords carbon dots
aqueous afterglow
hydrogen-bonded organic frameworks
two-color emission
room-temperature phosphorescence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a215t-609f630b550ff49e2df06a9c93402969b389bb60f08cc0479f1409ecd3d41e6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6458-870X
0000-0001-8959-245X
PMID 39171831
PQID 3095682393
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3095682393
crossref_primary_10_1021_acsami_4c09567
pubmed_primary_39171831
acs_journals_10_1021_acsami_4c09567
PublicationCentury 2000
PublicationDate 20240904
PublicationDateYYYYMMDD 2024-09-04
PublicationDate_xml – month: 09
  year: 2024
  text: 20240904
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl. Mater. Interfaces
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1016/j.jcis.2021.10.018
– ident: ref23/cit23
  doi: 10.1016/j.jclepro.2023.136250
– ident: ref42/cit42
  doi: 10.1021/acscentsci.8b00844
– ident: ref4/cit4
  doi: 10.1038/s41467-023-43133-1
– ident: ref31/cit31
  doi: 10.1016/j.nanoen.2023.108623
– ident: ref6/cit6
  doi: 10.1002/adfm.202111941
– ident: ref43/cit43
  doi: 10.1002/anie.201814629
– ident: ref5/cit5
  doi: 10.1002/adma.202204415
– ident: ref44/cit44
  doi: 10.1021/acsanm.8b01355
– ident: ref10/cit10
  doi: 10.1002/adfm.201504357
– ident: ref46/cit46
  doi: 10.1002/sstr.202200327
– ident: ref55/cit55
  doi: 10.1002/adma.202206712
– ident: ref41/cit41
  doi: 10.1002/adma.202001348
– ident: ref26/cit26
  doi: 10.1002/advs.202100125
– ident: ref29/cit29
  doi: 10.1021/acsami.3c13244
– ident: ref50/cit50
  doi: 10.1002/advs.201800795
– ident: ref39/cit39
  doi: 10.1002/adma.201870092
– ident: ref1/cit1
  doi: 10.1016/j.ccr.2019.213107
– ident: ref37/cit37
  doi: 10.1016/j.mattod.2021.07.028
– ident: ref33/cit33
  doi: 10.1016/j.cej.2019.123200
– ident: ref28/cit28
  doi: 10.1016/j.bios.2023.115607
– ident: ref16/cit16
  doi: 10.1002/adom.202070086
– ident: ref54/cit54
  doi: 10.1038/s41467-020-18572-9
– ident: ref30/cit30
  doi: 10.1016/j.jclepro.2017.07.187
– ident: ref22/cit22
  doi: 10.1016/j.cej.2023.148018
– ident: ref24/cit24
  doi: 10.1016/j.snb.2022.132761
– ident: ref47/cit47
  doi: 10.1002/anie.202004109
– ident: ref40/cit40
  doi: 10.1016/j.cej.2020.127647
– ident: ref53/cit53
  doi: 10.1021/jacs.8b03867
– ident: ref18/cit18
  doi: 10.1002/adfm.202300735
– ident: ref14/cit14
  doi: 10.1016/j.nantod.2019.03.005
– ident: ref21/cit21
  doi: 10.1002/smll.201805087
– ident: ref7/cit7
  doi: 10.1002/anie.202203254
– ident: ref13/cit13
  doi: 10.1021/acs.chemrev.3c00581
– ident: ref12/cit12
  doi: 10.1002/adma.202007811
– ident: ref20/cit20
  doi: 10.1016/j.mattod.2015.11.008
– ident: ref17/cit17
  doi: 10.1021/jacs.7b03963
– ident: ref19/cit19
  doi: 10.1002/agt2.123
– ident: ref2/cit2
  doi: 10.1002/smll.202207403
– ident: ref32/cit32
  doi: 10.1038/s41565-021-01051-7
– ident: ref11/cit11
  doi: 10.1038/s41467-021-27914-0
– ident: ref36/cit36
  doi: 10.1016/j.apcatb.2017.05.049
– ident: ref51/cit51
  doi: 10.1002/smll.201901161
– ident: ref35/cit35
  doi: 10.1016/j.nanoen.2015.02.013
– ident: ref9/cit9
  doi: 10.1038/s41467-024-47378-2
– ident: ref15/cit15
  doi: 10.1016/j.tifs.2021.11.029
– ident: ref34/cit34
  doi: 10.1016/j.cej.2022.136525
– ident: ref38/cit38
  doi: 10.1021/acsnano.8b07087
– ident: ref45/cit45
  doi: 10.1002/advs.201901316
– ident: ref48/cit48
  doi: 10.1002/smll.202103374
– ident: ref52/cit52
  doi: 10.1016/S0040-4020(02)00202-8
– ident: ref8/cit8
  doi: 10.1002/anie.201602445
– ident: ref3/cit3
  doi: 10.1002/smll.202201223
– ident: ref25/cit25
  doi: 10.1016/j.talanta.2023.124399
– ident: ref27/cit27
  doi: 10.1002/anie.201611879
SSID ssj0063205
Score 2.4742165
Snippet Room-temperature phosphorescent carbon dots (RTP-CDs) have received increasing attention due to their excellent optical properties and potential applications....
SourceID proquest
crossref
pubmed
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 46609
SubjectTerms Functional Nanostructured Materials (including low-D carbon)
Title Supramolecular Assembly of Hydrogen-Bonded Organic Frameworks with Carbon Dots: Realizing Ultralong Aqueous Room-Temperature Phosphorescence for Anticounterfeiting
URI http://dx.doi.org/10.1021/acsami.4c09567
https://www.ncbi.nlm.nih.gov/pubmed/39171831
https://www.proquest.com/docview/3095682393/abstract/
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagXODA-7HlISOQOLkktte74bZaWK2QQKjtSr1FfozVijZeJdlD-3f6R5lJNryqCm6RkljOZMbzjWf8DWNvx7knWictxiBB6IAm5dAgRSHHEDLvJlHT4eQvX81ypT8fjY9-7Xf8ncGX-XvrG2qFoz1R5k1usluSygcJBM0PhjXXKNkVK2JErsUUPdZAz3jlfXJCvvnTCV2DLDsPs7jX0x01HTEhFZZ839u0bs9fXKVt_Ofk77O7W5jJZ71ePGA3oHrI7vxGPviIXR5s1rU9G9rjckr_nrnTc54iX56HOqFqCeo6DIH3JzY9XwylXA2nDVw-t7VLFf-Y2uYD30fMeXKBY_PVKe2fJLya4SenTcP3EZ-LQ0CM3nM482_HqVkfp7pjk_LAETvzWYWzpd4VUEc4oXrsx2y1-HQ4X4ptywZhETu0wmRFNCpzGPfEqAuQIWbGFr5QGKcWpnCIj5wzWcym3hO7fSTCLfBBBZ2D8eoJ26lSBc8Y1xloFRSdAQw6TmBqbIy5t7KAPFqbjdgblG65Nbmm7LLpMi97kZdbkY_Yu-FPl-uev-PaJ18PilCiiVHexFYkolLR_SlxxY3Y015Dfo6lMNzFVTHf_a_ZPGe3JYKirkZNv2A7bb2BlwhqWveq0-cfFHj1RQ
link.rule.ids 315,786,790,2782,27109,27957,27958,57093,57143
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcgAOvAvL0wgkTm6T2MluuK0WVgu0VdXuSr1FfqoVbbxKsof27_BHmUk25aVKcIvysOzJ2PONZ_wNwLs0NkTrJHnqEselxSmlcULyPEmdjYweekmHk_f2s9lCfjlOjzdgpz8Lg52osaW6DeL_ZBeId_AeVcSRhpjzhjfgZjpEZ5yw0OSoX3ozkbQ5i-iYSz5Cw9WzNP71PdkiU_9ui64BmK2hmd6Dg6sutvkl37ZXjd42l3-wN_7HGO7D3TXoZONOSx7Ahisfwp1fqAgfwfej1bJS532xXEbB4HN9dsGCZ7MLWwVUNE41iJ1l3flNw6Z9YlfNaDuXTVSlQ8k-hqb-wA4RgZ5eYttscUa7KQGvxjjysKrZIaJ1PneI2DtGZ3ZwEurlSahabinjGCJpNi6xt1TJwlXenVJ29mNYTD_NJzO-LuDAFSKJhmdR7jMRafSCvJe5S6yPMpWbXKDXmme5RrSkdRb5aGQMcd17ot9yxgorY5cZsQWbZSjdU2AyclJYQScCrfRDN8qU97FRSe5ir1Q0gLco3WI9Aeuija0ncdGJvFiLfADv-x9eLDs2j2vffNPrQ4ETjqIoqiQRFYKej4g5bgBPOkW5akug84trZPzsn3rzGm7N5nu7xe7n_a_P4XaCcKnNXpMvYLOpVu4lwp1Gv2pV_AfA8f2w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKlXtofTdBdq6aqWeDEnseDfcVktX2xdCsCtxi_wUqBCvkuwB_g5_lJk8EG2F1N6iPCx7MmN_Y898Q8inNDZI6yRY6hLHhAWT0mCQLEtSZyOjh15gcvLPfTlbiG_H6XGXx425MNCJClqqmkN8tOql9R3DQLwD97EqjjDInje8Tx6kWL0b8dDkqJ9-JU-auEVwzgUbweLVMzX-9T2uR6b6fT26A2Q2i810ncxvutnEmPzaXtV621z-weD4n-N4Sp504JOOW215Ru654jl5fIuS8AW5OlotS3XeF82leCh8rs8uaPB0dmHLAArHsBaxs7TN4zR02gd4VRS3delElToUdC_U1S49BCR6eglt08UZ7qoEuBrD6MOqooeA2tncAXJvmZ3pwUmoliehbDimjKOAqOm4gN5iRQtXeneKUdovyWL6ZT6Zsa6QA1OAKGomo8xLHmnwhrwXmUusj6TKTMbBe81kpgE1aS0jH42MQc57jzRczlhuReyk4a_IWhEK94ZQETnBLcfMQCv80I2k8j42Kslc7JWKBuQjSDfvDLHKmzP2JM5bkeedyAfkc__T82XL6nHnmx96ncjB8PA0RRUoopzj8xEyyA3I61ZZbtri4ATDXBlv_FNv3pOHB3vT_MfX_e-b5FECqKkJYhNbZK0uV-4toJ5av2u0_BrClQA5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supramolecular+Assembly+of+Hydrogen-Bonded+Organic+Frameworks+with+Carbon+Dots%3A+Realizing+Ultralong+Aqueous+Room-Temperature+Phosphorescence+for+Anticounterfeiting&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Cai%2C+Minjuan&rft.au=Qiu%2C+Yijie&rft.au=Li%2C+Feiming&rft.au=Cai%2C+Shunyou&rft.date=2024-09-04&rft.pub=American+Chemical+Society&rft.issn=1944-8244&rft.eissn=1944-8252&rft.volume=16&rft.issue=35&rft.spage=46609&rft.epage=46618&rft_id=info:doi/10.1021%2Facsami.4c09567&rft.externalDocID=e11676033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8244&client=summon