Regioselective Plasmon-Driven Decarboxylation of Mercaptobenzoic Acids Triggered by Distinct Reactive Oxygen Species

The non-radiative decay of surface plasmon resonance (SPR) in plasmonic metal nanoparticles (NPs) opens up unique hot-carrier-driven chemical transformation mechanisms. Here, the hot-carrier generation of reactive oxygen species was demonstrated to trigger the regioselective plasmon-driven decarboxy...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 12; no. 23; pp. 14619 - 14628
Main Authors dos Santos Lopes, Douglas, dos Santos Abreu, Dieric, Ando, Rômulo Augusto, Corio, Paola
Format Journal Article
LanguageEnglish
Published American Chemical Society 02.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The non-radiative decay of surface plasmon resonance (SPR) in plasmonic metal nanoparticles (NPs) opens up unique hot-carrier-driven chemical transformation mechanisms. Here, the hot-carrier generation of reactive oxygen species was demonstrated to trigger the regioselective plasmon-driven decarboxylation of mercaptobenzoic acid (MBA) isomers over Ag (AgNPs) and Au nanoparticles (AuNPs). Controlled catalytic experiments indicated that the catalytic C–C bond cleavage over AgNPs and AuNPs is primarily initiated by photogenerated singlet oxygen (1O2) and hydroxyl radical (•OH), respectively. Energetic hot electrons on AgNPs can successfully generate 1O2 from 3O2 via Dexter energy transfer, while hot holes generated under the Fermi level of AuNPs have sufficient energy to oxidize OH– and promote the formation of reactive •OH. The catalytic activity trend was evaluated considering the known ortho-substituent effect. The data discussed herein shed light on how the intrinsic differences in electronic energy levels and metal–molecule interactions precisely tune the regioselectivity of plasmon-driven transformations and may guide the rational design of plasmonic catalysts for distinct desired reactions.
AbstractList The non-radiative decay of surface plasmon resonance (SPR) in plasmonic metal nanoparticles (NPs) opens up unique hot-carrier-driven chemical transformation mechanisms. Here, the hot-carrier generation of reactive oxygen species was demonstrated to trigger the regioselective plasmon-driven decarboxylation of mercaptobenzoic acid (MBA) isomers over Ag (AgNPs) and Au nanoparticles (AuNPs). Controlled catalytic experiments indicated that the catalytic C–C bond cleavage over AgNPs and AuNPs is primarily initiated by photogenerated singlet oxygen (1O2) and hydroxyl radical (•OH), respectively. Energetic hot electrons on AgNPs can successfully generate 1O2 from 3O2 via Dexter energy transfer, while hot holes generated under the Fermi level of AuNPs have sufficient energy to oxidize OH– and promote the formation of reactive •OH. The catalytic activity trend was evaluated considering the known ortho-substituent effect. The data discussed herein shed light on how the intrinsic differences in electronic energy levels and metal–molecule interactions precisely tune the regioselectivity of plasmon-driven transformations and may guide the rational design of plasmonic catalysts for distinct desired reactions.
Author dos Santos Abreu, Dieric
dos Santos Lopes, Douglas
Corio, Paola
Ando, Rômulo Augusto
AuthorAffiliation Federal University of Ceara
