Linear Algorithms for Robust and Scalable Nonparametric Multiclass Probability Estimation

Multiclass probability estimation is the problem of estimating conditional probabilities of a data point belonging to a class given its covariate information. It has broad applications in statistical analysis and data science. Recently a class of weighted Support Vector Machines (wSVMs) has been dev...

Full description

Saved in:
Bibliographic Details
Published inJournal of Data Science Vol. 21; no. 4; pp. 658 - 680
Main Authors Zeng, Liyun, Zhang, Hao Helen
Format Journal Article
LanguageEnglish
Published 中華資料採礦協會 01.10.2023
Subjects
Online AccessGet full text
ISSN1683-8602
1680-743X
1683-8602
DOI10.6339/22-JDS1069

Cover

Loading…
Abstract Multiclass probability estimation is the problem of estimating conditional probabilities of a data point belonging to a class given its covariate information. It has broad applications in statistical analysis and data science. Recently a class of weighted Support Vector Machines (wSVMs) has been developed to estimate class probabilities through ensemble learning for K-class problems (Wu et al., 2010; Wang et al., 2019), where K is the number of classes. The estimators are robust and achieve high accuracy for probability estimation, but their learning is implemented through pairwise coupling, which demands polynomial time in K. In this paper, we propose two new learning schemes, the baseline learning and the One-vs-All (OVA) learning, to further improve wSVMs in terms of computational efficiency and estimation accuracy. In particular, the baseline learning has optimal computational complexity in the sense that it is linear in K. Though not the most efficient in computation, the OVA is found to have the best estimation accuracy among all the procedures under comparison. The resulting estimators are distribution-free and shown to be consistent. We further conduct extensive numerical experiments to demonstrate their finite sample performance.
AbstractList Multiclass probability estimation is the problem of estimating conditional probabilities of a data point belonging to a class given its covariate information. It has broad applications in statistical analysis and data science. Recently a class of weighted Support Vector Machines (wSVMs) has been developed to estimate class probabilities through ensemble learning for K-class problems (Wu et al., 2010; Wang et al., 2019), where K is the number of classes. The estimators are robust and achieve high accuracy for probability estimation, but their learning is implemented through pairwise coupling, which demands polynomial time in K. In this paper, we propose two new learning schemes, the baseline learning and the One-vs-All (OVA) learning, to further improve wSVMs in terms of computational efficiency and estimation accuracy. In particular, the baseline learning has optimal computational complexity in the sense that it is linear in K. Though not the most efficient in computation, the OVA is found to have the best estimation accuracy among all the procedures under comparison. The resulting estimators are distribution-free and shown to be consistent. We further conduct extensive numerical experiments to demonstrate their finite sample performance.
Multiclass probability estimation is the problem of estimating conditional probabilities of a data point belonging to a class given its covariate information. It has broad applications in statistical analysis and data science. Recently a class of weighted Support Vector Machines (wSVMs) has been developed to estimate class probabilities through ensemble learning for K-class problems (Wu et al., 2010; Wang et al., 2019), where K is the number of classes. The estimators are robust and achieve high accuracy for probability estimation, but their learning is implemented through pairwise coupling, which demands polynomial time in K. In this paper, we propose two new learning schemes, the baseline learning and the One-vs-All (OVA) learning, to further improve wSVMs in terms of computational efficiency and estimation accuracy. In particular, the baseline learning has optimal computational complexity in the sense that it is linear in K. Though not the most efficient in computation, the OVA is found to have the best estimation accuracy among all the procedures under comparison. The resulting estimators are distribution-free and shown to be consistent. We further conduct extensive numerical experiments to demonstrate their finite sample performance.
Author Hao Helen Zhang
Liyun Zeng
Author_xml – sequence: 1
  givenname: Liyun
  surname: Zeng
  fullname: Zeng, Liyun
– sequence: 2
  givenname: Hao Helen
  surname: Zhang
  fullname: Zhang, Hao Helen
BookMark eNpNkD9PwzAUxC1UJNrCwifwjBR4tps4GatS_qkURGFgsp4dB1ylcWW7Q789qdqB5d0bTqe734gMOt9ZQq4Z3BZCVHecZy_3KwZFdUaGrChFVhbAB__-CzKKcQ3AKyhhSL4XrrMY6LT98cGl302kjQ_0w-tdTBS7mq4MtqhbS5e-22LAjU3BGfq6a5MzLcZI34PXqF3r0p7OY3IbTM53l-S8wTbaq5OOydfD_HP2lC3eHp9n00WGrMyrrOaFabQGBCuMNZBLrCXIQuSG5dKKGlglJxNRGmYsnzQgG25ymTPNDGiJYkxujrkm-BiDbdQ29BXCXjFQByiKc3WC0pvF0YyuX-vU2u9C17dTBz4HPGrJgQsGTAJAofoDQvwBj09l_Q
Cites_doi 10.1109/ICDAR.1995.598994
10.1080/10618600.2012.700878
10.1080/10618600.2019.1585260
10.1198/016214506000001383
10.1023/A:1009715923555
10.1109/ICDAR.1997.620583
10.1145/2939672.2939785
10.1016/0022-247X(71)90184-3
10.1198/106186005X25619
10.1007/s10462-017-9586-y
10.1198/jcgs.2010.09206
10.1198/016214504000000098
10.1016/S1535-6108(02)00032-6
10.1007/s42452-020-2266-6
10.1038/35000501
10.1198/016214502753479248
10.1093/biomet/asm077
10.1016/j.ins.2013.12.019
10.1002/cjs.5550340410
10.1016/j.knosys.2015.02.009
10.1080/00207179.2013.801080
10.1198/jasa.2010.tm09107
10.1023/A:1015469627679
ContentType Journal Article
DBID 188
AAYXX
CITATION
DOI 10.6339/22-JDS1069
DatabaseName Airiti Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 1683-8602
EndPage 680
ExternalDocumentID 10_6339_22_JDS1069
16838602_N202310170006_00003
GroupedDBID 188
29K
2UF
2WC
5GY
ABDBF
ACGFO
ACIPV
AEGXH
AIAGR
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ATFKH
CNMHZ
CVCKV
D-I
E3Z
EAD
EAP
EBS
EJD
EMK
EPL
ESX
GROUPED_DOAJ
J9A
M~E
OK1
P2P
RNS
TR2
TUS
TUXDW
UY8
UZ4
XSB
AAYXX
ACUHS
C1A
CITATION
OVT
ID FETCH-LOGICAL-a1859-d26cfbb0a0e3cec057ad707635c157e3d01974438c1ce24f07f2c5751b1c0b7a3
ISSN 1683-8602
1680-743X
IngestDate Tue Jul 01 03:02:47 EDT 2025
Tue Oct 01 22:51:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords probability estimation
linear time algorithm
support vector machines
multiclass classification
non-parametric
scalability
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a1859-d26cfbb0a0e3cec057ad707635c157e3d01974438c1ce24f07f2c5751b1c0b7a3
OpenAccessLink https://jds-online.org/journal/JDS/article/1305/file/pdf
PageCount 23
ParticipantIDs crossref_primary_10_6339_22_JDS1069
airiti_journals_16838602_N202310170006_00003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Data Science
PublicationYear 2023
Publisher 中華資料採礦協會
Publisher_xml – name: 中華資料採礦協會
References (2023101215262225505_j_jds1069_ref_031) 2004; 5
(2023101215262225505_j_jds1069_ref_010) 2019; 52
(2023101215262225505_j_jds1069_ref_033) 2015; 81
(2023101215262225505_j_jds1069_ref_025) 2002; 6
(2023101215262225505_j_jds1069_ref_029) 2012; 2
(2023101215262225505_j_jds1069_ref_039) 2019; 28
(2023101215262225505_j_jds1069_ref_007) 2016
(2023101215262225505_j_jds1069_ref_027) 2011; 20
(2023101215262225505_j_jds1069_ref_042) 1989; 44
(2023101215262225505_j_jds1069_ref_036) 2006; 16
(2023101215262225505_j_jds1069_ref_026) 2007
(2023101215262225505_j_jds1069_ref_032) 2020; 2
(2023101215262225505_j_jds1069_ref_037) 2008; 95
(2023101215262225505_j_jds1069_ref_041) 2010; 105
(2023101215262225505_j_jds1069_ref_018) 2013; 22
(2023101215262225505_j_jds1069_ref_030) 2021; 34
(2023101215262225505_j_jds1069_ref_046) 2003
(2023101215262225505_j_jds1069_ref_003) 1984
(2023101215262225505_j_jds1069_ref_015) 2006; 34
(2023101215262225505_j_jds1069_ref_044) 2013; 14
(2023101215262225505_j_jds1069_ref_005) 2013; 86
(2023101215262225505_j_jds1069_ref_009) 2000
(2023101215262225505_j_jds1069_ref_020) 2012
(2023101215262225505_j_jds1069_ref_004) 1998; 2
(2023101215262225505_j_jds1069_ref_022) 2014; 264
(2023101215262225505_j_jds1069_ref_034) 1998
(2023101215262225505_j_jds1069_ref_014) 2009
(2023101215262225505_j_jds1069_ref_038) 2007; 102
(2023101215262225505_j_jds1069_ref_028) 1989
(2023101215262225505_j_jds1069_ref_021) 1971; 33
(2023101215262225505_j_jds1069_ref_045) 2005; 14
(2023101215262225505_j_jds1069_ref_008) 2001; 2
(2023101215262225505_j_jds1069_ref_002) 2000; 403
(2023101215262225505_j_jds1069_ref_012) 2002; 97
(2023101215262225505_j_jds1069_ref_013) 2017; 70
(2023101215262225505_j_jds1069_ref_017) 1996
(2023101215262225505_j_jds1069_ref_023) 2004; 99
2023101215262225505_j_jds1069_ref_011
(2023101215262225505_j_jds1069_ref_019) 2016; 2016
(2023101215262225505_j_jds1069_ref_024) 2015; 2
(2023101215262225505_j_jds1069_ref_001) 1997; 2
(2023101215262225505_j_jds1069_ref_006) 2011
(2023101215262225505_j_jds1069_ref_016) 1995; 1
(2023101215262225505_j_jds1069_ref_035) 1990
(2023101215262225505_j_jds1069_ref_040) 1999
(2023101215262225505_j_jds1069_ref_043) 2002; 1
References_xml – volume: 16
  start-page: 569
  issue: 2
  year: 2006
  ident: 2023101215262225505_j_jds1069_ref_036
  article-title: Estimation of generalization error: random and fixed inputs
  publication-title: Statistica Sinica
– start-page: 21
  volume-title: Proceedings of the Seventh European Symposium on Artificial Neural Networks
  year: 1999
  ident: 2023101215262225505_j_jds1069_ref_040
– volume: 1
  start-page: 278
  volume-title: Proceedings of the Third International Conference on Document Analysis and Recognition
  year: 1995
  ident: 2023101215262225505_j_jds1069_ref_016
  doi: 10.1109/ICDAR.1995.598994
– volume: 44
  start-page: 157
  issue: 1–3
  year: 1989
  ident: 2023101215262225505_j_jds1069_ref_042
  article-title: An extension of Karmarkar’s projective algorithm for convex quadratic programming
  publication-title: Mathematical Programming
– volume: 2016
  start-page: 1
  year: 2016
  ident: 2023101215262225505_j_jds1069_ref_019
  article-title: Discriminant feature distribution analysis-based hybrid feature selection for online bearing fault diagnosis in induction motors
  publication-title: Journal of Sensors
– start-page: 351
  volume-title: Proceedings of the Sixth International Conference on Bio-Inspired Computing: Theories and Applications
  year: 2011
  ident: 2023101215262225505_j_jds1069_ref_006
– volume: 22
  start-page: 953
  issue: 4
  year: 2013
  ident: 2023101215262225505_j_jds1069_ref_018
  article-title: Multiclass distance-weighted discrimination
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2012.700878
– volume-title: Spline Models for Observational Data
  year: 1990
  ident: 2023101215262225505_j_jds1069_ref_035
– volume: 28
  start-page: 586
  issue: 3
  year: 2019
  ident: 2023101215262225505_j_jds1069_ref_039
  article-title: Multiclass probability estimation with support vector machines
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.2019.1585260
– volume: 102
  start-page: 583
  year: 2007
  ident: 2023101215262225505_j_jds1069_ref_038
  article-title: On L 1 -norm multiclass support vector machines
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214506000001383
– start-page: 291
  volume-title: Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics
  year: 2007
  ident: 2023101215262225505_j_jds1069_ref_026
– volume: 2
  start-page: 2035
  volume-title: Proceedings of the 28th International Conference on Neural Information Processing Systems
  year: 2015
  ident: 2023101215262225505_j_jds1069_ref_024
– volume: 2
  start-page: 121
  year: 1998
  ident: 2023101215262225505_j_jds1069_ref_004
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009715923555
– volume: 70
  start-page: 1321
  volume-title: Proceedings of the 34th International Conference on Machine Learning
  year: 2017
  ident: 2023101215262225505_j_jds1069_ref_013
– volume: 2
  start-page: 637
  volume-title: Proceedings of the Fourth International Conference on Document Analysis and Recognition
  year: 1997
  ident: 2023101215262225505_j_jds1069_ref_001
  doi: 10.1109/ICDAR.1997.620583
– start-page: 785
  volume-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2016
  ident: 2023101215262225505_j_jds1069_ref_007
  doi: 10.1145/2939672.2939785
– volume: 33
  start-page: 82
  year: 1971
  ident: 2023101215262225505_j_jds1069_ref_021
  article-title: Some results on Tchebycheffian spline functions
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(71)90184-3
– volume: 14
  start-page: 185
  year: 2005
  ident: 2023101215262225505_j_jds1069_ref_045
  article-title: Kernel logistic regression and the import vector machine
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/106186005X25619
– volume-title: An Introduction to Support Vector Machines and other Kernel-based Learning Methods
  year: 2000
  ident: 2023101215262225505_j_jds1069_ref_009
– volume: 2
  start-page: 265
  year: 2001
  ident: 2023101215262225505_j_jds1069_ref_008
  article-title: On the algorithmic implementation of multiclass kernel-based vector machines
  publication-title: Journal of Machine Learning Research
– volume: 52
  start-page: 775
  issue: 2
  year: 2019
  ident: 2023101215262225505_j_jds1069_ref_010
  article-title: A review on multi-class TWSVM
  publication-title: Artificial Intelligence Review
  doi: 10.1007/s10462-017-9586-y
– volume: 20
  start-page: 901
  year: 2011
  ident: 2023101215262225505_j_jds1069_ref_027
  article-title: Reinforced multicategory support vector machine
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1198/jcgs.2010.09206
– volume: 99
  start-page: 67
  year: 2004
  ident: 2023101215262225505_j_jds1069_ref_023
  article-title: Multicategory support vector machines, theory, and application to the classification of microarray data and satellite radiance data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214504000000098
– volume: 1
  start-page: 133
  issue: 2
  year: 2002
  ident: 2023101215262225505_j_jds1069_ref_043
  article-title: Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00032-6
– start-page: 109
  volume-title: Proceeding of the Fourth International Conference on Intelligent Systems for Molecular Biology
  year: 1996
  ident: 2023101215262225505_j_jds1069_ref_017
– volume: 2
  start-page: 458
  issue: 3
  year: 2020
  ident: 2023101215262225505_j_jds1069_ref_032
  article-title: Multi-category news classification using support vector machine based classifiers
  publication-title: SN Applied Sciences
  doi: 10.1007/s42452-020-2266-6
– volume: 403
  start-page: 503
  issue: 6769
  year: 2000
  ident: 2023101215262225505_j_jds1069_ref_002
  article-title: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
  publication-title: Nature
  doi: 10.1038/35000501
– volume: 97
  start-page: 77
  issue: 457
  year: 2002
  ident: 2023101215262225505_j_jds1069_ref_012
  article-title: Comparison of discrimination methods for the classification of tumors using gene expression data
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/016214502753479248
– start-page: 49
  volume-title: Proceedings of the 16th International Conference on Neural Information Processing Systems
  year: 2003
  ident: 2023101215262225505_j_jds1069_ref_046
– volume: 95
  start-page: 149
  year: 2008
  ident: 2023101215262225505_j_jds1069_ref_037
  article-title: Probability estimation for large margin classifiers
  publication-title: Biometrika
  doi: 10.1093/biomet/asm077
– volume-title: Generalized Linear Models
  year: 1989
  ident: 2023101215262225505_j_jds1069_ref_028
– volume: 264
  start-page: 182
  year: 2014
  ident: 2023101215262225505_j_jds1069_ref_022
  article-title: Clustering-based ensembles for one-class classification
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2013.12.019
– volume-title: The Elements of Statistical Learning: Data mining, Inference and Prediction
  year: 2009
  ident: 2023101215262225505_j_jds1069_ref_014
– volume: 34
  start-page: 709
  issue: 4
  year: 2006
  ident: 2023101215262225505_j_jds1069_ref_015
  article-title: Classification with reject option
  publication-title: Canadian Journal of Statistics
  doi: 10.1002/cjs.5550340410
– volume: 81
  start-page: 131
  year: 2015
  ident: 2023101215262225505_j_jds1069_ref_033
  article-title: A comparison on multi-class classification methods based on least squares twin support vector machine
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2015.02.009
– volume: 86
  start-page: 1367
  issue: 8
  year: 2013
  ident: 2023101215262225505_j_jds1069_ref_005
  article-title: Projection-free parallel quadratic programming for linear model predictive control
  publication-title: International Journal of Control
  doi: 10.1080/00207179.2013.801080
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 2023101215262225505_j_jds1069_ref_034
– volume: 14
  start-page: 1349
  year: 2013
  ident: 2023101215262225505_j_jds1069_ref_044
  article-title: Multicategory large-margin unified machines
  publication-title: Journal of Machine Learning Research
– volume: 105
  start-page: 424
  year: 2010
  ident: 2023101215262225505_j_jds1069_ref_041
  article-title: Robust model-free multiclass probability estimation
  publication-title: Journal of the American Statistical Association
  doi: 10.1198/jasa.2010.tm09107
– ident: 2023101215262225505_j_jds1069_ref_011
– volume: 2
  start-page: 1
  volume-title: Proceedings of the 19th International Conference on Neural Information Processing
  year: 2012
  ident: 2023101215262225505_j_jds1069_ref_029
– volume: 34
  start-page: 15682
  volume-title: Proceedings of the 35th Advances in Neural Information Processing Systems
  year: 2021
  ident: 2023101215262225505_j_jds1069_ref_030
– volume: 6
  start-page: 259
  year: 2002
  ident: 2023101215262225505_j_jds1069_ref_025
  article-title: Support vector machines and the bayes rule in classification
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1015469627679
– volume-title: Classification and Regression Trees
  year: 1984
  ident: 2023101215262225505_j_jds1069_ref_003
– start-page: 1
  volume-title: Proceeding of the 19th International Conference on Telecommunications
  year: 2012
  ident: 2023101215262225505_j_jds1069_ref_020
– volume: 5
  start-page: 101
  year: 2004
  ident: 2023101215262225505_j_jds1069_ref_031
  article-title: In defense of one-vs-all classification
  publication-title: Journal of Machine Learning Research
SSID ssj0029080
ssib006573294
ssib044743962
Score 2.255189
Snippet Multiclass probability estimation is the problem of estimating conditional probabilities of a data point belonging to a class given its covariate information....
SourceID crossref
airiti
SourceType Index Database
Publisher
StartPage 658
Title Linear Algorithms for Robust and Scalable Nonparametric Multiclass Probability Estimation
URI https://www.airitilibrary.com/Article/Detail/16838602-N202310170006-00003
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeq8cILAgFifMkS-KkEnMSx48dsTTVNoi_bpMFLZLsOTGIpYu3D-BP4q7mL3SbAhBhSFUVWFbd3v9xHcvc7Ql5br6ROC5NA5mUTods2Md4UScuXok153hYCG4XfL-TRmTg-L84nkx-jqqXN2r5132_sK_kfrcIa6BW7ZG-h2d1FYQHOQb9wBA3D8Z90DIkk8vBUXz6tIMf_HLgVsFh6cxUKx09AA31v1GLVIcn3Jc7PctO-69Zh3IyNAjZQdV9Pa7jdLwdN_RmyzszabK3BrpLn4nrTTT_66AF7Y7YK3mzaP40eP1fIhgq1gARWC3ZQsmrG6pKVc1bN8eQgZ6VitWQaPhpPyppVKasVqwSrJKsLVs6YFv13DlkYUhNtqyzzBEdeBddzw1o0yKFlOgJPjKyrDCzv0VHLMALqdx8g8xwpVCHHPp6dQMKrB0-3qz_EbXHXZoH_HK0SD_V9PXHsnUyp8Mof0_OYvGveT-Hb_eBAdYubvRu2gjDGXCAZ1SjKGYUrp_fJvag0WgXQPCAT3z0kHwJg6AAYCoChATAUAEO3gKG_AIYOgKEjwNABMI_I2bw-PTxK4myNxECEppNlJl1rLTfc5847iNrNUnFkJ3RpoXy-hNBfCZGXLnU-Ey1XbebwHZ1NHbfK5I_JXrfq_BNCQXiQ12oLwaAWzhQ6N9rpYtlCqiF1xvfJmyCUJt46V83f5L9PXm1F13wNjCsNZKoo6SbLmijpp7e76DNyd8D4c7K3_rbxLyCaXNuXvZp_ApXFZrw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Algorithms+for+Robust+and+Scalable+Nonparametric+Multiclass+Probability+Estimation&rft.jtitle=Journal+of+Data+Science&rft.au=Liyun+Zeng&rft.au=Hao+Helen+Zhang&rft.date=2023-10-01&rft.pub=%E4%B8%AD%E8%8F%AF%E8%B3%87%E6%96%99%E6%8E%A1%E7%A4%A6%E5%8D%94%E6%9C%83&rft.issn=1683-8602&rft.eissn=1683-8602&rft.volume=21&rft.issue=4&rft.spage=658&rft.epage=680&rft_id=info:doi/10.6339%2F22-JDS1069&rft.externalDocID=16838602_N202310170006_00003
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.airitilibrary.com%2Fjnltitledo%2F16838602-c.jpg