Hypergeometric functions over finite fields
Building on the developments of many people including Evans, Greene, Katz, McCarthy, Ono, Roberts, and Rodriguez-Villegas, we consider period functions for hypergeometric type algebraic varieties over finite fields and consequently study hypergeometric functions over finite fields in a manner that i...
Saved in:
Main Authors | , , , , |
---|---|
Format | eBook |
Language | English |
Published |
Providence, Rhode Island
American Mathematical Society
2022
|
Series | Memoirs of the American Mathematical Society |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Building on the developments of many people including Evans, Greene, Katz, McCarthy, Ono, Roberts, and Rodriguez-Villegas, we
consider period functions for hypergeometric type algebraic varieties over finite fields and consequently study hypergeometric functions
over finite fields in a manner that is parallel to that of the classical hypergeometric functions. Using a comparison between the
classical gamma function and its finite field analogue the Gauss sum, we give a systematic way to obtain certain types of hypergeometric
transformation and evaluation formulas over finite fields and interpret them geometrically using a Galois representation perspective. As
an application, we obtain a few finite field analogues of algebraic hypergeometric identities, quadratic and higher transformation
formulas, and evaluation formulas. We further apply these finite field formulas to compute the number of rational points of certain
hypergeometric varieties. |
---|---|
AbstractList | Building on the developments of many people including Evans, Greene, Katz, McCarthy, Ono, Roberts, and Rodriguez-Villegas, we
consider period functions for hypergeometric type algebraic varieties over finite fields and consequently study hypergeometric functions
over finite fields in a manner that is parallel to that of the classical hypergeometric functions. Using a comparison between the
classical gamma function and its finite field analogue the Gauss sum, we give a systematic way to obtain certain types of hypergeometric
transformation and evaluation formulas over finite fields and interpret them geometrically using a Galois representation perspective. As
an application, we obtain a few finite field analogues of algebraic hypergeometric identities, quadratic and higher transformation
formulas, and evaluation formulas. We further apply these finite field formulas to compute the number of rational points of certain
hypergeometric varieties. View the abstract. |
Author | Fuselier, Jenny Swisher, Holly Ramakrishna, Ravi Kumar Tu, Fang-Ting Long, Ling |
Author_xml | – sequence: 1 givenname: Jenny surname: Fuselier fullname: Fuselier, Jenny – sequence: 2 givenname: Ling surname: Long fullname: Long, Ling – sequence: 3 givenname: Ravi Kumar surname: Ramakrishna fullname: Ramakrishna, Ravi Kumar – sequence: 4 givenname: Holly surname: Swisher fullname: Swisher, Holly – sequence: 5 givenname: Fang-Ting surname: Tu fullname: Tu, Fang-Ting |
BookMark | eNpVkE9LwzAYh6NuYDd78BsMPInUJW_-vMlRhjph4EW8liRNtaxtZKkTv70rDsTTc_g9_A7PjEz62AdCLhm9ZdTQZRe6uGRcwwnJDWomkAoEDfKUZMwILBQAO_vbpOCcT0hGqZKFAaWmZAYUgArNtT4neUqNoxIUVQIwIzfr74-wewuxC8Ou8Yv6s_dDE_u0iPuwW9RN3wzhgNBW6YJMa9umkB85J68P9y-rdbF5fnxa3W0Ky1CDKbzQ4LRDC5WzYDl6XRmpPWUoGBPC-dpJKSh6472rUAk0zphaWNRSacbn5Pr32KZt-ErvsR1SuW-Di3Gbyn8ZDu7V0e1SeTQYLcd45RivHOPxHxBzWjE |
CitedBy_id | crossref_primary_10_1007_s40993_024_00561_2 crossref_primary_10_1090_proc_17168 crossref_primary_10_1007_s40687_024_00468_5 crossref_primary_10_2140_tunis_2023_5_1 crossref_primary_10_32917_h2024001 crossref_primary_10_1007_s11139_023_00777_3 crossref_primary_10_1007_s44007_021_00015_6 |
ContentType | eBook |
Copyright | Copyright 2022 American Mathematical Society |
Copyright_xml | – notice: Copyright 2022 American Mathematical Society |
DEWEY | 512.74 |
DOI | 10.1090/memo/1382 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISBN | 9781470472825 1470472821 |
EISSN | 1947-6221 |
ExternalDocumentID | 9781470472825 10_1090_memo_1382 |
GroupedDBID | --Z -~X 123 4.4 85S ABPPZ ACNCT ACNUO AEGFZ AENEX ALMA_UNASSIGNED_HOLDINGS DU5 P2P RMA WH7 YNT YQT 38. AABBV ADAIA BBABE CZZ |
ID | FETCH-LOGICAL-a17829-c482b8b7a2dba2a37c8d958c01741144bcfb55407c9ccbd76479b99f4a7856813 |
ISBN | 9781470454333 1470454335 |
ISSN | 0065-9266 |
IngestDate | Fri Nov 08 03:08:08 EST 2024 Thu Aug 14 15:24:57 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hypergeometric functions Galois representations finite fields |
LCCN | 2022048388 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a17829-c482b8b7a2dba2a37c8d958c01741144bcfb55407c9ccbd76479b99f4a7856813 |
PageCount | 1 |
ParticipantIDs | askewsholts_vlebooks_9781470472825 ams_ebooks_10_1090_memo_1382 |
PublicationCentury | 2000 |
PublicationDate | [2022] |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: [2022] |
PublicationDecade | 2020 |
PublicationPlace | Providence, Rhode Island |
PublicationPlace_xml | – name: Providence, Rhode Island |
PublicationSeriesTitle | Memoirs of the American Mathematical Society |
PublicationYear | 2022 |
Publisher | American Mathematical Society |
Publisher_xml | – name: American Mathematical Society |
SSID | ssib052606427 ssj0002763418 ssj0008047 |
Score | 2.6937683 |
Snippet | Building on the developments of many people including Evans, Greene, Katz, McCarthy, Ono, Roberts, and Rodriguez-Villegas, we
consider period functions for... View the abstract. |
SourceID | askewsholts ams |
SourceType | Aggregation Database Publisher |
SubjectTerms | Finite fields (Algebra) Hypergeometric functions |
TableOfContents | Acknowledgments
--
Introduction
--
Preliminaries for the Complex and Finite Field Settings
--
Classical Hypergeometric Functions
--
Finite Field Analogues
--
Some Related Topics on Galois Representations
--
Galois Representation Interpretation
--
A finite field Clausen formula and an application
--
Translation of Some Classical Results
--
Quadratic or Higher Transformation Formulas
--
An application to Hypergeometric Abelian Varieties
--
Open Questions and Concluding Remarks
--
Appendix |
Title | Hypergeometric functions over finite fields |
URI | https://www.ams.org/memo/1382/ https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781470472825 |
Volume | 280 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4IXOTkM6JoGuONVGC7ZbsHTwZCTNQLGm7N7nZriDwSCib6651h-wA08XEp0JRmOt9m59GZbwi5kjEY3SgSrpYBc5kvmKuoF7vMo0LBEoq5j73D9w-d_hO7G_rDguxz1V2yUNf649u-kv-gCucAV-yS_QOy-U3hBHwHfOEICMNxy_nNf6YTfSB6nL-Y2QTnYelGD4yTrWh7hGdo9EboSMKHGUdFe8cSW88tQFjS8p5O1UJBTXJzbyaz0TzJSgaKFzk5rSvShsxy3pAsU0DpVqbg539mYWWbcWTm8yxFRbZPUjty6cue2xJYpDgBMTEL4NlZQlsk1tlNObbKlkiJ86BMKmB5u3luxYfICoIhnmfIKGx9rB2suvFSefyMpCuTL-OKEq0mCtC0jIolOUmqpCqTVzAUYEQWyZrPMNgjFYONJPtkx0wPSLVQR3JIGpsAOjmADgLoWAAdC-ARee51B7d9Nx1b4co2-Fuw7FlAVaC4pJGSVHpcB5HwAw2bH4PwkykdKx-JD7XQWkW8w7hQQsRM8gD54LxjUp7OpuaEOFFLg2Yk-JBSsFi1pep4uuMpbiSGkrpG6vCs4erFehLagoJWiKoIURU1crmmhPBtnF64Acfpby46I7vFkqqT8mK-NOfgji3URYrjJ65QMNU |
linkProvider | ProQuest Ebooks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Hypergeometric+Functions+Over+Finite+Fields&rft.au=Fuselier%2C+Jenny+G&rft.series=Memoirs+of+the+American+Mathematical+Society&rft.date=2022-01-01&rft.pub=American+Mathematical+Society&rft.isbn=9781470454333&rft.volume=280&rft_id=info:doi/10.1090%2Fmemo%2F1382&rft.externalDocID=9781470472825 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97814704%2F9781470472825.jpg |