Department of Fundamental Chemistry, Institute of Chemistry
Department of Analytical Chemistry and Physical Chemistry
AuthorAffiliation_xml – name: Department of Analytical Chemistry and Physical Chemistry
– name: Department of Fundamental Chemistry, Institute of Chemistry
– name: Federal University of Ceara
Author_xml – sequence: 1
  givenname: Douglas
  orcidid: 0000-0003-4988-8349
  surname: dos Santos Lopes
  fullname: dos Santos Lopes, Douglas
  organization: Department of Fundamental Chemistry, Institute of Chemistry
– sequence: 2
  givenname: Dieric
  surname: dos Santos Abreu
  fullname: dos Santos Abreu, Dieric
  organization: Federal University of Ceara
– sequence: 3
  givenname: Rômulo Augusto
  orcidid: 0000-0002-3872-8094
  surname: Ando
  fullname: Ando, Rômulo Augusto
  organization: Department of Fundamental Chemistry, Institute of Chemistry
– sequence: 4
  givenname: Paola
  orcidid: 0000-0002-0010-5131
  surname: Corio
  fullname: Corio, Paola
  email: paola@iq.usp.br
  organization: Department of Fundamental Chemistry, Institute of Chemistry
BookMark eNp9kFtLAzEQhYNUsNa--5gf4Goum232sbTeoFKpfV9m09mSst2UJErXX-9qK4ig8zIzzHwHzjknvcY1SMglZ9ecCX4DJhiIUF8Lw1Km9AnpC65UolKpej_mMzIMYcO6SlWmR6xP4gLX1gWs0UT7hvS5hrB1TTL13dbQKRrwpdu3NUTrGuoq-oTewC66Ept3Zw0dG7sKdOnteo0eV7Rs6dSGaBsT6QLhIDvft-tO7mWHxmK4IKcV1AGHxz4gy7vb5eQhmc3vHyfjWQKCs5hIyCvOM9RCMyONVJgqLoGVI22EhiqDMlVK6xHkmcikVtIAW-VSlCrPWSoHhB1kjXcheKyKnbdb8G3BWfGZW_GdW3HMrUOyX4ix8ct69GDr_8CrA9hdio179U1n7O_3D2wRh3Q
CitedBy_id crossref_primary_10_1117_1_JNP_18_046005
crossref_primary_10_1002_anie_202414752
crossref_primary_10_1038_s41467_024_51916_3
crossref_primary_10_1016_j_jphotochem_2023_115307
crossref_primary_10_1016_j_jeurceramsoc_2024_116697
crossref_primary_10_1515_nanoph_2024_0417
crossref_primary_10_1002_solr_202300195
crossref_primary_10_1021_acs_jpcc_3c07887
crossref_primary_10_1021_acsnano_4c06858
crossref_primary_10_1021_acs_nanolett_3c04979
crossref_primary_10_1021_acs_nanolett_3c01532
crossref_primary_10_1039_D3TA02272B
crossref_primary_10_1002_ange_202414752
crossref_primary_10_1039_D3CS00462G
crossref_primary_10_1016_j_apcatb_2024_124820
crossref_primary_10_1039_D3RA01712E
crossref_primary_10_1021_acs_jpcc_5c00768
Cites_doi 10.1088/0957-4484/18/7/075706
10.3389/fchem.2020.591325
10.1016/j.watres.2015.12.006
10.1021/la400500t
10.1039/C9NR02130B
10.1039/C4RA03512G
10.12693/APhysPolA.119.1018
10.1016/j.jbbm.2005.10.003
10.1021/jacs.6b08799
10.1021/jo00207a028
10.1021/j100845a038
10.1039/c4pp00261j
10.1111/j.1365-2621.2004.tb09924.x
10.1002/anie.201310097
10.1016/j.siny.2010.04.003
10.1021/acs.jpcc.5b07966
10.1038/nnano.2014.311
10.1126/science.aaw9545
10.1002/chem.201402931
10.1021/acsanm.1c00668
10.1021/nn300934k
10.1021/acs.chemrev.7b00430
10.1021/acs.nanolett.5b01322
10.1039/c1dt10771b
10.1039/C7CC07951F
10.1038/s41570-018-0031-9
10.1039/D1NR04009J
10.1039/C9NR10041E
10.1039/D1TB02207E
10.1021/acsenergylett.9b01617
10.1016/j.apsusc.2018.04.197
10.1016/0014-5793(79)80609-2
10.1038/nchem.1032
10.1039/c2cp41502j
10.1016/S1010-6030(00)00264-1
10.1021/ja903923s
10.1021/acs.chemrev.7b00161
10.1021/acsami.9b05509
10.1039/c3cs60364d
10.1002/jrs.928
10.1021/nn502325j
10.1039/c4cp00229f
10.1038/s41377-020-00345-0
10.1021/ja101107z
10.1021/acs.jpcc.9b08181
10.1038/nmat4281
10.1039/c3tb20806k
10.1038/nrc1071
10.1038/s41467-020-18016-4
