Accelerated Design of Flame Retardant Polymeric Nanocomposites via Machine Learning Prediction

Improving the flame retardancy of polymeric materials used in engineering applications is an increasingly important strategy for limiting fire hazards. However, the wide variety of flame retardant polymeric nanocomposite compositions prevents quick identification of the optimal design for a specific...

Full description

Saved in:
Bibliographic Details
Published inACS applied engineering materials Vol. 1; no. 1; pp. 596 - 605
Main Authors Zhang, Zhuoran, Jiao, Zeren, Shen, Ruiqing, Song, Pingan, Wang, Qingsheng
Format Journal Article
LanguageEnglish
Published American Chemical Society 27.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Improving the flame retardancy of polymeric materials used in engineering applications is an increasingly important strategy for limiting fire hazards. However, the wide variety of flame retardant polymeric nanocomposite compositions prevents quick identification of the optimal design for a specific application. In this study, we built a flame retardancy database of more than 800 polymeric nanocomposites, including information from polymer flammability, thermal stability, and nanofiller properties. Then, we applied five machine learning algorithms to predict the flame retardancy index for different types of flame retardant polymeric nanocomposites. Among them, extreme gradient boosting regression gives the best prediction with a coefficient of determination (R 2) of 0.94 and a root-mean-square error of 0.17. In addition, we studied how the physical features of polymeric nanocomposites affected flame retardancy using the correlation matrix and feature importance plot, which in turn was used to guide the design of polymeric nanocomposites for flame retardant applications. Following the guidelines, a high-performance flame retardant polymeric nanocomposite was designed and synthesized, and the experimental FRI result was compared with the machine learning prediction (6% prediction error). This result demonstrated a fast identification of flame retardancy of polymeric nanocomposite without large-scale fire tests, which could accelerate the design of functional polymeric nanocomposites in the flame retardant field.
AbstractList Improving the flame retardancy of polymeric materials used in engineering applications is an increasingly important strategy for limiting fire hazards. However, the wide variety of flame retardant polymeric nanocomposite compositions prevents quick identification of the optimal design for a specific application. In this study, we built a flame retardancy database of more than 800 polymeric nanocomposites, including information from polymer flammability, thermal stability, and nanofiller properties. Then, we applied five machine learning algorithms to predict the flame retardancy index for different types of flame retardant polymeric nanocomposites. Among them, extreme gradient boosting regression gives the best prediction with a coefficient of determination (R 2) of 0.94 and a root-mean-square error of 0.17. In addition, we studied how the physical features of polymeric nanocomposites affected flame retardancy using the correlation matrix and feature importance plot, which in turn was used to guide the design of polymeric nanocomposites for flame retardant applications. Following the guidelines, a high-performance flame retardant polymeric nanocomposite was designed and synthesized, and the experimental FRI result was compared with the machine learning prediction (6% prediction error). This result demonstrated a fast identification of flame retardancy of polymeric nanocomposite without large-scale fire tests, which could accelerate the design of functional polymeric nanocomposites in the flame retardant field.
