Regioselective Plasmon-Driven Decarboxylation of Mercaptobenzoic Acids Triggered by Distinct Reactive Oxygen Species
The non-radiative decay of surface plasmon resonance (SPR) in plasmonic metal nanoparticles (NPs) opens up unique hot-carrier-driven chemical transformation mechanisms. Here, the hot-carrier generation of reactive oxygen species was demonstrated to trigger the regioselective plasmon-driven decarboxy...
Saved in:
Published in | ACS catalysis Vol. 12; no. 23; pp. 14619 - 14628 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
02.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The non-radiative decay of surface plasmon resonance (SPR) in plasmonic metal nanoparticles (NPs) opens up unique hot-carrier-driven chemical transformation mechanisms. Here, the hot-carrier generation of reactive oxygen species was demonstrated to trigger the regioselective plasmon-driven decarboxylation of mercaptobenzoic acid (MBA) isomers over Ag (AgNPs) and Au nanoparticles (AuNPs). Controlled catalytic experiments indicated that the catalytic C–C bond cleavage over AgNPs and AuNPs is primarily initiated by photogenerated singlet oxygen (1O2) and hydroxyl radical (•OH), respectively. Energetic hot electrons on AgNPs can successfully generate 1O2 from 3O2 via Dexter energy transfer, while hot holes generated under the Fermi level of AuNPs have sufficient energy to oxidize OH– and promote the formation of reactive •OH. The catalytic activity trend was evaluated considering the known ortho-substituent effect. The data discussed herein shed light on how the intrinsic differences in electronic energy levels and metal–molecule interactions precisely tune the regioselectivity of plasmon-driven transformations and may guide the rational design of plasmonic catalysts for distinct desired reactions. |
---|---|
AbstractList | The non-radiative decay of surface plasmon resonance (SPR) in plasmonic metal nanoparticles (NPs) opens up unique hot-carrier-driven chemical transformation mechanisms. Here, the hot-carrier generation of reactive oxygen species was demonstrated to trigger the regioselective plasmon-driven decarboxylation of mercaptobenzoic acid (MBA) isomers over Ag (AgNPs) and Au nanoparticles (AuNPs). Controlled catalytic experiments indicated that the catalytic C–C bond cleavage over AgNPs and AuNPs is primarily initiated by photogenerated singlet oxygen (1O2) and hydroxyl radical (•OH), respectively. Energetic hot electrons on AgNPs can successfully generate 1O2 from 3O2 via Dexter energy transfer, while hot holes generated under the Fermi level of AuNPs have sufficient energy to oxidize OH– and promote the formation of reactive •OH. The catalytic activity trend was evaluated considering the known ortho-substituent effect. The data discussed herein shed light on how the intrinsic differences in electronic energy levels and metal–molecule interactions precisely tune the regioselectivity of plasmon-driven transformations and may guide the rational design of plasmonic catalysts for distinct desired reactions. |
Author | dos Santos Abreu, Dieric dos Santos Lopes, Douglas Corio, Paola Ando, Rômulo Augusto |
