Accelerated Design of Flame Retardant Polymeric Nanocomposites via Machine Learning Prediction
Improving the flame retardancy of polymeric materials used in engineering applications is an increasingly important strategy for limiting fire hazards. However, the wide variety of flame retardant polymeric nanocomposite compositions prevents quick identification of the optimal design for a specific...
Saved in:
Published in | ACS applied engineering materials Vol. 1; no. 1; pp. 596 - 605 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
27.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Improving the flame retardancy of polymeric materials used in engineering applications is an increasingly important strategy for limiting fire hazards. However, the wide variety of flame retardant polymeric nanocomposite compositions prevents quick identification of the optimal design for a specific application. In this study, we built a flame retardancy database of more than 800 polymeric nanocomposites, including information from polymer flammability, thermal stability, and nanofiller properties. Then, we applied five machine learning algorithms to predict the flame retardancy index for different types of flame retardant polymeric nanocomposites. Among them, extreme gradient boosting regression gives the best prediction with a coefficient of determination (R 2) of 0.94 and a root-mean-square error of 0.17. In addition, we studied how the physical features of polymeric nanocomposites affected flame retardancy using the correlation matrix and feature importance plot, which in turn was used to guide the design of polymeric nanocomposites for flame retardant applications. Following the guidelines, a high-performance flame retardant polymeric nanocomposite was designed and synthesized, and the experimental FRI result was compared with the machine learning prediction (6% prediction error). This result demonstrated a fast identification of flame retardancy of polymeric nanocomposite without large-scale fire tests, which could accelerate the design of functional polymeric nanocomposites in the flame retardant field. |
---|---|
AbstractList | Improving the flame retardancy of polymeric materials used in engineering applications is an increasingly important strategy for limiting fire hazards. However, the wide variety of flame retardant polymeric nanocomposite compositions prevents quick identification of the optimal design for a specific application. In this study, we built a flame retardancy database of more than 800 polymeric nanocomposites, including information from polymer flammability, thermal stability, and nanofiller properties. Then, we applied five machine learning algorithms to predict the flame retardancy index for different types of flame retardant polymeric nanocomposites. Among them, extreme gradient boosting regression gives the best prediction with a coefficient of determination (R 2) of 0.94 and a root-mean-square error of 0.17. In addition, we studied how the physical features of polymeric nanocomposites affected flame retardancy using the correlation matrix