Author Jiao, Zeren
Song, Pingan
Zhang, Zhuoran
Wang, Qingsheng
Shen, Ruiqing
AuthorAffiliation School of Agriculture and Environmental Science
Department of Mechanical & Industrial Engineering
Artie McFerrin Department of Chemical Engineering
Marshall University
Centre for Future Materials
University of Southern Queensland
AuthorAffiliation_xml – name: Marshall University
– name: School of Agriculture and Environmental Science
– name: Artie McFerrin Department of Chemical Engineering
– name: Centre for Future Materials
– name: University of Southern Queensland
– name: Department of Mechanical & Industrial Engineering
Author_xml – sequence: 1
  givenname: Zhuoran
  orcidid: 0000-0003-2718-2062
  surname: Zhang
  fullname: Zhang, Zhuoran
  organization: Artie McFerrin Department of Chemical Engineering
– sequence: 2
  givenname: Zeren
  orcidid: 0000-0002-2707-0346
  surname: Jiao
  fullname: Jiao, Zeren
  organization: Artie McFerrin Department of Chemical Engineering
– sequence: 3
  givenname: Ruiqing
  surname: Shen
  fullname: Shen, Ruiqing
  organization: Marshall University
– sequence: 4
  givenname: Pingan
  surname: Song
  fullname: Song, Pingan
  organization: University of Southern Queensland
– sequence: 5
  givenname: Qingsheng
  orcidid: 0000-0002-6411-984X
  surname: Wang
  fullname: Wang, Qingsheng
  email: qwang@tamu.edu
  organization: Artie McFerrin Department of Chemical Engineering
BookMark eNp9kFFLwzAQgINMcM49-5p36Za0a9o-jummMHWIvlpu1-vMaJORRGH_3o7tQQR9uTu4-46775L1jDXE2LUUIyliOQb0QKYdxSiEnKRnrB9nmYyKdJL2ftQXbOj9VgiRxFIWKuuz9ykiNeQgUMVvyeuN4bbm8wZa4i8UwFVgAl_ZZt-S08ifwFi07c56HcjzLw38EfBDG-JLAme02fCVo0pj0NZcsfMaGk_DUx6wt_nd6-w-Wj4vHmbTZQSxyEIEUBeCYkhkDqqQKhd5jYLSSZaoStVYVJST6kK2phywSoo6xoLWmKJSuaRkwNLjXnTWe0d1iTrA4YLgQDelFOXBU3nyVJ48ddz4F7dzugW3_4e4ORJdo9zaT2e6v_6c_gZdin9n
CitedBy_id crossref_primary_10_1016_j_matpr_2023_07_347
crossref_primary_10_3390_polym15112422
crossref_primary_10_1016_j_coco_2023_101806
crossref_primary_10_1016_j_polymdegradstab_2025_111209
crossref_primary_10_1080_10601325_2023_2280237
crossref_primary_10_1002_EXP_20220088
crossref_primary_10_1016_j_jlp_2023_105177
crossref_primary_10_1002_aenm_202403431
crossref_primary_10_1016_j_coco_2023_101756
crossref_primary_10_1002_adts_202200674
crossref_primary_10_1002_wcms_1733
crossref_primary_10_1016_j_adna_2025_03_002
crossref_primary_10_1016_j_coco_2023_101593
crossref_primary_10_3390_compounds3030034
crossref_primary_10_1016_j_polymdegradstab_2024_110981
crossref_primary_10_1002_adma_202403835
crossref_primary_10_1002_vnl_22212
crossref_primary_10_1016_j_cej_2023_144077
Cites_doi 10.1038/nature17439
10.3390/polym13234113
10.1016/j.matt.2021.02.015
10.1007/s10973-021-10948-3
10.1201/9780367811686
10.1016/B978-0-12-821497-8.00003-4
10.1016/j.pmatsci.2020.100687
10.1038/s41524-021-00554-0
10.1016/j.polymer.2005.08.085
10.1016/j.matpr.2015.08.029
10.1021/acsmacrolett.9b00039
10.2307/2685209
10.1023/A:1010933404324
10.1016/j.cej.2019.122267
10.1021/acsinfocus.7e5033
10.3390/polym11030407
10.3390/polym14061213
10.1021/acs.chas.9b00026
10.1002/app.33759
10.1016/j.compositesb.2021.108675
10.1002/prs.12103
10.15744/2348-9812.1.e202
10.1016/j.polymdegradstab.2022.110152
10.1002/9781119752240
10.1016/j.matt.2020.06.011
10.1016/j.jlp.2020.104226
10.1016/j.compositesb.2020.108265
10.1016/j.mser.2008.09.002
10.1021/acssuschemeng.9b01975
10.1023/A:1022627411411
10.1021/acssuschemeng.2c01720
10.1039/D0NA00388C
10.1021/acs.iecr.1c02142
10.1021/acs.iecr.2c00715
10.1016/j.jhazmat.2019.121640
10.1007/s10853-019-03841-w
10.1021/acsnano.8b04726
10.1007/s10973-016-6070-x
10.1214/aos/1013203451
10.1016/j.matchemphys.2015.11.014
10.1021/acsami.9b14792
10.1007/978-0-387-84858-7
10.1016/j.compchemeng.2021.107358
10.1021/acs.chas.0c00075
10.1007/978-1-4614-7138-7
10.1145/2939672.2939785
10.1007/s10973-022-11279-7
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsaenm.2c00145
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2771-9545
EndPage 605
ExternalDocumentID 10_1021_acsaenm_2c00145
i07086528
GroupedDBID ABQRX
ACS
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
GGK
VF5
VG9
AAYXX
ABBLG
ABJNI
ABLBI
CITATION
ID FETCH-LOGICAL-a207t-aaf90e2a318a6916808fc0e54736d6fc9de8e6de87be8acd39f2c9ebc5c6681e3
IEDL.DBID ACS
ISSN 2771-9545
IngestDate Thu Apr 24 22:59:43 EDT 2025
Tue Jul 01 02:12:17 EDT 2025
Mon Oct 07 03:40:28 EDT 2024
IsPeerReviewed false
IsScholarly true
Issue 1
Keywords XGB
machine learning
flame retardant
polymeric nanocomposite
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a207t-aaf90e2a318a6916808fc0e54736d6fc9de8e6de87be8acd39f2c9ebc5c6681e3
ORCID 0000-0002-6411-984X
0000-0003-2718-2062
0000-0002-2707-0346
PageCount 10
ParticipantIDs crossref_citationtrail_10_1021_acsaenm_2c00145
crossref_primary_10_1021_acsaenm_2c00145
acs_journals_10_1021_acsaenm_2c00145
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-27
PublicationDateYYYYMMDD 2023-01-27
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-27
  day: 27
PublicationDecade 2020
PublicationTitle ACS applied engineering materials
PublicationTitleAlternate ACS Appl. Eng. Mater
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
Salamone J. C. (ref1/cit1) 2020
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref8/cit8
Chen T. (ref43/cit43) 2016
ref31/cit31
ref2/cit2
ref34/cit34
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref46/cit46
James G. (ref33/cit33) 2013
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
Morgan A. B. (ref11/cit11) 2021
ref50/cit50
Butler K. T. (ref23/cit23) 2022
ref6/cit6
ref36/cit36
Drucker H. (ref37/cit37) 1996; 9
ref18/cit18
Hastie T. (ref42/cit42) 2009
ref25/cit25
ref29/cit29
ref39/cit39
ref14/cit14
ref5/cit5
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref4/cit4
ref30/cit30
Vahabi H. (ref32/cit32) 2021
ref47/cit47
ref44/cit44
ref7/cit7
References_xml – ident: ref20/cit20
  doi: 10.1038/nature17439
– ident: ref46/cit46
  doi: 10.3390/polym13234113
– ident: ref25/cit25
  doi: 10.1016/j.matt.2021.02.015
– ident: ref14/cit14
  doi: 10.1007/s10973-021-10948-3
– volume-title: Polymeric Materials Encyclopedia
  year: 2020
  ident: ref1/cit1
  doi: 10.1201/9780367811686
– start-page: 61
  volume-title: Handbook of Polymer Nanocomposites for Industrial Applications
  year: 2021
  ident: ref32/cit32
  doi: 10.1016/B978-0-12-821497-8.00003-4
– ident: ref3/cit3
  doi: 10.1016/j.pmatsci.2020.100687
– ident: ref26/cit26
  doi: 10.1038/s41524-021-00554-0
– ident: ref44/cit44
– ident: ref49/cit49
  doi: 10.1016/j.polymer.2005.08.085
– ident: ref10/cit10
  doi: 10.1016/j.matpr.2015.08.029
– ident: ref2/cit2
  doi: 10.1021/acsmacrolett.9b00039
– ident: ref35/cit35
  doi: 10.2307/2685209
– ident: ref39/cit39
  doi: 10.1023/A:1010933404324
– ident: ref7/cit7
  doi: 10.1016/j.cej.2019.122267
– volume-title: Machine Learning in Materials Science
  year: 2022
  ident: ref23/cit23
  doi: 10.1021/acsinfocus.7e5033
– ident: ref31/cit31
  doi: 10.3390/polym11030407
– ident: ref29/cit29
– ident: ref9/cit9
  doi: 10.3390/polym14061213
– ident: ref28/cit28
  doi: 10.1021/acs.chas.9b00026
– ident: ref50/cit50
  doi: 10.1002/app.33759
– ident: ref8/cit8
  doi: 10.1016/j.compositesb.2021.108675
– ident: ref45/cit45
  doi: 10.1002/prs.12103
– ident: ref4/cit4
  doi: 10.15744/2348-9812.1.e202
– ident: ref15/cit15
  doi: 10.1016/j.polymdegradstab.2022.110152
– volume-title: Non-Halogenated Flame Retardant Handbook
  year: 2021
  ident: ref11/cit11
  doi: 10.1002/9781119752240
– ident: ref21/cit21
  doi: 10.1016/j.matt.2020.06.011
– ident: ref47/cit47
  doi: 10.1016/j.jlp.2020.104226
– ident: ref16/cit16
  doi: 10.1016/j.compositesb.2020.108265
– ident: ref48/cit48
  doi: 10.1016/j.mser.2008.09.002
– volume: 9
  start-page: 155
  year: 1996
  ident: ref37/cit37
  publication-title: Adv. Neural Inf Process Syst
– ident: ref6/cit6
  doi: 10.1021/acssuschemeng.9b01975
– ident: ref36/cit36
  doi: 10.1023/A:1022627411411
– ident: ref18/cit18
  doi: 10.1021/acssuschemeng.2c01720
– ident: ref22/cit22
  doi: 10.1039/D0NA00388C
– ident: ref38/cit38
  doi: 10.1021/acs.iecr.1c02142
– ident: ref17/cit17
  doi: 10.1021/acs.iecr.2c00715
– ident: ref27/cit27
  doi: 10.1016/j.jhazmat.2019.121640
– ident: ref5/cit5
  doi: 10.1007/s10853-019-03841-w
– ident: ref24/cit24
  doi: 10.1021/acsnano.8b04726
– ident: ref12/cit12
  doi: 10.1007/s10973-016-6070-x
– ident: ref40/cit40
  doi: 10.1214/aos/1013203451
– ident: ref13/cit13
  doi: 10.1016/j.matchemphys.2015.11.014
– ident: ref19/cit19
  doi: 10.1021/acsami.9b14792
– volume-title: The Elements of Statistical Learning
  year: 2009
  ident: ref42/cit42
  doi: 10.1007/978-0-387-84858-7
– ident: ref34/cit34
  doi: 10.1016/j.compchemeng.2021.107358
– ident: ref41/cit41
  doi: 10.1021/acs.chas.0c00075
– volume-title: An Introduction to Statistical Learning
  year: 2013
  ident: ref33/cit33
  doi: 10.1007/978-1-4614-7138-7
– start-page: 785
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16
  year: 2016
  ident: ref43/cit43
  doi: 10.1145/2939672.2939785
– ident: ref30/cit30
  doi: 10.1007/s10973-022-11279-7
SSID ssj0003211967
Score 2.3223364
Snippet Improving the flame retardancy of polymeric materials used in engineering applications is an increasingly important strategy for limiting fire hazards....
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 596
Title Accelerated Design of Flame Retardant Polymeric Nanocomposites via Machine Learning Prediction
URI http://dx.doi.org/10.1021/acsaenm.2c00145
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60XvTgW6wv9tCDl8Rkk2yyx1ItRagUtdCTYTOZFbEm0qSC_np301iLUvSSXLJhmUdmsvPxfYS0UFcp6RnRDODK8hP9w6qzSFkoHalSGaWi8nT_hveG_vUoGH2TRf-c4DP3QkIhMXuxGZh2Plgla4zrFDZdUOdufpziGaaySi-WhaFrCd0YzIl8fr3DVCIoFirRQknpbs3AWEXFRGiQJM_2tExs-PjN0_j3brfJZt1Y0vYsEnbICma7ZGOBbnCPPLQBdJUx5BApvaygGzRXtKuDAuktljpYtJ3pIB-_V3Mcqj-9ucGcG2AXFvTtSdJ-Bb5EWvOyPtLBxIx6jHv3ybB7dd_pWbW-giWZE5aWlEo4yKROa8l1mxg5kQIHjRoxT7kCkWKEXF_CBCMJqScUA4EJBMB55KJ3QBpZnuEhoakCT_qBJ3wBvh_6kdJ3J4TEB-kmImqSlrZMXOdHEVejb-bGtbni2lxNYn-5JIaao9xIZYyXLzifL3id0XMse_Tof1s4JutGUd6csrDwhDTKyRRPdd9RJmdVxH0CEkLVPQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIADb8R45sCBS0dfa5vjBEzjMcRT4kSVug5CjA3RggS_HieUMYGQ4NJKVRNZtlO7sfN9AFvEUUoFhjQDI-2EGf-w8irSDilX6VwlubSW7pxE7avw8LpxPQLu51kYFqLgmQpbxP9CF_B2-Jmi3kPdR5PVN0ZhnFMR3_h0c_disKsSGMAySxvrx7HnSM4PBng-P-YwAQmLoYA0FFlaM3A2kMk2lNzXn8usjm_f4Br_I_QsTFdppmh--MUcjFBvHqaGwAcX4KaJyDHHQEXkYs82coi-Fi12ERLnVLLrsNbFab_7aqs6gj_EfdOBbtq8qBAvd0p0bCsmiQql9VacPpnCjzH2Ily19i93207FtuAo341LRyktXfIVL3IVcdKYuIlGlww3cZRHGmVOCUV8iTNKFOaB1D5KyrCBUZR4FCzBWK_fo2UQucZAhY1AhhLDMA4TzXc3xixE5WUyqcEWayatVkuR2kK476WVutJKXTWof1omxQqx3BBndH8fsD0Y8PgB1vHbqyt_E2ETJtqXneP0-ODkaBUmDde82X_x4zUYK5-eaZ0zkjLbsE74Djik3Z4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QPTgW3ybgwcvXfvatjku6uKbRV3wZEmnExF1V2wV9Nc7E-OyKIJeWihNGCYznWlm8n1CbCNFKR0xaQYkxosL-mElLzIeal-bUmelsit9dp4cduPj6-a1OxTGZ2FIiIpmqmwRn736qTQOYSDYpecae4-NEDizb46KcS7asV239i4HOysRg5ZZ6tgwTQNPUY4wwPT5MQcHJaiGgtJQdGnPiO5ALttUct94qYsGvH-DbPyv4LNi2qWbsvVpH3NiBHvzYmoIhHBB3LQAKPYwZEQp921Dh-wb2SZTQXmBNZkQaV92-g9vtroj6YPc5050bvfCSr7eaXlmWzJROrTWW9l55gIQL_qi6LYPrvYOPce64OnQT2tPa6N8DDU5u04oecz8zICPzFGclIkBVWKGCV3SAjMNZaRMCAoLaEKSZAFGS2Ks1-_hspClgUjHzUjFCuI4jTNDdz-FIgYdFCpbEdukmdx5TZXbgngY5E5duVPXimh8rU4ODrmcCTQefh-wMxjw9Ana8durq38TYUtMdPbb-enR-cmamGTKed6GCdN1MVY_v-AGJSZ1sWnt8ANyl-Ah
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+Design+of+Flame+Retardant+Polymeric+Nanocomposites+via+Machine+Learning+Prediction&rft.jtitle=ACS+applied+engineering+materials&rft.au=Zhang%2C+Zhuoran&rft.au=Jiao%2C+Zeren&rft.au=Shen%2C+Ruiqing&rft.au=Song%2C+Pingan&rft.date=2023-01-27&rft.issn=2771-9545&rft.eissn=2771-9545&rft.volume=1&rft.issue=1&rft.spage=596&rft.epage=605&rft_id=info:doi/10.1021%2Facsaenm.2c00145&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaenm_2c00145
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9545&client=summon