AuthorAffiliation | Federal University of Ceara Department of Fundamental Chemistry, Institute of Chemistry Department of Analytical Chemistry and Physical Chemistry |
AuthorAffiliation_xml | – name: Department of Analytical Chemistry and Physical Chemistry – name: Department of Fundamental Chemistry, Institute of Chemistry – name: Federal University of Ceara |
Author_xml | – sequence: 1 givenname: Douglas orcidid: 0000-0003-4988-8349 surname: dos Santos Lopes fullname: dos Santos Lopes, Douglas organization: Department of Fundamental Chemistry, Institute of Chemistry – sequence: 2 givenname: Dieric surname: dos Santos Abreu fullname: dos Santos Abreu, Dieric organization: Federal University of Ceara – sequence: 3 givenname: Rômulo Augusto orcidid: 0000-0002-3872-8094 surname: Ando fullname: Ando, Rômulo Augusto organization: Department of Fundamental Chemistry, Institute of Chemistry – sequence: 4 givenname: Paola orcidid: 0000-0002-0010-5131 surname: Corio fullname: Corio, Paola email: paola@iq.usp.br organization: Department of Fundamental Chemistry, Institute of Chemistry |
BookMark | eNp9kFtLAzEQhYNUsNa--5gf4Goum232sbTeoFKpfV9m09mSst2UJErXX-9qK4ig8zIzzHwHzjknvcY1SMglZ9ecCX4DJhiIUF8Lw1Km9AnpC65UolKpej_mMzIMYcO6SlWmR6xP4gLX1gWs0UT7hvS5hrB1TTL13dbQKRrwpdu3NUTrGuoq-oTewC66Ept3Zw0dG7sKdOnteo0eV7Rs6dSGaBsT6QLhIDvft-tO7mWHxmK4IKcV1AGHxz4gy7vb5eQhmc3vHyfjWQKCs5hIyCvOM9RCMyONVJgqLoGVI22EhiqDMlVK6xHkmcikVtIAW-VSlCrPWSoHhB1kjXcheKyKnbdb8G3BWfGZW_GdW3HMrUOyX4ix8ct69GDr_8CrA9hdio179U1n7O_3D2wRh3Q |
CitedBy_id | crossref_primary_10_1117_1_JNP_18_046005 crossref_primary_10_1002_anie_202414752 crossref_primary_10_1038_s41467_024_51916_3 crossref_primary_10_1016_j_jphotochem_2023_115307 crossref_primary_10_1016_j_jeurceramsoc_2024_116697 crossref_primary_10_1515_nanoph_2024_0417 crossref_primary_10_1002_solr_202300195 crossref_primary_10_1021_acs_jpcc_3c07887 crossref_primary_10_1021_acsnano_4c06858 crossref_primary_10_1021_acs_nanolett_3c04979 crossref_primary_10_1021_acs_nanolett_3c01532 crossref_primary_10_1039_D3TA02272B crossref_primary_10_1002_ange_202414752 crossref_primary_10_1039_D3CS00462G crossref_primary_10_1016_j_apcatb_2024_124820 crossref_primary_10_1039_D3RA01712E crossref_primary_10_1021_acs_jpcc_5c00768 |
Cites_doi | 10.1088/0957-4484/18/7/075706 10.3389/fchem.2020.591325 10.1016/j.watres.2015.12.006 10.1021/la400500t 10.1039/C9NR02130B 10.1039/C4RA03512G 10.12693/APhysPolA.119.1018 10.1016/j.jbbm.2005.10.003 10.1021/jacs.6b08799 10.1021/jo00207a028 10.1021/j100845a038 10.1039/c4pp00261j 10.1111/j.1365-2621.2004.tb09924.x 10.1002/anie.201310097 10.1016/j.siny.2010.04.003 10.1021/acs.jpcc.5b07966 10.1038/nnano.2014.311 10.1126/science.aaw9545 10.1002/chem.201402931 10.1021/acsanm.1c00668 10.1021/nn300934k 10.1021/acs.chemrev.7b00430 10.1021/acs.nanolett.5b01322 10.1039/c1dt10771b 10.1039/C7CC07951F 10.1038/s41570-018-0031-9 10.1039/D1NR04009J 10.1039/C9NR10041E 10.1039/D1TB02207E 10.1021/acsenergylett.9b01617 10.1016/j.apsusc.2018.04.197 10.1016/0014-5793(79)80609-2 10.1038/nchem.1032 10.1039/c2cp41502j 10.1016/S1010-6030(00)00264-1 10.1021/ja903923s 10.1021/acs.chemrev.7b00161 10.1021/acsami.9b05509 10.1039/c3cs60364d 10.1002/jrs.928 10.1021/nn502325j 10.1039/c4cp00229f 