Bound Peptide-Dependent Thermal Stability of Major Histocompatibility Complex Class II Molecule I-Ek

We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-Ek, accommodating hemoglobin (Hb) peptide mutants possessing a single amino acid substitution of the chemically conserved amino acids buried in the I-Ek pocket (position...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 43; no. 31; pp. 10186 - 10191
Main Authors Saito, Keigo, Oda, Masayuki, Sarai, Akinori, Azuma, Takachika, Kozono, Haruo
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 10.08.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-Ek, accommodating hemoglobin (Hb) peptide mutants possessing a single amino acid substitution of the chemically conserved amino acids buried in the I-Ek pocket (positions 71 and 73) and exposed to the solvent (position 72). All of the I-Ek-Hb(mut) molecules exhibited greater thermal stability at pH 5.5 than at pH 7.4, as for the I-Ek-Hb(wt) molecule, which can explain the peptide exchange function of MHC II. The thermal stability was strongly dependent on the bound peptide sequences; the I-Ek-Hb(mut) molecules were less stable than the I-Ek-Hb(wt) molecules, in good correlation with the relative affinity of each peptide for I-Ek. This supports the notion that the bound peptide is part of the completely folded MHC II molecule. The thermodynamic parameters for I-Ek-Hb(mut) folding can explain the thermodynamic origin of the stability difference, in correlation with the crystal structural analysis, and the limited contributions of the residues to the overall conformation of the I-Ek−peptide complex. We found a linear relationship between the denaturation temperature and the calorimetric enthalpy change. Thus, although the MHC II−peptide complex could have a diverse thermal stability spectrum, depending on the amino acid sequences of the bound peptides, the conformational perturbations are limited. The variations in the MHC II−peptide complex stability would function in antigen recognition by the T cell receptor by affecting the stability of the MHC II−peptide−T cell receptor ternary complex.
AbstractList We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-E(k), accommodating hemoglobin (Hb) peptide mutants possessing a single amino acid substitution of the chemically conserved amino acids buried in the I-Ek pocket (positions 71 and 73) and exposed to the solvent (position 72). All of the I-Ek-Hb(mut) molecules exhibited greater thermal stability at pH 5.5 than at pH 7.4, as for the I-Ek-Hb(wt) molecule, which can explain the peptide exchange function of MHC II. The thermal stability was strongly dependent on the bound peptide sequences; the I-Ek-Hb(mut) molecules were less stable than the I-Ek-Hb(wt) molecules, in good correlation with the relative affinity of each peptide for I-Ek. This supports the notion that the bound peptide is part of the completely folded MHC II molecule. The thermodynamic parameters for I-Ek-Hb(mut) folding can explain the thermodynamic origin of the stability difference, in correlation with the crystal structural analysis, and the limited contributions of the residues to the overall conformation of the I-Ek-peptide complex. We found a linear relationship between the denaturation temperature and the calorimetric enthalpy change. Thus, although the MHC II-peptide complex could have a diverse thermal stability spectrum, depending on the amino acid sequences of the bound peptides, the conformational perturbations are limited. The variations in the MHC II-peptide complex stability would function in antigen recognition by the T cell receptor by affecting the stability of the MHC II-peptide-T cell receptor ternary complex.We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-E(k), accommodating hemoglobin (Hb) peptide mutants possessing a single amino acid substitution of the chemically conserved amino acids buried in the I-Ek pocket (positions 71 and 73) and exposed to the solvent (position 72). All of the I-Ek-Hb(mut) molecules exhibited greater thermal stability at pH 5.5 than at pH 7.4, as for the I-Ek-Hb(wt) molecule, which can explain the peptide exchange function of MHC II. The thermal stability was strongly dependent on the bound peptide sequences; the I-Ek-Hb(mut) molecules were less stable than the I-Ek-Hb(wt) molecules, in good correlation with the relative affinity of each peptide for I-Ek. This supports the notion that the bound peptide is part of the completely folded MHC II molecule. The thermodynamic parameters for I-Ek-Hb(mut) folding can explain the thermodynamic origin of the stability difference, in correlation with the crystal structural analysis, and the limited contributions of the residues to the overall conformation of the I-Ek-peptide complex. We found a linear relationship between the denaturation temperature and the calorimetric enthalpy change. Thus, although the MHC II-peptide complex could have a diverse thermal stability spectrum, depending on the amino acid sequences of the bound peptides, the conformational perturbations are limited. The variations in the MHC II-peptide complex stability would function in antigen recognition by the T cell receptor by affecting the stability of the MHC II-peptide-T cell receptor ternary complex.
We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-Ek, accommodating hemoglobin (Hb) peptide mutants possessing a single amino acid substitution of the chemically conserved amino acids buried in the I-Ek pocket (positions 71 and 73) and exposed to the solvent (position 72). All of the I-Ek-Hb(mut) molecules exhibited greater thermal stability at pH 5.5 than at pH 7.4, as for the I-Ek-Hb(wt) molecule, which can explain the peptide exchange function of MHC II. The thermal stability was strongly dependent on the bound peptide sequences; the I-Ek-Hb(mut) molecules were less stable than the I-Ek-Hb(wt) molecules, in good correlation with the relative affinity of each peptide for I-Ek. This supports the notion that the bound peptide is part of the completely folded MHC II molecule. The thermodynamic parameters for I-Ek-Hb(mut) folding can explain the thermodynamic origin of the stability difference, in correlation with the crystal structural analysis, and the limited contributions of the residues to the overall conformation of the I-Ek−peptide complex. We found a linear relationship between the denaturation temperature and the calorimetric enthalpy change. Thus, although the MHC II−peptide complex could have a diverse thermal stability spectrum, depending on the amino acid sequences of the bound peptides, the conformational perturbations are limited. The variations in the MHC II−peptide complex stability would function in antigen recognition by the T cell receptor by affecting the stability of the MHC II−peptide−T cell receptor ternary complex.
We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-E(k), accommodating hemoglobin (Hb) peptide mutants possessing a single amino acid substitution of the chemically conserved amino acids buried in the I-Ek pocket (positions 71 and 73) and exposed to the solvent (position 72). All of the I-Ek-Hb(mut) molecules exhibited greater thermal stability at pH 5.5 than at pH 7.4, as for the I-Ek-Hb(wt) molecule, which can explain the peptide exchange function of MHC II. The thermal stability was strongly dependent on the bound peptide sequences; the I-Ek-Hb(mut) molecules were less stable than the I-Ek-Hb(wt) molecules, in good correlation with the relative affinity of each peptide for I-Ek. This supports the notion that the bound peptide is part of the completely folded MHC II molecule. The thermodynamic parameters for I-Ek-Hb(mut) folding can explain the thermodynamic origin of the stability difference, in correlation with the crystal structural analysis, and the limited contributions of the residues to the overall conformation of the I-Ek-peptide complex. We found a linear relationship between the denaturation temperature and the calorimetric enthalpy change. Thus, although the MHC II-peptide complex could have a diverse thermal stability spectrum, depending on the amino acid sequences of the bound peptides, the conformational perturbations are limited. The variations in the MHC II-peptide complex stability would function in antigen recognition by the T cell receptor by affecting the stability of the MHC II-peptide-T cell receptor ternary complex.
Author Oda, Masayuki
Azuma, Takachika
Sarai, Akinori
Saito, Keigo
Kozono, Haruo
Author_xml – sequence: 1
  givenname: Keigo
  surname: Saito
  fullname: Saito, Keigo
– sequence: 2
  givenname: Masayuki
  surname: Oda
  fullname: Oda, Masayuki
– sequence: 3
  givenname: Akinori
  surname: Sarai
  fullname: Sarai, Akinori
– sequence: 4
  givenname: Takachika
  surname: Azuma
  fullname: Azuma, Takachika
– sequence: 5
  givenname: Haruo
  surname: Kozono
  fullname: Kozono, Haruo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15287746$$D View this record in MEDLINE/PubMed
BookMark eNo9kUFP3DAUhC1EBQvtoX-g8oXe0tqxYztHyNKyKqgrdou4WY79IrI4cRonEvx7XO2W09NoPj1pZs7QcR96QOgzJd8oyen3uiW8VEw1R2hBi5xkvCyLY7QghIgsLwU5RWcx7pLkRPITdJogJSUXC-Suwtw7vIZhah1kSxigd9BPePsEY2c83kymbn07veLQ4DuzCyO-aeMUbOgGM7UHr0rKwwuuvIkRr1b4Lniwswe8yq6fP6IPjfERPh3uOfrz43pb3WS3v3-uqsvbzFClRFYywbhSTpaitAaIMw1YBzVtCAdRFy5vrOVgFLOFZGCFVC6vVV0YVSpOGTtHX_d_hzH8nSFOumujBe9ND2GOWggpUj0kgV8O4Fx34PQwtp0ZX_X_XhKQ7YEUFV7efTM-ayGZLPR2vdG_No90Xd0_6GXiL_a8sVHvwjz2KaemRP_bR7_vw94AtNKBRg
ContentType Journal Article
Copyright Copyright © 2004 American Chemical Society
Copyright_xml – notice: Copyright © 2004 American Chemical Society
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/bi049838f
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 10191
ExternalDocumentID 15287746
ark_67375_TPS_KSX1PCRV_D
g13778942
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
08R
23N
3O-
4.4
53G
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
AFFDN
AFFNX
AFMIJ
AIDAL
AJYGW
ALMA_UNASSIGNED_HOLDINGS
ANTXH
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
EJD
F5P
GJ
GNL
IH9
IHE
JG
JG~
K2
K78
KM
L7B
LG6
MVM
NHB
OHT
P2P
ROL
TN5
UI2
UNC
UQL
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
6TJ
ABJNI
ABQRX
ADHLV
AGXLV
AHGAQ
BSCLL
CUPRZ
GGK
XOL
XSW
ZCA
~02
~KM
ACRPL
ADNMO
AEYZD
ANPPW
CGR
CUY
CVF
ECM
EIF
NPM
VXZ
7X8
ABBLG
ABLBI
AGQPQ
ID FETCH-LOGICAL-a1886-9363488d7969cae0dafecdeb1f04e6b5d2fcc4ea83c573ec678d2b8b5a8984133
IEDL.DBID ACS
ISSN 0006-2960
IngestDate Thu Jul 10 22:07:08 EDT 2025
Wed Feb 19 01:54:49 EST 2025
Wed Oct 30 09:41:03 EDT 2024
Thu Aug 27 13:44:50 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 31
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a1886-9363488d7969cae0dafecdeb1f04e6b5d2fcc4ea83c573ec678d2b8b5a8984133
Notes ark:/67375/TPS-KSX1PCRV-D
istex:0DBFE9B537B240762D42307F880F69441A48B285
This work was supported by grants to H.K. from the Ministry of Education, Culture, Science and Sports of Japan.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15287746
PQID 66765200
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_66765200
pubmed_primary_15287746
istex_primary_ark_67375_TPS_KSX1PCRV_D
acs_journals_10_1021_bi049838f
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ANTXH
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
PublicationCentury 2000
PublicationDate 2004-Aug-10
PublicationDateYYYYMMDD 2004-08-10
PublicationDate_xml – month: 08
  year: 2004
  text: 2004-Aug-10
  day: 10
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2004
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
SSID ssj0004074
Score 1.7401241
Snippet We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-Ek, accommodating hemoglobin...
We used differential scanning calorimetry to study the thermal denaturation of murine major histocompatibility complex class II, I-E(k), accommodating...
SourceID proquest
pubmed
istex
acs
SourceType Aggregation Database
Index Database
Publisher
StartPage 10186
SubjectTerms Animals
Antigen Presentation
Aspartic Acid - genetics
Calorimetry, Differential Scanning
CD4-Positive T-Lymphocytes - metabolism
Chromatography, Gel
Glutamic Acid - genetics
Hemoglobins - chemistry
Hemoglobins - genetics
Hemoglobins - metabolism
Histocompatibility Antigens Class II - chemistry
Histocompatibility Antigens Class II - genetics
Histocompatibility Antigens Class II - metabolism
Hydrogen-Ion Concentration
Mice
Mutagenesis, Site-Directed
Peptide Fragments - chemistry
Peptide Fragments - genetics
Peptide Fragments - metabolism
Protein Binding
Protein Conformation
Protein Denaturation
Thermodynamics
Title Bound Peptide-Dependent Thermal Stability of Major Histocompatibility Complex Class II Molecule I-Ek
URI http://dx.doi.org/10.1021/bi049838f
https://api.istex.fr/ark:/67375/TPS-KSX1PCRV-D/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15287746
https://www.proquest.com/docview/66765200
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fT9swED4xeNheGD-20cGYJSbezNLETp3H0oLoJqaKwtQ3y7EdiRVS1KYS7K_fnZOySRPwHCWy7s53n3OfvwP4IlUuDUJbbkUmuFBS8NxFitOtydyJgmZbEdviR3p2Jb6N5XgFDp7o4Mftr_k1gliVqOIVrMWp6tAJq9sb_b38GDVSy3g0jhGPL-WD_n2VSo-dI_4k090_DSZDUTl9C_3l1ZyaSzI5WlT5kf39v1Ljc-vdgPUGVLJuHQWbsOLLLdjulnigvn1ghyzQPMP_8y143VuOeNsGd0xDldiQmC3O834zELdiGDyYsG8YQtFAnn1g04Kdm1_TGQu6IoG5Xl03zyin3Ph7FgZsssGAndczdz0b8JPJO7g6PbnsnfFm7AI3baVSniVpgtvadbI0s8ZHzhTeOszpRSR8mksXF9YKb1RiZSfxFsudi3PyucoU1sTkPayW09LvACtkZCMseJgUMhHHRZaZhIzjpHLUkmvBPvpFN9tmrkNHPG7rRxu24DC4TN_V2hvazCZERetIfTkc6e-jcXvYu_ip-y34vPSpRiNS18OUfrqYayLxkrZUCz7Urn78FkIXDCeRfnxpFbvwpibskBLuHqxWs4X_hFikyvdDLP4BwbvWTQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcigXHi2P8Gj3AL25OOu1sz5wCEmrmDRVRFKU23a9u5ZKio1iRzT8FP4Kf47ZtZMiJMSpEmdLq_XO7Mw3mm-_AXgd8jSUCG09xWLmMR4yL9U-9-yryVSzzM62smyLs2hwzj7MwtkW_Fi_hcFNlLhS6Zr4N-oC7bfpJWJZHvCsIVAOzeoblmflu6SPtnxD6cnxtDfwmgkCnmxzHnlxEAXooboTR7GSxtcyM0pjeMp8ZqI01DRTihnJAxV2AqMwcmua2u3zmGN4D3DdO3AXQQ-1hV23N7l5c-k3Cs9YkVMsA9aqRb9v1WY8VSLstRa7_juGdbns5AH83JyCo7DMj5ZVeqS-_yEQ-X8e00O430Bo0q19_hFsmXwX9rq5rIovK3JIHKnVdQt2Yae3Hmi3B_q9HSFFxpbHo43Xb8b_VgSvCqanK4LA21GFV6TIyEh-LhbEqag4nn512XyzEfTKXBM3TpQkCRnVE4YNSbzj-WM4v5V_fwLbeZGbZ0Cy0Fc-pncMgTGjNItjGVhj6JBr24BswT6aTDRBohSu_0_bYmOzFhw6TxFfa6URIRdzS7zrhGI6nojhZNYe9z5-Ev0WHKxdSeAh2h6PzE2xLIWlLFslrRY8rT1ssxYCNY5YP3r-r10cwM5gOjoVp8nZ8AXcq6lKVgP4JWxXi6V5hSisSvfddSBwcduO9Qv4Hzp7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9NAEB2VIgGXAi1tU6DdA_Tm4vgr6wOHkDSqCa0i0qLclvXuWipp7Sp2RMOP4a_w15hZOwEhIU6VOFtarXdmZ95o3r4BeBXyNJQIbR0VxIET8DBwUu1yh15NpjrIaLYVsS3OopOL4P0knKzB9-VbGNxEiSuVtolPt_pGZ43CQPtNeol4lvs8a0iUQ7P4iiVa-Tbpoz1fe97g-Lx34jRTBBzZ5jxyYj_y0Ut1J45iJY2rZWaUxhCVuYGJ0lB7mVKBkdxXYcc3CqO39lL6BR5zDPE-rnsP7lN7kIq7bm_8692l26g8Y1XuYSmwVC76fauU9VSJ0Jesdvt3HGvz2eAx_FidhKWxTI_mVXqkvv0hEvn_HtUT2GigNOvWvv8U1ky-CVvdXFbF9YIdMktutV2DTXjYWw622wL9jkZJsRHxebRx-s0Y4IrhlcE0dcUQgFvK8IIVGTuVX4oZs2oqlq9fXTbfKJJemVtmx4qyJGGn9aRhwxLnePoMLu7k37dhPS9yswssC13lYprHUBgHnpfFsfTJGDrkmhqRLdhHs4kmWJTC8gC8tljZrAWH1lvETa04IuRsSgS8TijOR2MxHE_ao97HT6LfgoOlOwk8ROr1yNwU81IQdZkUtVqwU3vZai0EbBwxf7T3r10cwINRfyA-JGfD5_CoZiyRFPALWK9mc_MSwViV7tsbweDzXfvVT3q9PP4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bound+peptide-dependent+thermal+stability+of+major+histocompatibility+complex+class+II+molecule+I-Ek&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Saito%2C+Keigo&rft.au=Oda%2C+Masayuki&rft.au=Sarai%2C+Akinori&rft.au=Azuma%2C+Takachika&rft.date=2004-08-10&rft.issn=0006-2960&rft.volume=43&rft.issue=31&rft.spage=10186&rft_id=info:doi/10.1021%2Fbi049838f&rft_id=info%3Apmid%2F15287746&rft.externalDocID=15287746
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon