Optical Properties of Selenium Quantum Dots Produced with Laser Irradiation of Water Suspended Se Nanoparticles

Semiconductor quantum dots (QDs) and their assemblies have shown potential research interest due to their size dependent optical and electronic properties. Laser irradiation of larger sized semiconductor nanoparticles (NPs) suspended into liquid media is an easy, quick, versatile, environmental frie...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical chemistry. C Vol. 114; no. 41; pp. 17374 - 17384
Main Authors Singh, S. C, Mishra, S. K, Srivastava, R. K, Gopal, R
Format Journal Article
LanguageEnglish
Published American Chemical Society 21.10.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Semiconductor quantum dots (QDs) and their assemblies have shown potential research interest due to their size dependent optical and electronic properties. Laser irradiation of larger sized semiconductor nanoparticles (NPs) suspended into liquid media is an easy, quick, versatile, environmental friendly, and rapidly growing method for the synthesis of QDs through melting/vaporization and fragmentation mechanisms. Most of the available reports in this field are related to the laser induced modification of shape, size, and morphology of noble metal nanoparticles, while only few exist for semiconductors. Synthesis of selenium QDs using laser induced melting/vaporization of water suspended selenium NPs of larger size and studies of their irradiation time or size dependent optical properties are subjects of current investigation. The fundamental wavelength of a pulsed nanosecond Nd:YAG laser is used for the irradiation of water suspended 69 nm average sized NPs for different times of irradiation. UV−visible absorption, XRD, TEM, and PL spectroscopic methods are utilized for the characterization of as synthesized QDs and raw NPs. Size and hence optical properties of produced selenium QDs are found to be highly dependent on the time of irradiation. The size of the produced selenium QDs follows a second order exponential decay function of irradiation time, while the rate of size reduction, da/dt, is directly dependent on the diameter, a, of the instantaneous QDs, very similar to the radioactive decay model. Laser irradiation causes transformation of β-Se NPs of 69 nm diameter to α-Se QDs of different sizes depending on the time of irradiation. We have achieved a minimum 2.74 ± 2.32 nm diameter of selenium QDs for 15 min laser irradiation and reported that almost 3.75 ± 0.15 nm size may be the quantum confinement limit for Se QDs. Surface defect density of the selenium QDs increases, while defect/electron trap level energy decreases, with the time of laser irradiation.
AbstractList Semiconductor quantum dots (QDs) and their assemblies have shown potential research interest due to their size dependent optical and electronic properties. Laser irradiation of larger sized semiconductor nanoparticles (NPs) suspended into liquid media is an easy, quick, versatile, environmental friendly, and rapidly growing method for the synthesis of QDs through melting/vaporization and fragmentation mechanisms. Most of the available reports in this field are related to the laser induced modification of shape, size, and morphology of noble metal nanoparticles, while only few exist for semiconductors. Synthesis of selenium QDs using laser induced melting/vaporization of water suspended selenium NPs of larger size and studies of their irradiation time or size dependent optical properties are subjects of current investigation. The fundamental wavelength of a pulsed nanosecond Nd:YAG laser is used for the irradiation of water suspended 69 nm average sized NPs for different times of irradiation. UV−visible absorption, XRD, TEM, and PL spectroscopic methods are utilized for the characterization of as synthesized QDs and raw NPs. Size and hence optical properties of produced selenium QDs are found to be highly dependent on the time of irradiation. The size of the produced selenium QDs follows a second order exponential decay function of irradiation time, while the rate of size reduction, da/dt, is directly dependent on the diameter, a, of the instantaneous QDs, very similar to the radioactive decay model. Laser irradiation causes transformation of β-Se NPs of 69 nm diameter to α-Se QDs of different sizes depending on the time of irradiation. We have achieved a minimum 2.74 ± 2.32 nm diameter of selenium QDs for 15 min laser irradiation and reported that almost 3.75 ± 0.15 nm size may be the quantum confinement limit for Se QDs. Surface defect density of the selenium QDs increases, while defect/electron trap level energy decreases, with the time of laser irradiation.
Author Srivastava, R. K
Gopal, R
Mishra, S. K
Singh, S. C
Author_xml – sequence: 1
  givenname: S. C
  surname: Singh
  fullname: Singh, S. C
  email: subhash.singh@dcu.ie
– sequence: 2
  givenname: S. K
  surname: Mishra
  fullname: Mishra, S. K
– sequence: 3
  givenname: R. K
  surname: Srivastava
  fullname: Srivastava, R. K
– sequence: 4
  givenname: R
  surname: Gopal
  fullname: Gopal, R
BookMark eNptkE9LAzEUxINUsK0e_Aa5ePCwNtnsNt2j1H-FYpUqHpe3yVtM2SZLkqX47d1a8SA9zePxm4GZERlYZ5GQS85uOEv5ZNNyljMhdydkyAuRJjLL88HfnckzMgphw1guGBdD4lZtNAoa-uJdiz4aDNTVdI0NWtNt6WsHNvZ652LYM7pTqOnOxE-6hICeLrwHbSAaZ_fGD4j9c92FFq3uyTXSZ7CuhT5aNRjOyWkNTcCLXx2T94f7t_lTslw9Lua3ywS4zGLC6yrVKAqEqsaCTxlUSqs0rXiqpJZ5Pa1mGQpeCVlUXPSdizoVwBA1ypnmYkyuD7nKuxA81mXrzRb8V8lZuV-q_FuqZyf_WGXiT6PowTRHHVcHB6hQblznbd_lCPcNNM174g
CitedBy_id crossref_primary_10_1134_S1070363220010193
crossref_primary_10_1007_s11051_011_0638_y
crossref_primary_10_1016_j_isci_2023_106797
crossref_primary_10_1002_inf2_12218
crossref_primary_10_1016_j_jtemb_2021_126904
crossref_primary_10_1063_1_4824148
crossref_primary_10_1007_s13197_018_3167_1
crossref_primary_10_1016_j_optmat_2019_109380
crossref_primary_10_1039_c2ce25145k
crossref_primary_10_1039_D1CC01830B
crossref_primary_10_1134_S1070363215020218
crossref_primary_10_3390_met13040735
crossref_primary_10_1088_1612_202X_ab17d0
crossref_primary_10_1039_C4CP04051A
crossref_primary_10_1007_s13205_021_02992_5
crossref_primary_10_1007_s12034_021_02431_4
crossref_primary_10_1039_D0TC01283A
crossref_primary_10_1021_acsanm_3c00050
crossref_primary_10_1016_j_watres_2023_120297
crossref_primary_10_1021_acs_jpcc_1c02950
crossref_primary_10_1021_acsami_9b15774
crossref_primary_10_1039_C9NA00804G
crossref_primary_10_1021_la5044415
crossref_primary_10_1039_c3dt51540k
crossref_primary_10_1103_PhysRevB_103_094111
crossref_primary_10_1007_s12633_020_00533_y
crossref_primary_10_1039_c3cp50248a
crossref_primary_10_1088_1361_6528_aaf17e
crossref_primary_10_3390_ijms22094576
crossref_primary_10_1016_j_physb_2024_416237
crossref_primary_10_1021_acsomega_9b03172
crossref_primary_10_1134_S2635167623700271
crossref_primary_10_1016_j_physb_2018_09_024
crossref_primary_10_1142_S2251237324400021
crossref_primary_10_1021_acs_chemrev_5b00049
crossref_primary_10_1016_j_bone_2021_115974
crossref_primary_10_3390_nano10091648
crossref_primary_10_1063_1_4975358
crossref_primary_10_1088_1757_899X_322_2_022049
crossref_primary_10_1016_j_surfin_2023_103388
crossref_primary_10_1016_j_optlastec_2018_07_058
crossref_primary_10_1038_s41598_019_38929_5
crossref_primary_10_1016_j_apsusc_2011_05_018
crossref_primary_10_1021_acsami_1c15772
crossref_primary_10_1007_s00203_020_02042_3
crossref_primary_10_1016_j_apsusc_2017_12_057
crossref_primary_10_1039_D4CP01623H
crossref_primary_10_1007_s10853_013_7446_y
crossref_primary_10_1007_s10876_023_02525_5
crossref_primary_10_1016_j_optmat_2017_05_050
crossref_primary_10_1016_j_pmatsci_2022_101004