10.1038/s41377-020-00345-0 10.1021/ja101107z 10.1021/acs.jpcc.9b08181 10.1038/nmat4281 10.1039/c3tb20806k 10.1038/nrc1071 10.1038/s41467-020-18016-4 10.1002/anie.201205748 10.1021/acs.jpcc.6b02005 10.1155/2012/987606 10.1021/acsami.0c08053 10.1016/j.cplett.2011.11.045 10.1038/ncomms10545 10.1038/srep02997 10.1002/jrs.1250221214 10.1021/cs400993w 10.1021/acs.jpcc.1c07177 10.1021/acscatal.8b03486 10.1021/acs.jpclett.6b00147 10.1006/abbi.1993.1074 10.1021/j150645a024 10.1103/PhysRevB.88.155411 10.1021/cs501189m 10.1039/C7CS00238F 10.1002/slct.201904112 10.1021/acs.analchem.8b03116 10.1021/am302074p 10.1039/C8CP01978A 10.1021/acs.nanolett.1c02003 10.1021/acs.accounts.9b00224 10.1021/j150660a053 10.1038/nmat3454 10.1002/smll.201901789 10.1039/b916646g 10.1002/smll.201500509 10.1021/ac3018179 10.1021/cs300707y 10.1063/1.1699044 10.1088/1054-660X/23/2/025601 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acscatal.2c04058 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2155-5435 |
EndPage | 14628 |
ExternalDocumentID | 10_1021_acscatal_2c04058 a943483432 |
GroupedDBID | .K2 55A 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ EBS ED~ GGK GNL IH9 JG~ RNS ROL UI2 VF5 VG9 W1F AAHBH AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ |
ID | FETCH-LOGICAL-a210t-3a9f116e8280c3c35e4513a0b78c28af6ab455887a96263853ca0d932b599043 |
IEDL.DBID | ACS |
ISSN | 2155-5435 |
IngestDate | Thu Apr 24 23:05:41 EDT 2025 Tue Jul 01 02:04:20 EDT 2025 Tue Dec 06 04:49:42 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | regioselectivity decarboxylation hot carriers reactive oxygen species surface plasmon |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a210t-3a9f116e8280c3c35e4513a0b78c28af6ab455887a96263853ca0d932b599043 |
ORCID | 0000-0002-3872-8094 0000-0002-0010-5131 0000-0003-4988-8349 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1021_acscatal_2c04058 crossref_citationtrail_10_1021_acscatal_2c04058 acs_journals_10_1021_acscatal_2c04058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20221202 2022-12-02 |
PublicationDateYYYYMMDD | 2022-12-02 |
PublicationDate_xml | – month: 12 year: 2022 text: 20221202 day: 02 |
PublicationDecade | 2020 |
PublicationTitle | ACS catalysis |
PublicationTitleAlternate | ACS Catal |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref88/cit88 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref49/cit49 doi: 10.1088/0957-4484/18/7/075706 – ident: ref70/cit70 doi: 10.3389/fchem.2020.591325 – ident: ref56/cit56 doi: 10.1016/j.watres.2015.12.006 – ident: ref77/cit77 doi: 10.1021/la400500t – ident: ref43/cit43 doi: 10.1039/C9NR02130B – ident: ref36/cit36 doi: 10.1039/C4RA03512G – ident: ref48/cit48 doi: 10.12693/APhysPolA.119.1018 – ident: ref60/cit60 doi: 10.1016/j.jbbm.2005.10.003 – ident: ref86/cit86 doi: 10.1021/jacs.6b08799 – ident: ref85/cit85 doi: 10.1021/jo00207a028 – ident: ref57/cit57 doi: 10.1021/j100845a038 – ident: ref61/cit61 doi: 10.1039/c4pp00261j – ident: ref22/cit22 doi: 10.3389/fchem.2020.591325 – ident: ref59/cit59 doi: 10.1111/j.1365-2621.2004.tb09924.x – ident: ref13/cit13 doi: 10.1002/anie.201310097 – ident: ref17/cit17 doi: 10.1016/j.siny.2010.04.003 – ident: ref72/cit72 doi: 