Unraveling Alcohol Dehydrogenase Catalysis in Organic–Aqueous Biphasic Systems Combining Experiments and Molecular Dynamics Simulations

The use of oxidoreductases in organic–aqueous biphasic systems is advantageous (effective solvation of reactants, minimization of substrate/product-induced inhibition, improved volumetric productivity, and straightforward downstream processing). This paper explores the effects of organic solvents on...

Full description

Saved in:
Bibliographic Details
Published inACS catalysis Vol. 12; no. 15; pp. 9171 - 9180
Main Authors Zhang, Ningning, Bittner, Jan Philipp, Fiedler, Marius, Beretta, Thomas, de María, Pablo Domínguez, Jakobtorweihen, Sven, Kara, Selin
Format Journal Article
LanguageEnglish
Published American Chemical Society 05.08.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of oxidoreductases in organic–aqueous biphasic systems is advantageous (effective solvation of reactants, minimization of substrate/product-induced inhibition, improved volumetric productivity, and straightforward downstream processing). This paper explores the effects of organic solvents on horse liver alcohol dehydrogenase (HLADH) by combining experimental and computational studies. Various organic solvents displaying a broad range of hydrophobicity and functionalities are used, namely, ethyl acetate, 2-methyltetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, toluene, cyclohexane, heptane, and dodecane. The catalytic performance of model enzyme horse liver alcohol dehydrogenase concerning its activity, stability, and selectivity is experimentally evaluated. The results are interpreted with molecular dynamics simulations by assessing the (i) protein location in biphasic media, (ii) organic solvent distribution, and (iii) enzyme conformation. Herein, the stability states the robustness of the enzyme while storing it in biphasic media without catalysis taking place. Overall, different toxicities of the solvent to the enzyme can be pinpointed: “molecular toxicity”, related to the solvent functional groups, and “interfacial toxicity”, related to the position of the enzyme at the interface. Likewise, some solvents are more prone to be located close to the active site of the enzyme, triggering other effects on the enzymatic performance. Thus, methyl tert-butyl ether resulted as an optimal option for the enzyme, whereas other solvents like toluene and 2-methyltetrahydrofuran were detrimental. The combined forces of experiments and simulations have been shown to be useful tools to study the effects of reaction media, thus guiding solvent selection.
AbstractList The use of oxidoreductases in organic–aqueous biphasic systems is advantageous (effective solvation of reactants, minimization of substrate/product-induced inhibition, improved volumetric productivity, and straightforward downstream processing). This paper explores the effects of organic solvents on horse liver alcohol dehydrogenase (HLADH) by combining experimental and computational studies. Various organic solvents displaying a broad range of hydrophobicity and functionalities are used, namely, ethyl acetate, 2-methyltetrahydrofuran, methyl tert-butyl ether, cyclopentyl methyl ether, toluene, cyclohexane, heptane, and dodecane. The catalytic performance of model enzyme horse liver alcohol dehydrogenase concerning its activity, stability, and selectivity is experimentally evaluated. The results are interpreted with molecular dynamics simulations by assessing the (i) protein location in biphasic media, (ii) organic solvent distribution, and (iii) enzyme conformation. Herein, the stability states the robustness of the enzyme while storing it in biphasic media without catalysis taking place. Overall, different toxicities of the solvent to the enzyme can be pinpointed: “molecular toxicity”, related to the solvent functional groups, and “interfacial toxicity”, related to the position of the enzyme at the interface. Likewise, some solvents are more prone to be located close to the active site of the enzyme, triggering other effects on the enzymatic performance. Thus, methyl tert-butyl ether resulted as an optimal option for the enzyme, whereas other solvents like toluene and 2-methyltetrahydrofuran were detrimental. The combined forces of experiments and simulations have been shown to be useful tools to study the effects of reaction media, thus guiding solvent selection.
Author Fiedler, Marius
Beretta, Thomas
Bittner, Jan Philipp
Kara, Selin
Jakobtorweihen, Sven
Zhang, Ningning
de María, Pablo Domínguez
AuthorAffiliation Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering
Hamburg University of Technology
Institute of Chemical Reaction Engineering
Institute of Thermal Separation Processes
Institute of Technical Chemistry
Leibniz University Hannover
Sustainable Momentum, SL
Institute of Process Systems Engineering
AuthorAffiliation_xml – name: Institute of Process Systems Engineering
– name: Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering
– name: Sustainable Momentum, SL
– name: Institute of Thermal Separation Processes
– name: Institute of Chemical Reaction Engineering
– name: Leibniz University Hannover
– name: Hamburg University of Technology
– name: Institute of Technical Chemistry
Author_xml – sequence: 1
  givenname: Ningning
  orcidid: 0000-0001-6744-3867
  surname: Zhang
  fullname: Zhang, Ningning
  organization: Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering
– sequence: 2
  givenname: Jan Philipp
  orcidid: 0000-0003-0933-3226
  surname: Bittner
  fullname: Bittner, Jan Philipp
  organization: Hamburg University of Technology
– sequence: 3
  givenname: Marius
  surname: Fiedler
  fullname: Fiedler, Marius
  organization: Hamburg University of Technology
– sequence: 4
  givenname: Thomas
  surname: Beretta
  fullname: Beretta, Thomas
  organization: Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering
– sequence: 5
  givenname: Pablo Domínguez
  surname: de María
  fullname: de María, Pablo Domínguez
  organization: Sustainable Momentum, SL
– sequence: 6
  givenname: Sven
  orcidid: 0000-0001-5492-8304
  surname: Jakobtorweihen
  fullname: Jakobtorweihen, Sven
  organization: Hamburg University of Technology
– sequence: 7
  givenname: Selin
  orcidid: 0000-0001-6754-2814
  surname: Kara
  fullname: Kara, Selin
  email: selin.kara@bce.au.dk
  organization: Leibniz University Hannover
BookMark eNp1kM9OAjEQxhuDiYjcPfYBBNvull2OCPgnwXBAzptpdxZKdltswbg3r559Q5_EJWDixbnMZGa-X758l6RlnUVCrjnrcyb4LeigYQdlX2gm0pSfkbbgUvZkHMnWn_mCdEPYsKZiOUgT1iafS-vhDUtjV3RUard2JZ3gus69W6GFgHR8ANfBBGosnfsVWKO_P75Gr3t0-0DvzHYNwWi6qMMOq0DHrlLGHnjT9y16U6HdBQo2p8-uRL0vwdNJbaEyOtCFqZrFzjgbrsh5AWXA7ql3yPJ--jJ-7M3mD0_j0awHfBjzHqiESZ7mQ64KlQxQYaoZGxRYREOWpjIBoZWQIoqBYwGoJIOUx5jkQgnQOuoQduRq70LwWGTbxiT4OuMsO6SZ_aaZndJsJDdHSXPJNm7vbWPw__cf-qd_zg
CitedBy_id crossref_primary_10_1021_acsapm_2c01868
crossref_primary_10_1002_cbic_202200794
crossref_primary_10_1016_j_cej_2023_143622
crossref_primary_10_1038_s41467_024_49774_0
crossref_primary_10_1038_s42004_023_01013_1
crossref_primary_10_1111_1751_7915_14332
crossref_primary_10_1021_acs_jafc_3c04027
crossref_primary_10_1021_acssuschemeng_4c02236
crossref_primary_10_1002_cctc_202301384
crossref_primary_10_3390_ijms24076396
crossref_primary_10_1016_j_indcrop_2023_117550
crossref_primary_10_3390_molecules29030703
crossref_primary_10_1016_j_trechm_2022_11_005
Cites_doi 10.1007/978-3-030-25023-2_3
10.1016/S1357-2725(01)00109-1
10.1016/j.bpj.2018.11.3126
10.1002/wcms.1088
10.1021/acs.oprd.6b00232
10.1002/bit.260441112
10.1021/cs400684x
10.1007/s00253-016-8083-6
10.1002/cbic.201900624
10.1002/anie.200351089
10.1002/anie.201800343
10.1021/jp211054u
10.1111/j.1432-1033.1989.tb15055.x
10.1021/je300585v
10.1016/S1381-1177(99)00056-9
10.1016/0141-0229(91)90090-W
10.1021/acs.chemrev.7b00571
10.1016/j.jcou.2019.10.004
10.1039/c0gc00918k
10.1007/s002530100599
10.1002/anie.200604952
10.1002/cctc.201801991
10.1007/978-0-387-35141-4_6
10.1021/ol0272139
10.1002/anie.202006648
10.1016/S0167-7012(01)00259-7
10.1039/c1cc14097c
10.1002/cbic.201200733
10.1039/C6GC00611F
10.1002/cssc.201900351
10.1063/1.4890877
10.1021/acs.jpcb.7b03147
10.1002/jcc.540160303
10.3389/fbioe.2020.00676
10.1002/cssc.201900079
10.1021/acs.biochem.7b00446
10.1186/1472-6807-8-9
10.1186/s40508-016-0051-z
10.1016/j.molcatb.2010.08.007
10.1021/op500374x
10.1039/D1GC04059F
10.1039/C7CP04466F
10.1002/cbic.201800814
10.1016/j.nbt.2020.08.006
10.1002/biot.201200378
10.1002/9783527621729.ch1
10.1002/anie.202001876
10.1016/S0378-3812(01)00532-5
10.1039/D1GC00561H
10.1002/cctc.201300841
10.1039/C4GC00117F
10.1016/j.jct.2017.02.016
10.1039/C4GC00010B
10.1074/jbc.M010870200
10.1007/978-3-319-61590-5
10.1002/cssc.201100780
10.1039/C9RE00301K
10.1351/pac199567020345
10.1002/9783527621729.ch8
10.3390/catal6020032
10.1021/ja0660150
10.1016/j.jbiotec.2014.06.032
10.1002/bit.260300112
10.1016/j.cogsc.2019.08.006
10.1016/S0957-4166(98)00471-6
ContentType Journal Article
Copyright 2022 American Chemical Society
Copyright_xml – notice: 2022 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acscatal.2c02881
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2155-5435
EndPage 9180
ExternalDocumentID 10_1021_acscatal_2c02881
d28541011
GroupedDBID 55A
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFO
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
EBS
ED
GGK
GNL
IH9
JG
K2
RNS
ROL
UI2
VF5
VG9
W1F
.K2
AAHBH
AAYXX
ABJNI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
ID FETCH-LOGICAL-a1941-ab70518d91bfb76ebe8c006fef3908857a2cb25234a1efaeb50a814e7d2b2acc3
IEDL.DBID ACS
ISSN 2155-5435
IngestDate Fri Aug 23 01:36:43 EDT 2024
Mon Aug 08 08:53:51 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords molecular dynamics simulations
organic−aqueous biphasic systems
alcohol dehydrogenases
experimental analysis
biocatalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a1941-ab70518d91bfb76ebe8c006fef3908857a2cb25234a1efaeb50a814e7d2b2acc3
ORCID 0000-0001-6754-2814
0000-0003-0933-3226
0000-0001-5492-8304
0000-0001-6744-3867
PageCount 10
ParticipantIDs crossref_primary_10_1021_acscatal_2c02881
acs_journals_10_1021_acscatal_2c02881
PublicationCentury 2000
PublicationDate 20220805
2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 20220805
  day: 05
PublicationDecade 2020
PublicationTitle ACS catalysis
PublicationTitleAlternate ACS Catal
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
Faber K. (ref20/cit20) 2018
ref48/cit48
ref60/cit60
ref17/cit17
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Fernandes P. (ref10/cit10) 2008
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
Straathof A. J. J. (ref32/cit32) 2006
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref31/cit31
  doi: 10.1007/978-3-030-25023-2_3
– ident: ref51/cit51
  doi: 10.1016/S1357-2725(01)00109-1
– ident: ref54/cit54
  doi: 10.1016/j.bpj.2018.11.3126
– ident: ref59/cit59
  doi: 10.1002/wcms.1088
– ident: ref38/cit38
  doi: 10.1021/acs.oprd.6b00232
– ident: ref13/cit13
  doi: 10.1002/bit.260441112
– ident: ref12/cit12
  doi: 10.1021/cs400684x
– ident: ref33/cit33
  doi: 10.1007/s00253-016-8083-6
– ident: ref43/cit43
  doi: 10.1002/cbic.201900624
– ident: ref24/cit24
  doi: 10.1002/anie.200351089
– ident: ref29/cit29
  doi: 10.1002/anie.201800343
– ident: ref40/cit40
  doi: 10.1021/jp211054u
– ident: ref25/cit25
  doi: 10.1111/j.1432-1033.1989.tb15055.x
– ident: ref58/cit58
  doi: 10.1021/je300585v
– ident: ref14/cit14
  doi: 10.1016/S1381-1177(99)00056-9
– ident: ref26/cit26
  doi: 10.1016/0141-0229(91)90090-W
– ident: ref48/cit48
  doi: 10.1021/acs.chemrev.7b00571
– ident: ref46/cit46
  doi: 10.1016/j.jcou.2019.10.004
– ident: ref65/cit65
  doi: 10.1039/c0gc00918k
– ident: ref7/cit7
  doi: 10.1007/s002530100599
– ident: ref6/cit6
  doi: 10.1002/anie.200604952
– ident: ref11/cit11
  doi: 10.1002/cctc.201801991
– start-page: 105
  volume-title: Enzyme Technology.
  year: 2006
  ident: ref32/cit32
  doi: 10.1007/978-0-387-35141-4_6
  contributor:
    fullname: Straathof A. J. J.
– ident: ref8/cit8
  doi: 10.1021/ol0272139
– ident: ref3/cit3
  doi: 10.1002/anie.202006648
– ident: ref64/cit64
  doi: 10.1016/S0167-7012(01)00259-7
– ident: ref39/cit39
  doi: 10.1039/c1cc14097c
– ident: ref42/cit42
  doi: 10.1002/cbic.201200733
– ident: ref66/cit66
  doi: 10.1039/C6GC00611F
– ident: ref4/cit4
  doi: 10.1002/cssc.201900351
– ident: ref62/cit62
  doi: 10.1063/1.4890877
– ident: ref63/cit63
  doi: 10.1021/acs.jpcb.7b03147
– ident: ref57/cit57
  doi: 10.1002/jcc.540160303
– ident: ref41/cit41
  doi: 10.3389/fbioe.2020.00676
– ident: ref50/cit50
  doi: 10.1002/cssc.201900079
– ident: ref55/cit55
  doi: 10.1021/acs.biochem.7b00446
– ident: ref19/cit19
  doi: 10.1186/1472-6807-8-9
– ident: ref47/cit47
  doi: 10.1186/s40508-016-0051-z
– ident: ref15/cit15
  doi: 10.1016/j.molcatb.2010.08.007
– ident: ref34/cit34
  doi: 10.1021/op500374x
– ident: ref44/cit44
  doi: 10.1039/D1GC04059F
– ident: ref45/cit45
  doi: 10.1039/C7CP04466F
– ident: ref36/cit36
  doi: 10.1002/cbic.201800814
– ident: ref2/cit2
  doi: 10.1016/j.nbt.2020.08.006
– ident: ref28/cit28
  doi: 10.1002/biot.201200378
– ident: ref22/cit22
  doi: 10.1002/9783527621729.ch1
– ident: ref30/cit30
  doi: 10.1002/anie.202001876
– ident: ref61/cit61
  doi: 10.1016/S0378-3812(01)00532-5
– ident: ref9/cit9
  doi: 10.1039/D1GC00561H
– ident: ref23/cit23
  doi: 10.1002/cctc.201300841
– ident: ref27/cit27
  doi: 10.1039/C4GC00117F
– ident: ref60/cit60
  doi: 10.1016/j.jct.2017.02.016
– ident: ref35/cit35
  doi: 10.1039/C4GC00010B
– ident: ref56/cit56
  doi: 10.1074/jbc.M010870200
– volume-title: Biotransformations in Organic Chemistry
  year: 2018
  ident: ref20/cit20
  doi: 10.1007/978-3-319-61590-5
  contributor:
    fullname: Faber K.
– ident: ref49/cit49
  doi: 10.1002/cssc.201100780
– ident: ref5/cit5
  doi: 10.1039/C9RE00301K
– ident: ref16/cit16
  doi: 10.1351/pac199567020345
– start-page: 189
  volume-title: Organic Synthesis with Enzymes in Non-Aqueous Media
  year: 2008
  ident: ref10/cit10
  doi: 10.1002/9783527621729.ch8
  contributor:
    fullname: Fernandes P.
– ident: ref17/cit17
  doi: 10.3390/catal6020032
– ident: ref21/cit21
  doi: 10.1021/ja0660150
– ident: ref37/cit37
  doi: 10.1016/j.jbiotec.2014.06.032
– ident: ref18/cit18
  doi: 10.1002/bit.260300112
– ident: ref1/cit1
  doi: 10.1016/j.cogsc.2019.08.006
– ident: ref52/cit52
  doi: 10.1016/S0957-4166(98)00471-6
SSID ssj0000456870
Score 2.3987556
Snippet The use of oxidoreductases in organic–aqueous biphasic systems is advantageous (effective solvation of reactants, minimization of substrate/product-induced...
SourceID crossref
acs
SourceType Aggregation Database
Publisher
StartPage 9171
Title Unraveling Alcohol Dehydrogenase Catalysis in Organic–Aqueous Biphasic Systems Combining Experiments and Molecular Dynamics Simulations
URI http://dx.doi.org/10.1021/acscatal.2c02881
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDhjSgveYCBIaV24iYZS9qqQipLqdQt8itqhUiruh1gYmXmH_JLOOdRKh5Sd-sU2Xf5zr6770PoSinfk0R6TqIJXFA0107gBg2HKvAoyxWYZBQbvYdGd-DdD9nwmybnZwWfklsuTfaSUaMSsNBOWW9SH2LDpkFRf_meYlOTINOGAxBjDoM0oKhK_mXEYpE0K1i0Aiqd3VydyGRchLaX5Km2mIuafP3N1LjG9-6hnSK3xM3cGfbRhk4P0FZUSrodovdBatWG7AQ6bubauLilRy9qNgE_AjzDkbVpSUrwOMX5nKb8fPtoAnpMFgbfjacjDueKC6JzDL8TkUlM4PZSKsBgnircK3V3cSsXvTe4P34uxMLMERp02o9R1ym0GBxOQo84XPgQvoEKiUiE34CjDyQEbKIT13ZKMZ9TKSjcaj1OdMK1YHUeEE_7igrKpXSPUSWdpPoEYaFCu74hJFgWjAV1TxCXiXqitSdDXkXXsIdxEUsmzsrklMTlxsbFxlbRTXl68TSn5vh37emaNs_QNrXzDbYnhJ2jyny20BeQdczFZeZuX1Hs1z8
link.rule.ids 315,783,787,2772,27088,27936,27937,57070,57120
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYqGMrCG1GeHmBgSKmTOI-x9KECbQfaSt0i23HUCDWtmnYoEysz_5BfwjmPUiGQYI2sk3U-5zv7fN-H0JXv26YgwtQCSeCAIpnUHMOxNN2HiFJcgUFCsdHpWq2B-TCkwwIieS8MTCIGS3FSxP9iFyC38C250CjrAiBRNVtvUhviVWVDtd7qWkVlKE4iEQdYRjUK2UBWnPzJiIIkEa9B0hq2NHfQ02pWyZOS5_Jizsvi5Rth47-mvYu2s0wTV9PQ2EMFGe2jYi0XeDtAb4NIaQ-pfnRcTZVycV2Olv5sAlEF6IZryqaiLMFhhNOuTfHx-l4FLJksYnwXTkcMVhlntOcYfi48EZzAjZVwQIxZ5ONOrsKL68uIjUMR4144zqTD4kM0aDb6tZaWKTNojLgm0Ri3YTM7vkt4wG0LAsERsH0DGRjq3RS1mS64DmdckxEZMMlphTnElLavc50JYRyhjWgSyWOEue-q8RYXYJlT6lRMTgzKK4GUpnBZCV2DD71sZ8VeUjTXiZc71sscW0I3-SJ605So49exJ3-0eYmKrX6n7bXvu4-naEtXnQ_qtQg9Qxvz2UKeQz4y5xdJBH4CdmPfnw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4QTdSLbyM-96AHD0V26dJyrAWCD4gJYrg1-2oghkIoHPDk1bP_0F_ibGkJMZrotdlMJrsz_WYf830IXSjl2JJI2wo1gQ2K5tpyS27ZogoiynAFhgnFRrNVbnTsuy7r5hDLemHAiRgsxcklvsnqkQpThgFyDd-TQ40ClQCLpuF6lTmEGsUGz28vjlZMleImMnGAZ8xiUBGkF5Q_GTGwJOMlWFrCl_oWel54ljwreSlMJ6IgX7-RNv7b9W20mVac2JuHyA7K6WgXrfuZ0Nseeu9ERoPI9KVjb66Yi6u6N1PjIUQXoBz2jU1DXYL7EZ53b8rPtw8PMGU4jfFNf9TjsNo4pT_H8JMRifAEri0EBGLMI4WbmRovrs4iPujLGLf7g1RCLN5HnXrtyW9YqUKDxUnFJhYXDiS1qypEhMIpQ0C4EtI41GHJvJ9iDqdSUNjr2pzokGvBitwltnYUFZRLWTpAK9Ew0ocIC1Ux48tCgmXBmFu0BSkxUQy1tmWF59ElzGGQZlgcJJfnlATZxAbpxObRVbaQwWhO2PHr2KM_2jxHa4_VevBw27o_RhvUNECYRyPsBK1MxlN9CmXJRJwlQfgFir7iGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+Alcohol+Dehydrogenase+Catalysis+in+Organic%E2%80%93Aqueous+Biphasic+Systems+Combining+Experiments+and+Molecular+Dynamics+Simulations&rft.jtitle=ACS+catalysis&rft.au=Zhang%2C+Ningning&rft.au=Bittner%2C+Jan+Philipp&rft.au=Fiedler%2C+Marius&rft.au=Beretta%2C+Thomas&rft.date=2022-08-05&rft.pub=American+Chemical+Society&rft.issn=2155-5435&rft.eissn=2155-5435&rft.volume=12&rft.issue=15&rft.spage=9171&rft.epage=9180&rft_id=info:doi/10.1021%2Facscatal.2c02881&rft.externalDocID=d28541011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2155-5435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2155-5435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2155-5435&client=summon