and feature importance plot, which in turn was used to guide the design of polymeric nanocomposites for flame retardant applications. Following the guidelines, a high-performance flame retardant polymeric nanocomposite was designed and synthesized, and the experimental FRI result was compared with the machine learning prediction (6% prediction error). This result demonstrated a fast identification of flame retardancy of polymeric nanocomposite without large-scale fire tests, which could accelerate the design of functional polymeric nanocomposites in the flame retardant field. |
Author | Jiao, Zeren Song, Pingan Zhang, Zhuoran Wang, Qingsheng Shen, Ruiqing |
AuthorAffiliation | School of Agriculture and Environmental Science Department of Mechanical & Industrial Engineering Artie McFerrin Department of Chemical Engineering Marshall University Centre for Future Materials University of Southern Queensland |
AuthorAffiliation_xml | – name: Marshall University – name: School of Agriculture and Environmental Science – name: Artie McFerrin Department of Chemical Engineering – name: Centre for Future Materials – name: University of Southern Queensland – name: Department of Mechanical & Industrial Engineering |
Author_xml | – sequence: 1 givenname: Zhuoran orcidid: 0000-0003-2718-2062 surname: Zhang fullname: Zhang, Zhuoran organization: Artie McFerrin Department of Chemical Engineering – sequence: 2 givenname: Zeren orcidid: 0000-0002-2707-0346 surname: Jiao fullname: Jiao, Zeren organization: Artie McFerrin Department of Chemical Engineering – sequence: 3 givenname: Ruiqing surname: Shen fullname: Shen, Ruiqing organization: Marshall University – sequence: 4 givenname: Pingan surname: Song fullname: Song, Pingan organization: University of Southern Queensland – sequence: 5 givenname: Qingsheng orcidid: 0000-0002-6411-984X surname: Wang fullname: Wang, Qingsheng email: qwang@tamu.edu organization: Artie McFerrin Department of Chemical Engineering |
BookMark | eNp9kFFLwzAQgINMcM49-5p36Za0a9o-jummMHWIvlpu1-vMaJORRGH_3o7tQQR9uTu4-46775L1jDXE2LUUIyliOQb0QKYdxSiEnKRnrB9nmYyKdJL2ftQXbOj9VgiRxFIWKuuz9ykiNeQgUMVvyeuN4bbm8wZa4i8UwFVgAl_ZZt-S08ifwFi07c56HcjzLw38EfBDG-JLAme02fCVo0pj0NZcsfMaGk_DUx6wt_nd6-w-Wj4vHmbTZQSxyEIEUBeCYkhkDqqQKhd5jYLSSZaoStVYVJST6kK2phywSoo6xoLWmKJSuaRkwNLjXnTWe0d1iTrA4YLgQDelFOXBU3nyVJ48ddz4F7dzugW3_4e4ORJdo9zaT2e6v_6c_gZdin9n |
CitedBy_id | crossref_primary_10_1016_j_matpr_2023_07_347 crossref_primary_10_3390_polym15112422 crossref_primary_10_1016_j_coco_2023_101806 crossref_primary_10_1016_j_polymdegradstab_2025_111209 crossref_primary_10_1080_10601325_2023_2280237 crossref_primary_10_1002_EXP_20220088 crossref_primary_10_1016_j_jlp_2023_105177 crossref_primary_10_1002_aenm_202403431 crossref_primary_10_1016_j_coco_2023_101756 crossref_primary_10_1002_adts_202200674 crossref_primary_10_1002_wcms_1733 crossref_primary_10_1016_j_adna_2025_03_002 crossref_primary_10_1016_j_coco_2023_101593 crossref_primary_10_3390_compounds3030034 crossref_primary_10_1016_j_polymdegradstab_2024_110981 crossref_primary_10_1002_adma_202403835 crossref_primary_10_1002_vnl_22212 crossref_primary_10_1016_j_cej_2023_144077 |