10.1021/acs.jpcc.5b07966 – ident: ref68/cit68 doi: 10.1038/nnano.2014.311 – ident: ref38/cit38 doi: 10.1126/science.aaw9545 – ident: ref88/cit88 doi: 10.1002/chem.201402931 – ident: ref50/cit50 doi: 10.1021/acsanm.1c00668 – ident: ref78/cit78 doi: 10.1021/nn300934k – ident: ref10/cit10 doi: 10.1021/acs.chemrev.7b00430 – ident: ref47/cit47 doi: 10.1021/acs.nanolett.5b01322 – ident: ref87/cit87 doi: 10.1039/c1dt10771b – ident: ref6/cit6 doi: 10.1039/C7CC07951F – ident: ref1/cit1 doi: 10.1038/s41570-018-0031-9 – ident: ref5/cit5 doi: 10.1039/D1NR04009J – ident: ref9/cit9 doi: 10.1039/C9NR10041E – ident: ref18/cit18 doi: 10.1039/D1TB02207E – ident: ref67/cit67 doi: 10.1021/acsenergylett.9b01617 – ident: ref80/cit80 doi: 10.1016/j.apsusc.2018.04.197 – ident: ref58/cit58 doi: 10.1016/0014-5793(79)80609-2 – ident: ref84/cit84 doi: 10.1002/chem.201402931 – ident: ref73/cit73 doi: 10.1038/nchem.1032 – ident: ref42/cit42 doi: 10.1039/c2cp41502j – ident: ref64/cit64 doi: 10.1016/S1010-6030(00)00264-1 – ident: ref65/cit65 doi: 10.1021/ja903923s – ident: ref66/cit66 doi: 10.1021/acs.chemrev.7b00161 – ident: ref34/cit34 doi: 10.1021/acsami.9b05509 – ident: ref2/cit2 doi: 10.1039/c3cs60364d – ident: ref32/cit32 doi: 10.1002/jrs.928 – ident: ref25/cit25 doi: 10.1021/nn502325j – ident: ref21/cit21 doi: 10.1021/nn502325j – ident: ref29/cit29 doi: 10.1039/c4cp00229f – ident: ref39/cit39 doi: 10.1038/s41377-020-00345-0 – ident: ref12/cit12 doi: 10.1021/ja101107z – ident: ref52/cit52 doi: 10.1021/acs.jpcc.9b08181 – ident: ref4/cit4 doi: 10.1038/nmat4281 – ident: ref24/cit24 doi: 10.1039/c3tb20806k – ident: ref19/cit19 doi: 10.1038/nrc1071 – ident: ref11/cit11 doi: 10.1038/nchem.1032 – ident: ref14/cit14 doi: 10.1038/s41467-020-18016-4 – ident: ref7/cit7 doi: 10.1002/anie.201205748 – ident: ref23/cit23 doi: 10.1021/acs.jpcc.6b02005 – ident: ref62/cit62 doi: 10.1155/2012/987606 – ident: ref33/cit33 doi: 10.1021/acsami.0c08053 – ident: ref75/cit75 doi: 10.1016/j.cplett.2011.11.045 – ident: ref41/cit41 doi: 10.1038/ncomms10545 – ident: ref16/cit16 doi: 10.1038/srep02997 – ident: ref31/cit31 doi: 10.1002/jrs.1250221214 – ident: ref37/cit37 doi: 10.1021/cs400993w – ident: ref28/cit28 doi: 10.1039/C9NR02130B – ident: ref35/cit35 doi: 10.1021/acs.jpcc.1c07177 – ident: ref26/cit26 doi: 10.1021/acscatal.8b03486 – ident: ref8/cit8 doi: 10.1021/acs.jpclett.6b00147 – ident: ref76/cit76 doi: 10.1006/abbi.1993.1074 – ident: ref81/cit81 doi: 10.1021/j150645a024 – ident: ref46/cit46 doi: 10.1103/PhysRevB.88.155411 – ident: ref44/cit44 doi: 10.1021/cs501189m – ident: ref45/cit45 doi: 10.1039/C7CS00238F – ident: ref63/cit63 doi: 10.1002/slct.201904112 – ident: ref15/cit15 doi: 10.1021/acs.analchem.8b03116 – ident: ref54/cit54 doi: 10.1038/s41467-020-18016-4 – ident: ref53/cit53 doi: 10.1021/acs.analchem.8b03116 – ident: ref55/cit55 doi: 10.1021/am302074p – ident: ref30/cit30 doi: 10.1039/C8CP01978A – ident: ref74/cit74 doi: 10.1021/acs.nanolett.1c02003 – ident: ref3/cit3 doi: 10.1021/acs.accounts.9b00224 – ident: ref82/cit82 doi: 10.1021/j150660a053 – ident: ref40/cit40 doi: 10.1038/nmat3454 – ident: ref79/cit79 doi: 10.1002/smll.201901789 – ident: ref83/cit83 doi: 10.1039/b916646g – ident: ref20/cit20 doi: 10.1002/smll.201500509 – ident: ref51/cit51 doi: 10.1021/ac3018179 – ident: ref27/cit27 doi: 10.1021/cs300707y – ident: ref69/cit69 doi: 10.1063/1.1699044 – ident: ref71/cit71 doi: 10.1088/1054-660X/23/2/025601 |