10.1002/anie.201205748
10.1021/acs.jpcc.6b02005
10.1155/2012/987606
10.1021/acsami.0c08053
10.1016/j.cplett.2011.11.045
10.1038/ncomms10545
10.1038/srep02997
10.1002/jrs.1250221214
10.1021/cs400993w
10.1021/acs.jpcc.1c07177
10.1021/acscatal.8b03486
10.1021/acs.jpclett.6b00147
10.1006/abbi.1993.1074
10.1021/j150645a024
10.1103/PhysRevB.88.155411
10.1021/cs501189m
10.1039/C7CS00238F
10.1002/slct.201904112
10.1021/acs.analchem.8b03116
10.1021/am302074p
10.1039/C8CP01978A
10.1021/acs.nanolett.1c02003
10.1021/acs.accounts.9b00224
10.1021/j150660a053
10.1038/nmat3454
10.1002/smll.201901789
10.1039/b916646g
10.1002/smll.201500509
10.1021/ac3018179
10.1021/cs300707y
10.1063/1.1699044
10.1088/1054-660X/23/2/025601
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acscatal.2c04058
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 14628
ExternalDocumentID 10_1021_acscatal_2c04058
a943483432
GroupedDBID .K2
55A
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED~
GGK
GNL
IH9
JG~
RNS
ROL
UI2
VF5
VG9
W1F
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
ID FETCH-LOGICAL-a210t-3a9f116e8280c3c35e4513a0b78c28af6ab455887a96263853ca0d932b599043
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Thu Apr 24 23:05:41 EDT 2025
Tue Jul 01 02:04:20 EDT 2025
Tue Dec 06 04:49:42 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords regioselectivity
decarboxylation
hot carriers
reactive oxygen species
surface plasmon
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a210t-3a9f116e8280c3c35e4513a0b78c28af6ab455887a96263853ca0d932b599043
ORCID 0000-0002-3872-8094
0000-0002-0010-5131
0000-0003-4988-8349
PageCount 10
ParticipantIDs crossref_primary_10_1021_acscatal_2c04058
crossref_citationtrail_10_1021_acscatal_2c04058
acs_journals_10_1021_acscatal_2c04058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20221202
2022-12-02
PublicationDateYYYYMMDD 2022-12-02
PublicationDate_xml – month: 12
  year: 2022
  text: 20221202
  day: 02
PublicationDecade 2020
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref49/cit49
  doi: 10.1088/0957-4484/18/7/075706
– ident: ref70/cit70
  doi: 10.3389/fchem.2020.591325
– ident: ref56/cit56
  doi: 10.1016/j.watres.2015.12.006
– ident: ref77/cit77
  doi: 10.1021/la400500t
– ident: ref43/cit43
  doi: 10.1039/C9NR02130B
– ident: ref36/cit36
  doi: 10.1039/C4RA03512G
– ident: ref48/cit48
  doi: 10.12693/APhysPolA.119.1018
– ident: ref60/cit60
  doi: 10.1016/j.jbbm.2005.10.003
– ident: ref86/cit86
  doi: 10.1021/jacs.6b08799
– ident: ref85/cit85
  doi: 10.1021/jo00207a028
– ident: ref57/cit57
  doi: 10.1021/j100845a038
– ident: ref61/cit61
  doi: 10.1039/c4pp00261j
– ident: ref22/cit22
  doi: 10.3389/fchem.2020.591325
– ident: ref59/cit59
  doi: 10.1111/j.1365-2621.2004.tb09924.x
– ident: ref13/cit13
  doi: 10.1002/anie.201310097
– ident: ref17/cit17
  doi: 10.1016/j.siny.2010.04.003
– ident: ref72/cit72
  doi: 10.1021/acs.jpcc.5b07966
– ident: ref68/cit68
  doi: 10.1038/nnano.2014.311
– ident: ref38/cit38
  doi: 10.1126/science.aaw9545
– ident: ref88/cit88
  doi: 10.1002/chem.201402931
– ident: ref50/cit50
  doi: 10.1021/acsanm.1c00668
– ident: ref78/cit78
  doi: 10.1021/nn300934k
– ident: ref10/cit10
  doi: 10.1021/acs.chemrev.7b00430
– ident: ref47/cit47
  doi: 10.1021/acs.nanolett.5b01322
– ident: ref87/cit87
  doi: 10.1039/c1dt10771b
– ident: ref6/cit6
  doi: 10.1039/C7CC07951F
– ident: ref1/cit1
  doi: 10.1038/s41570-018-0031-9
– ident: ref5/cit5
  doi: 10.1039/D1NR04009J
– ident: ref9/cit9
  doi: 10.1039/C9NR10041E
– ident: ref18/cit18
  doi: 10.1039/D1TB02207E
– ident: ref67/cit67
  doi: 10.1021/acsenergylett.9b01617
– ident: ref80/cit80
  doi: 10.1016/j.apsusc.2018.04.197
– ident: ref58/cit58
  doi: 10.1016/0014-5793(79)80609-2
– ident: ref84/cit84
  doi: 10.1002/chem.201402931
– ident: ref73/cit73
  doi: 10.1038/nchem.1032
– ident: ref42/cit42
  doi: 10.1039/c2cp41502j
– ident: ref64/cit64
  doi: 10.1016/S1010-6030(00)00264-1
– ident: ref65/cit65
  doi: 10.1021/ja903923s
– ident: ref66/cit66
  doi: 10.1021/acs.chemrev.7b00161
– ident: ref34/cit34
  doi: 10.1021/acsami.9b05509
– ident: ref2/cit2
  doi: 10.1039/c3cs60364d
– ident: ref32/cit32
  doi: 10.1002/jrs.928
– ident: ref25/cit25
  doi: 10.1021/nn502325j
– ident: ref21/cit21
  doi: 10.1021/nn502325j
– ident: ref29/cit29
  doi: 10.1039/c4cp00229f
– ident: ref39/cit39
  doi: 10.1038/s41377-020-00345-0
– ident: ref12/cit12
  doi: 10.1021/ja101107z
– ident: ref52/cit52
  doi: 10.1021/acs.jpcc.9b08181
– ident: ref4/cit4
  doi: 10.1038/nmat4281
– ident: ref24/cit24
  doi: 10.1039/c3tb20806k
– ident: ref19/cit19
  doi: 10.1038/nrc1071
– ident: ref11/cit11
  doi: 10.1038/nchem.1032
– ident: ref14/cit14
  doi: 10.1038/s41467-020-18016-4
– ident: ref7/cit7
  doi: 10.1002/anie.201205748
– ident: ref23/cit23
  doi: 10.1021/acs.jpcc.6b02005
– ident: ref62/cit62
  doi: 10.1155/2012/987606
– ident: ref33/cit33
  doi: 10.1021/acsami.0c08053
– ident: ref75/cit75
  doi: 10.1016/j.cplett.2011.11.045
– ident: ref41/cit41
  doi: 10.1038/ncomms10545
– ident: ref16/cit16
  doi: 10.1038/srep02997
– ident: ref31/cit31
  doi: 10.1002/jrs.1250221214
– ident: ref37/cit37
  doi: 10.1021/cs400993w
– ident: ref28/cit28
  doi: 10.1039/C9NR02130B
– ident: ref35/cit35
  doi: 10.1021/acs.jpcc.1c07177
– ident: ref26/cit26
  doi: 10.1021/acscatal.8b03486
– ident: ref8/cit8
  doi: 10.1021/acs.jpclett.6b00147
– ident: ref76/cit76
  doi: 10.1006/abbi.1993.1074
– ident: ref81/cit81
  doi: 10.1021/j150645a024
– ident: ref46/cit46
  doi: 10.1103/PhysRevB.88.155411
– ident: ref44/cit44
  doi: 10.1021/cs501189m
– ident: ref45/cit45
  doi: 10.1039/C7CS00238F
– ident: ref63/cit63
  doi: 10.1002/slct.201904112
– ident: ref15/cit15
  doi: 10.1021/acs.analchem.8b03116
– ident: ref54/cit54
  doi: 10.1038/s41467-020-18016-4
– ident: ref53/cit53
  doi: 10.1021/acs.analchem.8b03116
– ident: ref55/cit55
  doi: 10.1021/am302074p
– ident: ref30/cit30
  doi: 10.1039/C8CP01978A
– ident: ref74/cit74
  doi: 10.1021/acs.nanolett.1c02003
– ident: ref3/cit3
  doi: 10.1021/acs.accounts.9b00224
– ident: ref82/cit82
  doi: 10.1021/j150660a053
– ident: ref40/cit40
  doi: 10.1038/nmat3454
– ident: ref79/cit79
  doi: 10.1002/smll.201901789
– ident: ref83/cit83
  doi: 10.1039/b916646g
– ident: ref20/cit20
  doi: 10.1002/smll.201500509
– ident: ref51/cit51
  doi: 10.1021/ac3018179
– ident: ref27/cit27
  doi: 10.1021/cs300707y
– ident: ref69/cit69
  doi: 10.1063/1.1699044
– ident: ref71/cit71
  doi: 10.1088/1054-660X/23/2/025601
SSID ssj0000456870
Score 2.460432
Snippet The non-radiative decay of surface plasmon resonance (SPR) in plasmonic metal nanoparticles (NPs) opens up unique hot-carrier-driven chemical transformation...
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 14619
Title Regioselective Plasmon-Driven Decarboxylation of Mercaptobenzoic Acids Triggered by Distinct Reactive Oxygen Species
URI http://dx.doi.org/10.1021/acscatal.2c04058
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODCGzFeygEOHLq1SdPHcdqYJqQBGkParUrSdJpA7dR2Etuvx2k7mHhp5yZR5Dr259jxh9C1zx3ih9QxbABDhs1Cx-AstECXmUvBUgoh9Hvn_oPTe7HvR2z01SbnewafWE0us-Imo0EkKBzzNtEWcTxXB1qt9vPnfYqGJl7BDQdOjBkMYECVlfxtEe2LZLbii1acSnevZCfKil6EupbktTHLRUMufnZqXGO_-2i3wpa4VSrDAdpQ8SHabi8p3Y5QPlDjSZIV1Ddg5fATQGdQQ6OTapuHO0ryVMBWyvo4nES4r1LJp3DoVbxIJhK35CTM8BBC-rEm-cRijjvaSsQyxwPFy2Uf3-eglrigtlfZMRp274btnlHRLhgc4r_coNyPLMtREIuZkkrKlM0syk3hepJ4PHK4sBkD48R93coG_L3kZgg4UDBwbTY9QbU4idUpwjKyXI-HBL4CUOBEOExSBauYduhDLFVHNyCtoDo1WVAkxIkVLEUYVCKso-byPwWyal2uGTTe_plx-zljWrbt-HPs2Zq7OEc7RL990LUs5ALV8nSmLgGR5OKqUMUPF13ckA
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gPuCL30b87IM--DBg3Tq2RwISVECDmPC2tF0hRDMIG4nw13sdA4lRo6_berm0t7vf9dr7AVx53KFeYDmGjWDIsFngGJwFJtoyK1voKYUQ-r5zq-00Xuz7HutlwFzehUElIpQUJUX8z-4CZhGfJRsaBSrR7pi7AZuIRajOtyrV59W2ikYobkIRh7GMGQzRQFqc_E6IDkkyWgtJa7GlvgOdlVbJkZLXwjQWBTn_0rDxX2rvwnaKNEllYRp7kFHhPuSqS4K3A4g7ajAcRQkRDvo88oRAGo3SqE20ByQ1JflEoEaL03Jk1CctNZF8jC5AhfPRUJKKHAYR6WKCP9CUn0TMSE37jFDGpKP4Quzj-wyNlCRE9yo6hG79tlttGCkJg8ExG4wNi3t903QUZmYlaUmLKZuZFi-Jsiupy_sOFzZj6Kq4pxvbYPSXvBQgKhQMA51tHUE2HIXqGIjsm2WXBxTfImzgVDhMWgqllOzAw8wqD9c4W376D0V-Uh6npr-cQj-dwjwUl8vly7SRuebTePtlxM1qxHjRxOPHb0_-qMUl5BrdVtNv3rUfTmGL6lsR-pQLPYNsPJmqc8QqsbhIrPMDFcvk8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gJurFtxGfe9CDh0JfW9ojAQk-QIJouDW72y0hmkJoSYRf72wphBg1em27k8l2duabnd35AK485pheYDmajWBIs2ngaIwGBtoyLVvoKTnn6r5zs-U0Xuz7Hu3lgC7uwqASMUqK0yK-WtWjIMw6DBglfJ5uahRNgbZH3TVYV1U7lXNVqs_LrRWFUtyUJg7jGdUoIoKsQPmdEBWWRLwSllbiS30HXpeapcdK3oqThBfF7EvTxn-rvgvbGeIklbmJ7EFORvuwWV0QvR1A0pH9wTBOCXHQ95E2Amo0Tq02Vp6Q1KRgY45azU_NkWFImnIs2AhdgYxmw4EgFTEIYtLFRL-vqD8Jn5Ka8h2RSEhHsrnYp48pGitJCe9lfAjd-m232tAyMgaNYVaYaBbzQsNwJGZourCERaVNDYvpvOwK02Whw7hNKbos5qkGN4gCBNMDRIecYsCzrSPIR8NIHgMRoVF2WWDiW4QPzOQOFZZEKbodeJhhFeAaZ8vP1lLsp2Vy0_AXU-hnU1iA0uKX-SJraK54Nd5_GXGzHDGaN_P48duTP2pxCRvtWt1_vGs9nMKWqS5HqMMu5hnkk_FEniNkSfhFaqCfiyTndA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regioselective+Plasmon-Driven+Decarboxylation+of+Mercaptobenzoic+Acids+Triggered+by+Distinct+Reactive+Oxygen+Species&rft.jtitle=ACS+catalysis&rft.au=dos+Santos+Lopes%2C+Douglas&rft.au=dos+Santos+Abreu%2C+Dieric&rft.au=Ando%2C+Ro%CC%82mulo+Augusto&rft.au=Corio%2C+Paola&rft.date=2022-12-02&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=12&rft.issue=23&rft.spage=14619&rft.epage=14628&rft_id=info:doi/10.1021%2Facscatal.2c04058&rft.externalDocID=a943483432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon