Multiple-Aspect Analysis of Semantic Trajectories First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Würzburg, Germany, September 16, 2019, Proceedings

This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD...

Full description

Saved in:
Bibliographic Details
Main Authors Tserpes, Konstantinos, Renso, Chiara, Matwin, Stan
Format eBook
LanguageEnglish
Published Cham Springer Nature 2020
Springer International Publishing AG
Springer Open
Edition1
SeriesLecture Notes in Artificial Intelligence
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in Würzburg, Germany, in September 2019.The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification.
AbstractList This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic Trajectories, MASTER 2019, held in conjunction with the 19th European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2019, in Würzburg, Germany, in September 2019.The 8 full papers presented were carefully reviewed and selected from 12 submissions. They represent an interesting mix of techniques to solve recurrent as well as new problems in the semantic trajectory domain, such as data representation models, data management systems, machine learning approaches for anomaly detection, and common pathways identification.
Author Renso, Chiara
Tserpes, Konstantinos
Matwin, Stan
Author_xml – sequence: 1
  fullname: Tserpes, Konstantinos
– sequence: 2
  fullname: Renso, Chiara
– sequence: 3
  fullname: Matwin, Stan
BookMark eNqFz0tPwzAMB_AgHoKNfYeKC3ColFeb5Dim8ZCGODBxrdLUY92yptTdEN-ewLjABfnwl-2fLHlAjprQwAEZGaUFjaWpZvnhn_6EDJg0seFUZKdkhLiilHKujZH6jLDHre_r1kM6xhZcn4wb6z-wxiQskmfY2KavXTLv7CouQ1cDnpPjhfUIo58ckpfb6Xxyn86e7h4m41lqmeFKp0bQkmdcSaEslMpRycsyzirHKWTS6arSLIasYhmgFHJjtVSZWViXGyeG5Hp_2OIa3nEZfI_FzkMZwhqLX09Ge7m3bRfetoB98c0cNH1nfTG9meSMsdyYKK_-kYIpIYX8ohd76ixaXzd1sQlNeO1su8Qik5yxjIpP65pvVA
ContentType eBook
DBID I4C
DEWEY 006
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783030380816
3030380815
Edition 1
1st Edition 2020
Editor Renso, Chiara
Matwin, Stan
Tserpes, Konstantinos
Editor_xml – sequence: 1
  fullname: Matwin, Stan
– sequence: 2
  fullname: Renso, Chiara
– sequence: 3
  fullname: Tserpes, Konstantinos
ExternalDocumentID 9783030380816
EBC6111699
EBC31734349
5421150
GroupedDBID 38.
A7I
AABBV
AAKKN
AAQKC
AAXZC
AAYZJ
ACGCR
ADOGT
AEDXK
AEJNW
AEKFX
AFNRJ
AKAAH
ALMA_UNASSIGNED_HOLDINGS
APEJL
AVCSZ
AZTDL
BBABE
CYNQG
DACMV
ESBCR
I4C
IEZ
LDH
OAOFD
OPOMJ
SBO
TPJZQ
TSXQS
V1H
Z7R
Z7U
Z7V
Z7X
Z7Z
Z83
Z85
AALJR
ABEEZ
AEHEY
AEJLV
AGWHU
AIQUZ
ALNDD
CZZ
EIXGO
ID FETCH-LOGICAL-a19278-930b2527437aeb7c042bb30bdc20e54c8dd814c84d4d49e00e69a84759fac69c3
ISBN 9783030380816
3030380815
9783030380809
3030380807
IngestDate Tue May 06 02:19:15 EDT 2025
Fri May 30 23:02:57 EDT 2025
Mon Aug 11 05:55:51 EDT 2025
Tue Nov 14 22:57:04 EST 2023
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a19278-930b2527437aeb7c042bb30bdc20e54c8dd814c84d4d49e00e69a84759fac69c3
OCLC 1490382035
1143625021
PQID EBC31734349
PageCount 167
ParticipantIDs askewsholts_vlebooks_9783030380816
proquest_ebookcentral_EBC6111699
proquest_ebookcentral_EBC31734349
casalini_monographs_5421150
PublicationCentury 2000
PublicationDate 2020
2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Netherlands
– name: Cham
PublicationSeriesTitle Lecture Notes in Artificial Intelligence
PublicationYear 2020
Publisher Springer Nature
Springer International Publishing AG
Springer Open
Publisher_xml – name: Springer Nature
– name: Springer International Publishing AG
– name: Springer Open
SSID ssj0002289948
Score 2.1462345
Snippet This open access book constitutes the refereed post-conference proceedings of the First International Workshop on Multiple-Aspect Analysis of Semantic...
SourceID askewsholts
proquest
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Special computer methods
Subtitle First International Workshop, MASTER 2019, Held in Conjunction with ECML-PKDD 2019, Würzburg, Germany, September 16, 2019, Proceedings
TableOfContents Intro -- Preface -- Organization -- Contents -- Learning from Our Movements - The Mobility Data Analytics Era -- 1 Introduction -- 2 Flashback to the Past -- 3 Nowadays - Mobility Data Analytics -- 4 What's Next -- References -- Uncovering Hidden Concepts from AIS Data: A Network Abstraction of Maritime Traffic for Anomaly Detection -- 1 Introduction -- 2 Related Work -- 3 The Proposed Approach -- 3.1 Route Identification -- 3.2 Trajectory Clustering -- 3.3 Enriched Network Abstraction -- 4 Application to a Real Dataset -- 4.1 Network Creation from Real AIS Positions -- 4.2 Detection of Outliers in the Trajectories -- 5 Conclusion and Future Steps -- References -- Nowcasting Unemployment Rates with Smartphone GPS Data -- 1 Introduction -- 2 Related Works -- 3 Data -- 3.1 The Unemployment Rate -- 3.2 The GPS Data -- 4 Nowcasting Model -- 4.1 The MIDAS Model -- 4.2 Estimation of Parameters -- 4.3 Imputation of Missing Data -- 4.4 Feature Selection -- 5 Evaluation -- 5.1 Nowcast for the Number of Unemployed Persons -- 5.2 Forecasts for Unemployment Rates -- 6 Conclusion -- References -- Online Long-Term Trajectory Prediction Based on Mined Route Patterns -- 1 Introduction -- 2 Background -- 3 Overview of the Approach -- 4 Methodology -- 4.1 Offline Step: Mobility Pattern Extraction Based on Sub-trajectory Clustering -- 4.2 Online Step: On Long-Term Future Location Prediction -- 5 Experimental Evaluation -- 5.1 Experimental Setup -- 5.2 Results -- 6 Conclusion -- References -- EvolvingClusters: Online Discovery of Group Patterns in Enriched Maritime Data -- 1 Introduction -- 2 Background Knowledge and Related Work -- 3 Problem Formulation -- 3.1 Problem Definition -- 3.2 What Is Special About Maritime Data -- 4 The EvolvingClusters Algorithm -- 5 Experimental Study -- 5.1 Dataset Preparation -- 5.2 Preliminary Results -- 6 Conclusions and Future Work
References -- Prospective Data Model and Distributed Query Processing for Mobile Sensing Data Streams -- 1 Introduction -- 2 Challenges of STDS Management -- 3 Related Work -- 3.1 Offline Processing of STDS -- 3.2 Online Processing of STDS -- 3.3 Unified Approach for STDS Management -- 4 System Overview -- 5 Data Model -- 5.1 Preliminaries -- 5.2 Logical Data Model -- 5.3 Physical Data Model -- 6 Query Processing -- 7 Conclusion -- References -- Predicting Fishing Effort and Catch Using Semantic Trajectories and Machine Learning -- 1 Introduction -- 2 Related Works -- 2.1 Data Fusion of Sea Data and Semantic Trajectories -- 2.2 Fishing Activities Forecast -- 3 A Framework for Predicting CPUE -- 3.1 Data Sources -- 3.2 Data Fusion and Semantic Modeling -- 3.3 Predictive Modeling -- 4 Experiments and Results -- 5 Conclusion and Future Work -- References -- A Neighborhood-Augmented LSTM Model for Taxi-Passenger Demand Prediction -- 1 Introduction -- 2 Related Work -- 3 Neighborhood-Augmented Taxi Demand Prediction -- 3.1 Problem Definition -- 3.2 Neighborhood-Augmented LSTM Model -- 4 Experimental Evaluation -- 4.1 Dataset -- 4.2 Experimental Setup and Evaluation Measures -- 4.3 Baselines and Method Parameter Settings -- 4.4 LSTM Parameter Settings -- 4.5 Taxi-Demand Prediction Quality Results -- 4.6 Impact of Neighborhood -- 5 Conclusions and Outlook -- References -- Multi-channel Convolutional Neural Networks for Handling Multi-dimensional Semantic Trajectories and Predicting Future Semantic Locations -- 1 Introduction -- 2 Related Work -- 3 Semantic Trajectories -- 4 Multi-channel Convolutional Neural Networks on Semantic Trajectories -- 5 Evaluation -- 6 Conclusion -- References -- Author Index
Title Multiple-Aspect Analysis of Semantic Trajectories
URI http://digital.casalini.it/9783030380816
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=31734349
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6111699
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030380816
Volume 11889
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFH7WerEXtSrWqkTxGskyk2SOWipF0Iu19BZmK7i1YFIP_nrfTJN0cQElkGVIJvC94W3zFoBz1FgVS2TgBkSZbUZFXZEk1EVZ7Y0UVwG3zWBu76LeA7kZ0mFtbbAQtTTNxYX8-Dav5D9UxTGkq8mS_QNlq0lxAO-RvnhGCuN5RfmtHoveS0UYoHtpMyWXSovc61dE61GauuVP1idfxgkWxn3grRj3pXPPRC4XBUYq2w9ljxfavhlzVl4F2FES-NaVsR7HJtBt4Pcqz1NgbCySmESXcgo6K0U0n7IBDZ49I5tFFpxnRmbzjJtUzS8iy8rh_jZsaJOcsQM1PW7CVtmSwik4VBMaC_UVd8FfwckpcXImI6fEyVnEaQ8G191-p-cWPSJcjropWsAs9ERA0bYOY65FLJEJCYFjSgaepkQmSiU-XojCg2nP0xHjialyOOIyYjLch_p4MtYH4HBOI6FxQuoLoqhGS5ApEkozGGtNWnC2AEr6_mL3s7N0CbkWtEusUlxus7rjWVoQpAWnJXyp_boIwU27Vx3U5EISEtYC58d3IhRNEWOHv_6kDZvztXQE9fxtqo9RdcrFiV0Jn7NMGFs
linkProvider Open Access Publishing in European Networks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Multiple-Aspect+Analysis+of+Semantic+Trajectories&rft.date=2020-01-01&rft.pub=Springer+Nature&rft.isbn=9783030380816&rft.externalDocID=5421150
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830303%2F9783030380816.jpg