Cites_doi | 10.1038/nature17439 10.3390/polym13234113 10.1016/j.matt.2021.02.015 10.1007/s10973-021-10948-3 10.1201/9780367811686 10.1016/B978-0-12-821497-8.00003-4 10.1016/j.pmatsci.2020.100687 10.1038/s41524-021-00554-0 10.1016/j.polymer.2005.08.085 10.1016/j.matpr.2015.08.029 10.1021/acsmacrolett.9b00039 10.2307/2685209 10.1023/A:1010933404324 10.1016/j.cej.2019.122267 10.1021/acsinfocus.7e5033 10.3390/polym11030407 10.3390/polym14061213 10.1021/acs.chas.9b00026 10.1002/app.33759 10.1016/j.compositesb.2021.108675 10.1002/prs.12103 10.15744/2348-9812.1.e202 10.1016/j.polymdegradstab.2022.110152 10.1002/9781119752240 10.1016/j.matt.2020.06.011 10.1016/j.jlp.2020.104226 10.1016/j.compositesb.2020.108265 10.1016/j.mser.2008.09.002 10.1021/acssuschemeng.9b01975 10.1023/A:1022627411411 10.1021/acssuschemeng.2c01720 10.1039/D0NA00388C 10.1021/acs.iecr.1c02142 10.1021/acs.iecr.2c00715 10.1016/j.jhazmat.2019.121640 10.1007/s10853-019-03841-w 10.1021/acsnano.8b04726 10.1007/s10973-016-6070-x 10.1214/aos/1013203451 10.1016/j.matchemphys.2015.11.014 10.1021/acsami.9b14792 10.1007/978-0-387-84858-7 10.1016/j.compchemeng.2021.107358 10.1021/acs.chas.0c00075 10.1007/978-1-4614-7138-7 10.1145/2939672.2939785 10.1007/s10973-022-11279-7 |
ContentType | Journal Article |
Copyright | 2022 American Chemical Society |
Copyright_xml | – notice: 2022 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaenm.2c00145 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2771-9545 |
EndPage | 605 |
ExternalDocumentID | 10_1021_acsaenm_2c00145 i07086528 |
GroupedDBID | ABQRX ACS ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ GGK VF5 VG9 AAYXX ABBLG ABJNI ABLBI CITATION |
ID | FETCH-LOGICAL-a207t-aaf90e2a318a6916808fc0e54736d6fc9de8e6de87be8acd39f2c9ebc5c6681e3 |
IEDL.DBID | ACS |
ISSN | 2771-9545 |
IngestDate | Thu Apr 24 22:59:43 EDT 2025 Tue Jul 01 02:12:17 EDT 2025 Mon Oct 07 03:40:28 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Keywords | XGB machine learning flame retardant polymeric nanocomposite |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a207t-aaf90e2a318a6916808fc0e54736d6fc9de8e6de87be8acd39f2c9ebc5c6681e3 |
ORCID | 0000-0002-6411-984X 0000-0003-2718-2062 0000-0002-2707-0346 |
PageCount | 10 |
ParticipantIDs | crossref_citationtrail_10_1021_acsaenm_2c00145 crossref_primary_10_1021_acsaenm_2c00145 acs_journals_10_1021_acsaenm_2c00145 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-27 |
PublicationDateYYYYMMDD | 2023-01-27 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied engineering materials |
PublicationTitleAlternate | ACS Appl. Eng. Mater |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 Salamone J. C. (ref1/cit1) 2020 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref8/cit8 Chen T. (ref43/cit43) 2016 ref31/cit31 ref2/cit2 ref34/cit34 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref46/cit46 James G. (ref33/cit33) 2013 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 Morgan A. B. (ref11/cit11) 2021 ref50/cit50 Butler K. T. (ref23/cit23) 2022 ref6/cit6 ref36/cit36 Drucker H. (ref37/cit37) 1996; 9 ref18/cit18 Hastie T. (ref42/cit42) 2009 ref25/cit25 ref29/cit29 ref39/cit39 ref14/cit14 ref5/cit5 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref4/cit4 ref30/cit30 Vahabi H. (ref32/cit32) 2021 ref47/cit47 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref20/cit20 doi: 10.1038/nature17439 – ident: ref46/cit46 doi: 10.3390/polym13234113 – ident: ref25/cit25 doi: 10.1016/j.matt.2021.02.015 – ident: ref14/cit14 doi: 10.1007/s10973-021-10948-3 – volume-title: Polymeric Materials Encyclopedia year: 2020 ident: ref1/cit1 doi: 10.1201/9780367811686 – start-page: 61 volume-title: Handbook of Polymer Nanocomposites for Industrial Applications year: 2021 ident: ref32/cit32 doi: 10.1016/B978-0-12-821497-8.00003-4 – ident: ref3/cit3 doi: 10.1016/j.pmatsci.2020.100687 – ident: ref26/cit26 doi: 10.1038/s41524-021-00554-0 – ident: ref44/cit44 – ident: ref49/cit49 doi: 10.1016/j.polymer.2005.08.085 – ident: ref10/cit10 doi: 10.1016/j.matpr.2015.08.029 – ident: ref2/cit2 doi: 10.1021/acsmacrolett.9b00039 – ident: ref35/cit35 doi: 10.2307/2685209 – ident: ref39/cit39 doi: 10.1023/A:1010933404324 – ident: ref7/cit7 doi: 10.1016/j.cej.2019.122267 – volume-title: Machine Learning in Materials Science year: 2022 ident: ref23/cit23 doi: 10.1021/acsinfocus.7e5033 – ident: ref31/cit31 doi: 10.3390/polym11030407 – ident: ref29/cit29 – ident: ref9/cit9 doi: 10.3390/polym14061213 – ident: ref28/cit28 doi: 10.1021/acs.chas.9b00026 – ident: ref50/cit50 doi: 10.1002/app.33759 – ident: ref8/cit8 doi: 10.1016/j.compositesb.2021.108675 – ident: ref45/cit45 doi: 10.1002/prs.12103 – ident: ref4/cit4 doi: 10.15744/2348-9812.1.e202 – ident: ref15/cit15 doi: 10.1016/j.polymdegradstab.2022.110152 – volume-title: Non-Halogenated Flame Retardant Handbook year: 2021 ident: ref11/cit11 doi: 10.1002/9781119752240 – ident: ref21/cit21 doi: 10.1016/j.matt.2020.06.011 – ident: ref47/cit47 doi: 10.1016/j.jlp.2020.104226 – ident: ref16/cit16 doi: 10.1016/j.compositesb.2020.108265 – ident: ref48/cit48 doi: 10.1016/j.mser.2008.09.002 – volume: 9 start-page: 155 year: 1996 ident: ref37/cit37 publication-title: Adv. Neural Inf Process Syst – ident: ref6/cit6 doi: 10.1021/acssuschemeng.9b01975 – ident: ref36/cit36 doi: 10.1023/A:1022627411411 – ident: ref18/cit18 doi: 10.1021/acssuschemeng.2c01720 – ident: ref22/cit22 doi: 10.1039/D0NA00388C – ident: ref38/cit38 doi: 10.1021/acs.iecr.1c02142 – ident: ref17/cit17 doi: 10.1021/acs.iecr.2c00715 – ident: ref27/cit27 doi: 10.1016/j.jhazmat.2019.121640 – ident: ref5/cit5 doi: 10.1007/s10853-019-03841-w – ident: ref24/cit24 doi: 10.1021/acsnano.8b04726 – ident: ref12/cit12 doi: 10.1007/s10973-016-6070-x – ident: ref40/cit40 doi: 10.1214/aos/1013203451 – ident: ref13/cit13 doi: 10.1016/j.matchemphys.2015.11.014 – ident: ref19/cit19 doi: 10.1021/acsami.9b14792 – volume-title: The Elements of Statistical Learning year: 2009 ident: ref42/cit42 doi: 10.1007/978-0-387-84858-7 – ident: ref34/cit34 doi: 10.1016/j.compchemeng.2021.107358 – ident: ref41/cit41 doi: 10.1021/acs.chas.0c00075 – volume-title: An Introduction to Statistical Learning year: 2013 ident: ref33/cit33 doi: 10.1007/978-1-4614-7138-7 – start-page: 785 volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16 year: 2016 ident: ref43/cit43 doi: 10.1145/2939672.2939785 – ident: ref30/cit30 doi: 10.1007/s10973-022-11279-7 |
SSID | ssj0003211967 |
Score | 2.3223364 |
Snippet | Improving the flame retardancy of polymeric materials used in engineering applications is an increasingly important strategy for limiting fire hazards.... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 596 |
Title | Accelerated Design of Flame Retardant Polymeric Nanocomposites via Machine Learning Prediction |
URI | http://dx.doi.org/10.1021/acsaenm.2c00145 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTgW6wv9tCDl8Rkk2yyx1ItRagUtdCTYTOZFbEm0qSC_np301iLUvSSXLJhmUdmsvPxfYS0UFcp6RnRDODK8hP9w6qzSFkoHalSGaWi8nT_hveG_vUoGH2TRf-c4DP3QkIhMXuxGZh2Plgla4zrFDZdUOdufpziGaaySi-WhaFrCd0YzIl8fr3DVCIoFirRQknpbs3AWEXFRGiQJM_2tExs-PjN0_j3brfJZt1Y0vYsEnbICma7ZGOBbnCPPLQBdJUx5BApvaygGzRXtKuDAuktljpYtJ3pIB-_V3Mcqj-9ucGcG2AXFvTtSdJ-Bb5EWvOyPtLBxIx6jHv3ybB7dd_pWbW-giWZE5aWlEo4yKROa8l1mxg5kQIHjRoxT7kCkWKEXF_CBCMJqScUA4EJBMB55KJ3QBpZnuEhoakCT_qBJ3wBvh_6kdJ3J4TEB-kmImqSlrZMXOdHEVejb-bGtbni2lxNYn-5JIaao9xIZYyXLzifL3id0XMse_Tof1s4JutGUd6csrDwhDTKyRRPdd9RJmdVxH0CEkLVPQ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIADb8R45sCBS0dfa5vjBEzjMcRT4kSVug5CjA3RggS_HieUMYGQ4NJKVRNZtlO7sfN9AFvEUUoFhjQDI-2EGf-w8irSDilX6VwlubSW7pxE7avw8LpxPQLu51kYFqLgmQpbxP9CF_B2-Jmi3kPdR5PVN0ZhnFMR3_h0c_disKsSGMAySxvrx7HnSM4PBng-P-YwAQmLoYA0FFlaM3A2kMk2lNzXn8usjm_f4Br_I_QsTFdppmh--MUcjFBvHqaGwAcX4KaJyDHHQEXkYs82coi-Fi12ERLnVLLrsNbFab_7aqs6gj_EfdOBbtq8qBAvd0p0bCsmiQql9VacPpnCjzH2Ily19i93207FtuAo341LRyktXfIVL3IVcdKYuIlGlww3cZRHGmVOCUV8iTNKFOaB1D5KyrCBUZR4FCzBWK_fo2UQucZAhY1AhhLDMA4TzXc3xixE5WUyqcEWayatVkuR2kK476WVutJKXTWof1omxQqx3BBndH8fsD0Y8PgB1vHbqyt_E2ETJtqXneP0-ODkaBUmDde82X_x4zUYK5-eaZ0zkjLbsE74Djik3Z4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPTgW3ybgwcvXfvatjku6uKbRV3wZEmnExF1V2wV9Nc7E-OyKIJeWihNGCYznWlm8n1CbCNFKR0xaQYkxosL-mElLzIeal-bUmelsit9dp4cduPj6-a1OxTGZ2FIiIpmqmwRn736qTQOYSDYpecae4-NEDizb46KcS7asV239i4HOysRg5ZZ6tgwTQNPUY4wwPT5MQcHJaiGgtJQdGnPiO5ALttUct94qYsGvH-DbPyv4LNi2qWbsvVpH3NiBHvzYmoIhHBB3LQAKPYwZEQp921Dh-wb2SZTQXmBNZkQaV92-g9vtroj6YPc5050bvfCSr7eaXlmWzJROrTWW9l55gIQL_qi6LYPrvYOPce64OnQT2tPa6N8DDU5u04oecz8zICPzFGclIkBVWKGCV3SAjMNZaRMCAoLaEKSZAFGS2Ks1-_hspClgUjHzUjFCuI4jTNDdz-FIgYdFCpbEdukmdx5TZXbgngY5E5duVPXimh8rU4ODrmcCTQefh-wMxjw9Ana8durq38TYUtMdPbb-enR-cmamGTKed6GCdN1MVY_v-AGJSZ1sWnt8ANyl-Ah |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+Design+of+Flame+Retardant+Polymeric+Nanocomposites+via+Machine+Learning+Prediction&rft.jtitle=ACS+applied+engineering+materials&rft.au=Zhang%2C+Zhuoran&rft.au=Jiao%2C+Zeren&rft.au=Shen%2C+Ruiqing&rft.au=Song%2C+Pingan&rft.date=2023-01-27&rft.issn=2771-9545&rft.eissn=2771-9545&rft.volume=1&rft.issue=1&rft.spage=596&rft.epage=605&rft_id=info:doi/10.1021%2Facsaenm.2c00145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaenm_2c00145 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9545&client=summon |