SSID | ssj0000456870 |
Score | 2.460432 |
Snippet | The non-radiative decay of surface plasmon resonance (SPR) in plasmonic metal nanoparticles (NPs) opens up unique hot-carrier-driven chemical transformation... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 14619 |
Title | Regioselective Plasmon-Driven Decarboxylation of Mercaptobenzoic Acids Triggered by Distinct Reactive Oxygen Species |
URI | http://dx.doi.org/10.1021/acscatal.2c04058 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gHODCGzFeygEOHLq1SdPHcdqYJqQBGkParUrSdJpA7dR2Etuvx2k7mHhp5yZR5Dr259jxh9C1zx3ih9QxbABDhs1Cx-AstECXmUvBUgoh9Hvn_oPTe7HvR2z01SbnewafWE0us-Imo0EkKBzzNtEWcTxXB1qt9vPnfYqGJl7BDQdOjBkMYECVlfxtEe2LZLbii1acSnevZCfKil6EupbktTHLRUMufnZqXGO_-2i3wpa4VSrDAdpQ8SHabi8p3Y5QPlDjSZIV1Ddg5fATQGdQQ6OTapuHO0ryVMBWyvo4nES4r1LJp3DoVbxIJhK35CTM8BBC-rEm-cRijjvaSsQyxwPFy2Uf3-eglrigtlfZMRp274btnlHRLhgc4r_coNyPLMtREIuZkkrKlM0syk3hepJ4PHK4sBkD48R93coG_L3kZgg4UDBwbTY9QbU4idUpwjKyXI-HBL4CUOBEOExSBauYduhDLFVHNyCtoDo1WVAkxIkVLEUYVCKso-byPwWyal2uGTTe_plx-zljWrbt-HPs2Zq7OEc7RL990LUs5ALV8nSmLgGR5OKqUMUPF13ckA |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8gPuCL30b87IM--DBg3Tq2RwISVECDmPC2tF0hRDMIG4nw13sdA4lRo6_berm0t7vf9dr7AVx53KFeYDmGjWDIsFngGJwFJtoyK1voKYUQ-r5zq-00Xuz7HutlwFzehUElIpQUJUX8z-4CZhGfJRsaBSrR7pi7AZuIRajOtyrV59W2ikYobkIRh7GMGQzRQFqc_E6IDkkyWgtJa7GlvgOdlVbJkZLXwjQWBTn_0rDxX2rvwnaKNEllYRp7kFHhPuSqS4K3A4g7ajAcRQkRDvo88oRAGo3SqE20ByQ1JflEoEaL03Jk1CctNZF8jC5AhfPRUJKKHAYR6WKCP9CUn0TMSE37jFDGpKP4Quzj-wyNlCRE9yo6hG79tlttGCkJg8ExG4wNi3t903QUZmYlaUmLKZuZFi-Jsiupy_sOFzZj6Kq4pxvbYPSXvBQgKhQMA51tHUE2HIXqGIjsm2WXBxTfImzgVDhMWgqllOzAw8wqD9c4W376D0V-Uh6npr-cQj-dwjwUl8vly7SRuebTePtlxM1qxHjRxOPHb0_-qMUl5BrdVtNv3rUfTmGL6lsR-pQLPYNsPJmqc8QqsbhIrPMDFcvk8Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4gJurFtxGfe9CDh0JfW9ojAQk-QIJouDW72y0hmkJoSYRf72wphBg1em27k8l2duabnd35AK485pheYDmajWBIs2ngaIwGBtoyLVvoKTnn6r5zs-U0Xuz7Hu3lgC7uwqASMUqK0yK-WtWjIMw6DBglfJ5uahRNgbZH3TVYV1U7lXNVqs_LrRWFUtyUJg7jGdUoIoKsQPmdEBWWRLwSllbiS30HXpeapcdK3oqThBfF7EvTxn-rvgvbGeIklbmJ7EFORvuwWV0QvR1A0pH9wTBOCXHQ95E2Amo0Tq02Vp6Q1KRgY45azU_NkWFImnIs2AhdgYxmw4EgFTEIYtLFRL-vqD8Jn5Ka8h2RSEhHsrnYp48pGitJCe9lfAjd-m232tAyMgaNYVaYaBbzQsNwJGZourCERaVNDYvpvOwK02Whw7hNKbos5qkGN4gCBNMDRIecYsCzrSPIR8NIHgMRoVF2WWDiW4QPzOQOFZZEKbodeJhhFeAaZ8vP1lLsp2Vy0_AXU-hnU1iA0uKX-SJraK54Nd5_GXGzHDGaN_P48duTP2pxCRvtWt1_vGs9nMKWqS5HqMMu5hnkk_FEniNkSfhFaqCfiyTndA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regioselective+Plasmon-Driven+Decarboxylation+of+Mercaptobenzoic+Acids+Triggered+by+Distinct+Reactive+Oxygen+Species&rft.jtitle=ACS+catalysis&rft.au=dos+Santos+Lopes%2C+Douglas&rft.au=dos+Santos+Abreu%2C+Dieric&rft.au=Ando%2C+Ro%CC%82mulo+Augusto&rft.au=Corio%2C+Paola&rft.date=2022-12-02&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=12&rft.issue=23&rft.spage=14619&rft.epage=14628&rft_id=info:doi/10.1021%2Facscatal.2c04058&rft.externalDocID=a943483432 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon |