Natural Language Processing Recipes - Unlocking Text Data with Machine Learning and Deep Learning Using Python (2nd Edition)

Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization...

Full description

Saved in:
Bibliographic Details
Main Author Akshay Kulkarni, Adarsha Shivananda
Format eBook
LanguageEnglish
Published Berkeley, CA Apress, an imprint of Springer Nature 2021
Apress
Apress L. P
Edition2
Subjects
Online AccessGet full text
ISBN1484273508
9781484273500
9781484273517
1484273516
DOI10.1007/978-1-4842-7351-7

Cover

Abstract Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization, sentiment analysis, information retrieval, and many more applications of NLP. The book begins with text data collection, web scraping, and the different types of data sources. It explains how to clean and pre-process text data, and offers ways to analyze data with advanced algorithms. You then explore semantic and syntactic analysis of the text. Complex NLP solutions that involve text normalization are covered along with advanced pre-processing methods, POS tagging, parsing, text summarization, sentiment analysis, word2vec, seq2seq, and much more. The book presents the fundamentals necessary for applications of machine learning and deep learning in NLP. This second edition goes over advanced techniques to convert text to features such as Glove, Elmo, Bert, etc.
AbstractList Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization, sentiment analysis, information retrieval, and many more applications of NLP. The book begins with text data collection, web scraping, and the different types of data sources. It explains how to clean and pre-process text data, and offers ways to analyze data with advanced algorithms. You then explore semantic and syntactic analysis of the text. Complex NLP solutions that involve text normalization are covered along with advanced pre-processing methods, POS tagging, parsing, text summarization, sentiment analysis, word2vec, seq2seq, and much more. The book presents the fundamentals necessary for applications of machine learning and deep learning in NLP. This second edition goes over advanced techniques to convert text to features such as Glove, Elmo, Bert, etc.
Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization, sentiment analysis, information retrieval, and many more applications of NLP. The book begins with text data collection, web scraping, and the different types of data sources. It explains how to clean and pre-process text data, and offers ways to analyze data with advanced algorithms. You then explore semantic and syntactic analysis of the text. Complex NLP solutions that involve text normalization are covered along with advanced pre-processing methods, POS tagging, parsing, text summarization, sentiment analysis, word2vec, seq2seq, and much more. The book presents the fundamentals necessary for applications of machine learning and deep learning in NLP. This second edition goes over advanced techniques to convert text to features such as Glove, Elmo, Bert, etc. It also includes an understanding of how transformers work, taking sentence BERT and GPT as examples. The final chapters explain advanced industrial applications of NLP with solution implementation and leveraging the power of deep learning techniques for NLP problems. It also employs state-of-the-art advanced RNNs, such as long short-term memory, to solve complex text generation tasks. After reading this book, you will have a clear understanding of the challenges faced by different industries and you will have worked on multiple examples of implementing NLP in the real world.What You Will LearnKnow the core concepts of implementing NLP and various approaches to natural language processing (NLP), including NLP using Python libraries such as NLTK, textblob, SpaCy, Standford CoreNLP, and moreImplement text pre-processing and feature engineering in NLP, including advanced methods of feature engineeringUnderstand and implement the concepts of information retrieval, text summarization, sentiment analysis, text classification, and other advanced NLP techniques leveraging machine learning and deep learningWho This Book Is ForData scientists who want to refresh and learn various concepts of natural language processing (NLP) through coding exercises
Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of natural language processing (NLP) packages to: implement text classification, identify parts of speech, utilize topic modeling, text summarization, sentiment analysis, information retrieval, and many more applications of NLP. The book begins with text data collection, web scraping, and the different types of data sources. It explains how to clean and pre-process text data, and offers ways to analyze data with advanced algorithms. You then explore semantic and syntactic analysis of the text. Complex NLP solutions that involve text normalization are covered along with advanced pre-processing methods, POS tagging, parsing, text summarization, sentiment analysis, word2vec, seq2seq, and much more. The book presents the fundamentals necessary for applications of machine learning and deep learning in NLP. This second edition goes over advanced techniques to convert text to features such as Glove, Elmo, Bert, etc. It also includes an understanding of how transformers work, taking sentence BERT and GPT as examples. The final chapters explain advanced industrial applications of NLP with solution implementation and leveraging the power of deep learning techniques for NLP problems. It also employs state-of-the-art advanced RNNs, such as long short-term memory, to solve complex text generation tasks. After reading this book, you will have a clear understanding of the challenges faced by different industries and you will have worked on multiple examples of implementing NLP in the real world. What You Will Learn * Know the core concepts of implementing NLP and various approaches to natural language processing (NLP), including NLP using Python libraries such as NLTK, textblob, SpaCy, Standford CoreNLP, and more * Implement text pre-processing and feature engineering in NLP, including advanced methods of feature engineering * Understand and implement the concepts of information retrieval, text summarization, sentiment analysis, text classification, and other advanced NLP techniques leveraging machine learning and deep learning Who This Book Is For Data scientists who want to refresh and learn various concepts of natural language processing (NLP) through coding exercises
Author Shivananda, Adarsha
Kulkarni, Akshay
Author_xml – sequence: 1
  fullname: Akshay Kulkarni, Adarsha Shivananda
BookMark eNplkU2P0zAQhoP4ELvL_gAkDj6wgj2E9Thx7ByhLR9SWKpVy9WaTadtaNYOcdplJX48ThPEgZM18z7zevz6NHpinaUoegn8HXCurnKlY4hTnYpYJRJi9Sg6BSkSkDwH8TgUvRYkrp-FQmQyzUQi9fPo3PsfnHOhhMwSOIl-X2O3b7FmBdrNHjfE5q0ryfvKbtgNlVVDnsVsaWtX7vregn51bIodsvuq27KvWG4rS6wgbG2vo12xKVHzr7M8es0fuq2z7K0I-mxVdZWzly-ip2usPZ2P51n0_eNsMfkcF98-fZm8L2IU4UUq1hoTQiCUuC45ak5aktI6l8BVrhVPpcpzUAS4ToB4hioFXqKUmCe3K56cRZeDMfod3futqztvDjXdOrfzJqT5Ny9Qgb0aWN-0YXFqzUABN332PW3A9LzpB0w_8XqcwDW21cgfxH_Gbwasad3PPfnOHO8vyXbhA8zswyRTIHIpA_lqJKmtaeNGx1RCongW5ItB3ll3oNqEPe-wfThSZtdcF_Ob5WIKyR8BwqMn
ContentType eBook
Copyright 2021
Akshay Kulkarni and Adarsha Shivananda 2021
Copyright_xml – notice: 2021
– notice: Akshay Kulkarni and Adarsha Shivananda 2021
DBID YSPEL
OHILO
OODEK
DEWEY 006.3
DOI 10.1007/978-1-4842-7351-7
DatabaseName Perlego
O'Reilly Online Learning: Corporate Edition
O'Reilly Online Learning: Academic/Public Library Edition
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 1523150912
9781523150915
9781484273517
1484273516
Edition 2
2nd ed.
Second edition
ExternalDocumentID 9781484273517
475440
EBC6712955
4513706
book_kpNLPRUTD1
Genre Electronic books
GroupedDBID 38.
AABBV
AABLV
ACBPT
ACLFK
ACWLQ
ACXXF
AEKFX
AFNLE
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CMZ
CZZ
IEZ
K-E
KWVPI
OCUHQ
OHILO
OODEK
ORHYB
SBO
TD3
TPJZQ
YSPEL
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ACBYE
ID FETCH-LOGICAL-a21507-88a3ea1ea5afc0a80e85e7889510798704579917e1af31e06a7410ca55a93bd03
IEDL.DBID CMZ
ISBN 1484273508
9781484273500
9781484273517
1484273516
IngestDate Fri Nov 08 03:28:40 EST 2024
Fri May 23 03:30:18 EDT 2025
Fri Sep 05 22:25:00 EDT 2025
Fri May 30 22:47:23 EDT 2025
Wed Sep 03 00:13:19 EDT 2025
Sat Nov 23 14:08:27 EST 2024
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q334-342
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a21507-88a3ea1ea5afc0a80e85e7889510798704579917e1af31e06a7410ca55a93bd03
OCLC 1265462358
PQID EBC6712955
PageCount 302
ParticipantIDs askewsholts_vlebooks_9781484273517
springer_books_10_1007_978_1_4842_7351_7
safari_books_v2_9781484273517
proquest_ebookcentral_EBC6712955
perlego_books_4513706
knovel_primary_book_kpNLPRUTD1
PublicationCentury 2000
PublicationDate 2021
2021-08-25T00:00:00
20210826
2021-08-25
PublicationDateYYYYMMDD 2021-01-01
2021-08-25
2021-08-26
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Berkeley, CA
PublicationPlace_xml – name: Berkeley, CA
PublicationYear 2021
Publisher Apress, an imprint of Springer Nature
Apress
Apress L. P
Publisher_xml – name: Apress, an imprint of Springer Nature
– name: Apress
– name: Apress L. P
SSID ssj0002725631
Score 2.3485332
Snippet Focus on implementing end-to-end projects using Python and leverage state-of-the-art algorithms. This book teaches you to efficiently use a wide range of...
SourceID askewsholts
springer
safari
proquest
perlego
knovel
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Computer Science
COMPUTERS
Natural language processing (Computer science)
Open Source
Professional and Applied Computing
Programming Languages
Python
Python (Computer program language)
Software Engineering
TableOfContents Title Page Introduction Table of Contents 1. Extracting the Data 2. Exploring and Processing Text Data 3. Converting Text to Features 4. Advanced Natural Language Processing 5. Implementing Industry Applications 6. Deep Learning for NLP 7. Conclusion and Next-Gen NLP Index
Intro -- Table of Contents -- About the Authors -- About the Technical Reviewer -- Acknowledgments -- Introduction -- Chapter 1: Extracting the Data -- Introduction -- Client Data -- Free Sources -- Web Scraping -- Recipe 1-1. Collecting Data -- Problem -- Solution -- How It Works -- Step 1-1. Log in to the Twitter developer portal -- Step 1-2. Execute query in Python -- Recipe 1-2. Collecting Data from PDFs -- Problem -- Solution -- How It Works -- Step 2-1. Install and import all the necessary libraries -- Step 2-2. Extract text from a PDF file -- Recipe 1-3. Collecting Data from Word Files -- Problem -- Solution -- How It Works -- Step 3-1. Install and import all the necessary libraries -- Step 3-2. Extract text from a Word file -- Recipe 1-4. Collecting Data from JSON -- Problem -- Solution -- How It Works -- Step 4-1. Install and import all the necessary libraries -- Step 4-2. Extract text from a JSON file -- Recipe 1-5. Collecting Data from HTML -- Problem -- Solution -- How It Works -- Step 5-1. Install and import all the necessary libraries -- Step 5-2. Fetch the HTML file -- Step 5-3. Parse the HTML file -- Step 5-4. Extract a tag value -- Step 5-5. Extract all instances of a particular tag -- Step 5-6. Extract all text from a particular tag -- Recipe 1-6. Parsing Text Using Regular Expressions -- Problem -- Solution -- How It Works -- Tokenizing -- Extracting Email IDs -- Replacing Email IDs -- Extracting Data from an eBook and Performing regex -- Recipe 1-7. Handling Strings -- Problem -- Solution -- How It Works -- Replacing Content -- Concatenating Two Strings -- Searching for a Substring in a String -- Recipe 1-8. Scraping Text from the Web -- Problem -- Solution -- How It Works -- Step 8-1. Install all the necessary libraries -- Step 8-2. Import the libraries -- Step 8-3. Identify the URL to extract the data
Step 8-4. Request the URL and download the content using Beautiful Soup -- Step 8-5. Understand the website's structure to extract the required information -- Step 8-6. Use Beautiful Soup to extract and parse the data from HTML tags -- Step 8-7. Convert lists to a data frame and perform an analysis that meets business requirements -- Step 8-8. Download the data frame -- Chapter 2: Exploring and Processing Text Data -- Recipe 2-1. Converting Text Data to Lowercase -- Problem -- Solution -- How It Works -- Step 1-1. Read/create the text data -- Step 1-2. Execute the lower() function on the text data -- Recipe 2-2. Removing Punctuation -- Problem -- Solution -- How It Works -- Step 2-1. Read/create the text data -- Step 2-2. Execute the replace() function on the text data -- Recipe 2-3. Removing Stop Words -- Problem -- Solution -- How It Works -- Step 3-1. Read/create the text data -- Step 3-2. Remove punctuation from the text data -- Recipe 2-4. Standardizing Text -- Problem -- Solution -- How It Works -- Step 4-1. Create a custom lookup dictionary -- Step 4-2. Create a custom function for text standardization -- Step 4-3. Run the text_std function -- Recipe 2-5. Correcting Spelling -- Problem -- Solution -- How It Works -- Step 5-1. Read/create the text data -- Step 5-2. Execute spelling correction on the text data -- Recipe 2-6. Tokenizing Text -- Problem -- Solution -- How It Works -- Step 6-1. Read/create the text data -- Step 6-2. Tokenize the text data -- Recipe 2-7. Stemming -- Problem -- Solution -- How It Works -- Step 7-1. Read the text data -- Step 7-2. Stem the text -- Recipe 2-8. Lemmatizing -- Problem -- Solution -- How It Works -- Step 8-1. Read the text data -- Step 8-2. Lemmatize the data -- Recipe 2-9. Exploring Text Data -- Problem -- Solution -- How It Works -- Step 9-1. Read the text data -- Step 9-2. Import necessary libraries
Recipe 4-3. Tagging Part of Speech -- Problem -- Solution -- How It Works -- Step 3-1. Store the text in a variable -- Step 3-2. Import NLTK for POS -- Recipe 4-4. Extracting Entities from Text -- Problem -- Solution -- How It Works -- Step 4-1. Read/create the text data -- Step 4-2. Extract the entities -- Using NLTK -- Using spaCy -- Recipe 4-5. Extracting Topics from Text -- Problem -- Solution -- How It Works -- Step 5-1. Create the text data -- Step 5-2. Clean and preprocess the data -- Step 5-3. Prepare the document term matrix -- Step 5-4. Create the LDA model -- Recipe 4-6. Classifying Text -- Problem -- Solution -- How It Works -- Step 6-1. Collect and understand the data -- Step 6-2. Text processing and feature engineering -- Step 6-3. Model training -- Recipe 4-7. Carrying Out Sentiment Analysis -- Problem -- Solution -- How It Works -- Step 7-1. Create the sample data -- Step 7-2. Clean and preprocess the data -- Step 7-3. Get the sentiment scores -- Recipe 4-8. Disambiguating Text -- Problem -- Solution -- How It Works -- Step 8-1. Import libraries -- Step 8-2. Disambiguate word sense -- Recipe 4-9. Converting Speech to Text -- Problem -- Solution -- How It Works -- Step 9-1. Define the business problem -- Step 9-2. Install and import necessary libraries -- Step 9-3. Run the code -- Recipe 4-10. Converting Text to Speech -- Problem -- Solution -- How It Works -- Step 10-1. Install and import necessary libraries -- Step 10-2. Run the code with the gTTs function -- Recipe 4-11. Translating Speech -- Problem -- Solution -- How It Works -- Step 11-1. Install and import necessary libraries -- Step 11-2. Input text -- Step 11-3. Run the goslate function -- Chapter 5: Implementing Industry Applications -- Recipe 5-1. Implementing Multiclass Classification -- Problem -- Solution -- How It Works -- Step 1-1. Get the data from Kaggle
Step 9-3 Check the number of words in the data -- Step 9-4. Compute the frequency of all words in the reviews -- Step 9-5. Consider words with length greater than 3 and plot -- Step 9-6. Build a word cloud -- Recipe 2-10. Dealing with Emojis and Emoticons -- Problem -- Solution -- How It Works -- Step 10-A1. Read the text data -- Step 10-A2. Install and import necessary libraries -- Step 10-A3. Write a function that coverts emojis into words -- Step 10-A4. Pass text with an emoji to the function -- Problem -- Solution -- How It Works -- Step 10-B1. Read the text data -- Step 10-B2. Install and import necessary libraries -- Step 10-B3. Write a function to remove emojis -- Step 10-B4. Pass text with an emoji to the function -- Problem -- Solution -- How It Works -- Step 10-C1. Read the text data -- Step 10-C2. Install and import necessary libraries -- Step 10-C3. Write function to convert emoticons into word -- Step 10-C4. Pass text with emoticons to the function -- Problem -- Solution -- How It Works -- Step 10-D1 Read the text data -- Step 10-D2. Install and import necessary libraries -- Step 10-D3. Write function to remove emoticons -- Step 10-D4. Pass text with emoticons to the function -- Problem -- Solution -- How It Works -- Step 10-E1. Read the text data -- Step 10-E2. Install and import necessary libraries -- Step 10-E3. Find all emojis and determine their meaning -- Recipe 2-11. Building a Text Preprocessing Pipeline -- Problem -- Solution -- How It Works -- Step 11-1. Read/create the text data -- Step 11-2. Process the text -- Chapter 3: Converting Text to Features -- Recipe 3-1. Converting Text to Features Using One-Hot Encoding -- Problem -- Solution -- How It Works -- Step 1-1. Store the text in a variable -- Step 1-2. Execute a function on the text data -- Recipe 3-2. Converting Text to Features Using a Count Vectorizer -- Problem
Step 1-2. Import the libraries
Solution -- How It Works -- Recipe 3-3. Generating n-grams -- Problem -- Solution -- How It Works -- Step 3-1. Generate n-grams using TextBlob -- Step 3-2. Generate bigram-based features for a document -- Recipe 3-4. Generating a Co-occurrence Matrix -- Problem -- Solution -- How It Works -- Step 4-1. Import the necessary libraries -- Step 4-2. Create function for a co-occurrence matrix -- Step 4-3. Generate a co-occurrence matrix -- Recipe 3-5. Hash Vectorizing -- Problem -- Solution -- How It Works -- Step 5-1. Import the necessary libraries and create a document -- Step 5-2. Generate a hash vectorizer matrix -- Recipe 3-6. Converting Text to Features Using TF-IDF -- Problem -- Solution -- How It Works -- Step 6-1. Read the text data -- Step 6-2. Create the features -- Recipe 3-7. Implementing Word Embeddings -- Problem -- Solution -- How It Works -- skip-gram -- Continuous Bag of Words (CBOW) -- Recipe 3-8. Implementing fastText -- Problem -- Solution -- How It Works -- Recipe 3-9. Converting Text to Features Using State-of-the-Art Embeddings -- Problem -- Solution -- ELMo -- Sentence Encoders -- doc2vec -- Sentence-BERT -- Universal Encoder -- InferSent -- Open-AI GPT -- How It Works -- Step 9-1. Import a notebook and data to Google Colab -- Step 9-2. Install and import libraries -- Step 9-3. Read text data -- Step 9-4. Process text data -- Step 9-5. Generate a feature vector -- Sentence-BERT -- Universal Encoder -- Infersent -- Open-AI GPT -- Step 9-6. Generate a feature vector function automatically using a selected embedding method -- Chapter 4: Advanced Natural Language Processing -- Recipe 4-1. Extracting Noun Phrases -- Problem -- Solution -- How It Works -- Recipe 4-2. Finding Similarity Between Texts -- Solution -- How It Works -- Step 2-1. Create/read the text data -- Step 2-2. Find similarities -- Phonetic Matching
Title Natural Language Processing Recipes - Unlocking Text Data with Machine Learning and Deep Learning Using Python (2nd Edition)
URI https://app.knovel.com/hotlink/toc/id:kpNLPRUTD1/natural-language-processing/natural-language-processing?kpromoter=Summon
https://www.perlego.com/book/4513706/natural-language-processing-recipes-unlocking-text-data-with-machine-learning-and-deep-learning-using-python-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6712955
https://learning.oreilly.com/library/view/~/9781484273517/?ar
http://link.springer.com/10.1007/978-1-4842-7351-7
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781484273517
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV1Lb9QwELaqcoFLeRQRoJWFOJSDu3ESxwkXJLpbVdBdrdAuqrhYTuy0VVZJ1KQrFfFL-LWMHWdbigRHLpEST5zXZObzzPgzQm9zQxpVKEayuEhJpCKwg-DoAMgVqSpyptPCxCGns_hkGX06Y2db6GaYC2MWtyqreq1X1kxf1J1JZI66Oh9dqvdlMzudf1kuxnRkeS_ligxhPdL0hfVg8P_W9qFsbJkbqEkfZjLWG9ykSfNOv22iMwEHKBBSOxMsicDFA44ZCKLc_iZH6mhqYSgGLQSaKAFf90i2JZgpMGFdC96tfyYA2Y2-Wunz-ndA28oCRsZ_JGOtjzveQT-Ht9OXtpSH1112mH-_Rxz5X17fY_RAm1kZT9CWrp6inWEtCuxM0zP0Y9Z3h09dd3i-6Q4DNr5sdIsJXlbgvE12AC_AK-Gx7CQ2oWg8tUWlGju-2XMsK4XHWje3R2x1BZ7fGLYFfBBA-0TZgrd3u-jr8WRxdELcyhJEBgYBkySRoZZUSyaL3JeJrxOmeZIYvMlTsGER44CcuaayCKn2YwnIy88lYzINM-WHz9F2VVf6BcJxBsoQqwywsox4lCepUjmVfqAjCQgh8dCbO6og1iubBW_FHV2i3EP7_WcTTU8yIoyQuP1gHtp1miP60yNGQ-7HHsKDHgnbsavpFZOPRzEHMMeYh_Z6_XJnroP71z4Y1M5JDFTWICaoMILCSAr-8l-3-Qo9DEzRj41RvUbb3dW13gPU1mX79geD7Wcy-QWG1kUJ
linkProvider Knovel
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Natural+Language+Processing+Recipes%3A+Unlocking+Text+Data+with+Machine+Learning+and+Deep+Learning+Using+Python&rft.au=Akshay+Kulkarni&rft.au=Adarsha+Shivananda&rft.date=2021-08-25&rft.pub=Apress&rft.isbn=9781484273517&rft_id=info:doi/10.1007%2F978-1-4842-7351-7&rft.externalDocID=9781484273517
thumbnail_l http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fingram_csplus_gexhsuob%2F9781484273517.jpg
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.safaribooksonline.com%2Flibrary%2Fcover%2F9781484273517
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814842%2F9781484273517.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcontent.knovel.com%2Fcontent%2FThumbs%2Fthumb14870.gif
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-1-4842-7351-7