crossref_primary_10_1016_j_nano_2015_04_011
crossref_primary_10_1016_j_optmat_2020_110132
crossref_primary_10_1002_ppsc_202300098
crossref_primary_10_1021_acs_jpcc_1c02894
crossref_primary_10_3390_molecules27010146
crossref_primary_10_1007_s12649_023_02269_3
crossref_primary_10_1088_1361_6528_aacd75
crossref_primary_10_1007_s10854_014_2052_6
crossref_primary_10_1002_adom_202402434
crossref_primary_10_1007_s11051_011_0359_2
crossref_primary_10_1088_0957_4484_22_10_105301
crossref_primary_10_1186_s12903_024_04965_5
crossref_primary_10_1007_s13205_023_03476_4
crossref_primary_10_1016_j_optlastec_2015_04_020
crossref_primary_10_1088_0957_4484_23_6_065302
crossref_primary_10_1016_j_jpowsour_2025_236762
crossref_primary_10_1080_1061186X_2024_2412142
crossref_primary_10_1016_j_apsusc_2019_145169
crossref_primary_10_3390_ma16134676
crossref_primary_10_1063_1_4796106
crossref_primary_10_1039_D2MA00756H
crossref_primary_10_1063_1_4909506
crossref_primary_10_1007_s10854_016_5794_5
crossref_primary_10_1039_C6CC01789D
crossref_primary_10_1021_cm504522y
crossref_primary_10_3724_SP_J_1095_2014_30457
crossref_primary_10_1039_c1jm12320c
crossref_primary_10_3103_S1062873815020276
crossref_primary_10_1007_s11051_015_3303_z
crossref_primary_10_3389_fbioe_2023_1332993
crossref_primary_10_1364_OE_381898
crossref_primary_10_1007_s11837_020_04407_x
crossref_primary_10_1038_ncomms2637
crossref_primary_10_1021_acs_chemrev_6b00468
crossref_primary_10_1039_C1JM14510J
crossref_primary_10_1016_j_nut_2016_05_001
crossref_primary_10_1021_acs_jpcc_4c08334
crossref_primary_10_1088_2053_1591_aae615
crossref_primary_10_2147_IJN_S410668
crossref_primary_10_1007_s00339_019_3223_3
crossref_primary_10_3390_nano13030424
crossref_primary_10_1021_acsanm_4c01446
crossref_primary_10_1002_adfm_201102295
crossref_primary_10_1016_j_mtchem_2019_100207
crossref_primary_10_1016_j_jddst_2018_12_010
crossref_primary_10_1016_j_pmatsci_2016_07_001
crossref_primary_10_3390_nano11092274
crossref_primary_10_1016_j_matchemphys_2018_06_069
crossref_primary_10_1051_e3sconf_202345301018
crossref_primary_10_3389_fchem_2024_1463612
crossref_primary_10_3390_molecules29040801
crossref_primary_10_1080_23746149_2024_2357809
crossref_primary_10_1016_j_nano_2016_10_011
crossref_primary_10_1049_iet_nbt_2020_0023
crossref_primary_10_1016_j_optlastec_2024_111772
crossref_primary_10_1088_2053_1591_ab0875
crossref_primary_10_1063_1_4895601
crossref_primary_10_1088_1612_2011_12_1_016003
crossref_primary_10_1002_slct_201901267
crossref_primary_10_1016_j_jlumin_2019_03_056
crossref_primary_10_2174_0122106812220085241024041311
crossref_primary_10_3389_fmicb_2018_03178
crossref_primary_10_1007_s11274_020_02917_z
crossref_primary_10_1515_psr_2017_0100
crossref_primary_10_1002_eom2_12161
crossref_primary_10_1016_j_ccr_2025_216626
crossref_primary_10_1515_nanoph_2020_0239
crossref_primary_10_1021_acsaem_1c03896
crossref_primary_10_1021_jp109010c
crossref_primary_10_1039_D2DT02065C
crossref_primary_10_3390_antibiotics10121473
crossref_primary_10_1016_j_jfutfo_2024_01_001
crossref_primary_10_1016_j_apmt_2020_100657
Cites_doi 10.1016/S0022-3697(01)00098-1
10.1088/0957-4484/19/29/295601
10.1016/j.ssc.2007.11.003
10.1103/PhysRev.111.1067
10.1021/jp1018907
10.1016/j.matchemphys.2005.05.051
10.1021/bi061903t
10.1021/jp983503o
10.1088/0957-4484/18/38/385607
10.1063/1.447218
10.1039/a605665b
10.1016/j.materresbull.2006.02.030
10.1007/s11051-009-9696-9
10.1021/ja021250d
10.1126/science.1066541
10.1021/jp983229y
10.1021/jp0011701
10.1166/jnn.2009.1114
10.1021/jp962922n
10.1021/jp052258n
10.1016/j.physe.2007.08.155
10.1039/b100856k
10.1021/jp000679t
10.1021/jp061866f
10.1016/j.matchemphys.2008.09.013
10.1088/0034-4885/54/10/002
10.1016/0021-9797(85)90304-2
10.1021/jp0753676
10.1039/b200587e
10.1116/1.2748415
10.1126/science.281.5385.2016
10.1021/ac022124v
10.1021/jp021580k
10.1016/S0009-2614(02)01918-8
10.1021/jp980009b
10.1021/jp002438r
10.1021/ja0166895
10.1021/jp911566a
10.1126/science.281.5385.2013
10.1016/S0038-1098(99)00055-1
ContentType Journal Article
Copyright Copyright © 2010 American Chemical Society
Copyright_xml – notice: Copyright © 2010 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/jp105037w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Optical Properties of Selenium Quantum Dots
EISSN 1932-7455
EndPage 17384
ExternalDocumentID 10_1021_jp105037w
c700835710
GroupedDBID .K2
4.4
53G
55A
5GY
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPPZ
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
RNS
ROL
UI2
UKR
VF5
VG9
VQA
W1F
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
ID FETCH-LOGICAL-a174t-1fb2de39eabfe9160abcdc22b12c7d75f6b84e31b379b131059f23a0eede78d13
IEDL.DBID ACS
ISSN 1932-7447
IngestDate Tue Jul 01 03:35:45 EDT 2025
Thu Apr 24 23:02:30 EDT 2025
Thu Aug 27 13:41:55 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 41
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a174t-1fb2de39eabfe9160abcdc22b12c7d75f6b84e31b379b131059f23a0eede78d13
PageCount 11
ParticipantIDs crossref_primary_10_1021_jp105037w
crossref_citationtrail_10_1021_jp105037w
acs_journals_10_1021_jp105037w
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20101021
2010-10-21
PublicationDateYYYYMMDD 2010-10-21
PublicationDate_xml – month: 10
  year: 2010
  text: 20101021
  day: 21
PublicationDecade 2010
PublicationTitle Journal of physical chemistry. C
PublicationTitleAlternate J. Phys. Chem. C
PublicationYear 2010
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Jin R. (ref12/cit12) 2001; 294
Bruchez M. (ref1/cit1) 1998; 281
Chan W. C. W. (ref2/cit2) 1998; 281
ref29/cit29b
Hodak J. H. (ref11/cit11) 2000; 104
Mafuné F. (ref3/cit3) 2003; 107
Farrell H. H. (ref34/cit34) 2007; 254
Singh S. C. (ref8/cit8a) 2009; 11
Kim S. (ref33/cit33) 2008; 435
Murphy C. J. (ref31/cit31) 2002; 74
Singh S. C. (ref5/cit5) 2009; 9
Shah C. P. (ref23/cit23) 2007; 18
Jiang Z.-Y. (ref28/cit28) 2003; 368
Abid J.-P. (ref14/cit14) 2001; 9
Rajlaxmi M. (ref35/cit35) 1999; 110
Mainfray G. (ref39/cit39) 1991; 54
Chen Y. (ref27/cit27) 2006; 98
Mehta S. K. (ref24/cit24) 2008; 1
Brus L. E. (ref30/cit30) 1984; 80
Wyckoff R. W. G. (ref29/cit29a) 1964; 1
Link S. (ref9/cit9a) 2000; 104
Singh S. C. (ref8/cit8b) 2010; 114
Yan S. (ref26/cit26) 2009; 114
Singh S. C. (ref6/cit6) 2008; 40
Teh H. F. (ref32/cit32) 2007; 46
Kerker M. J. (ref37/cit37) 1985; 105
Kamat P. V. (ref40/cit40) 1998; 102
Zhang X. Y. (ref20/cit20) 2006; 41
Alvarez M. M. (ref38/cit38c) 1997; 101
Zeng H. (ref7/cit7b) 2005; 109
Usui H. (ref17/cit17) 2006; 110
Henshaw G. (ref18/cit18) 1997; 2
Born M. (ref36/cit36) 1975
Link S. (ref9/cit9b) 2000; 104
Mafune F. (ref16/cit16) 2003; 125
Singh S. C. (ref7/cit7a) 2008; 112
Fragstein C. V. (ref38/cit38b) 1969; 224
Raevskaya A. E. (ref25/cit25) 2008; 145
Johnson J. A. (ref21/cit21) 1999; 103
Yan Z. (ref4/cit4) 2010; 114
Gates B. (ref19/cit19) 2001; 123
Zhang J. (ref22/cit22) 2004; 15
Takami A. (ref10/cit10) 1999; 103
Doyle W. T. (ref38/cit38a) 1958; 111
Chen Y.-H. (ref15/cit15) 2002; 12
Chen C.-D. (ref13/cit13) 2001; 62
References_xml – volume: 62
  start-page: 1587
  year: 2001
  ident: ref13/cit13
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/S0022-3697(01)00098-1
– volume: 1
  start-page: 295601
  year: 2008
  ident: ref24/cit24
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/29/295601
– volume: 145
  start-page: 288
  year: 2008
  ident: ref25/cit25
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.11.003
– volume: 111
  start-page: 1067
  year: 1958
  ident: ref38/cit38a
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRev.111.1067
– volume: 114
  start-page: 9277
  year: 2010
  ident: ref8/cit8b
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1018907
– volume: 98
  start-page: 191
  year: 2006
  ident: ref27/cit27
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.05.051
– volume: 46
  start-page: 2127
  year: 2007
  ident: ref32/cit32
  publication-title: Biochemistry
  doi: 10.1021/bi061903t
– volume: 103
  start-page: 1226
  year: 1999
  ident: ref10/cit10
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp983503o
– volume: 18
  start-page: 385607
  year: 2007
  ident: ref23/cit23
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/38/385607
– volume: 80
  start-page: 4403
  year: 1984
  ident: ref30/cit30
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447218
– volume: 2
  start-page: 231
  year: 1997
  ident: ref18/cit18
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/a605665b
– volume: 41
  start-page: 1729
  year: 2006
  ident: ref20/cit20
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2006.02.030
– volume: 1
  start-page: 39
  year: 1964
  ident: ref29/cit29a
  publication-title: Cryst. Struct.
– volume: 11
  start-page: 1831
  year: 2009
  ident: ref8/cit8a
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-009-9696-9
– volume: 125
  start-page: 1686
  year: 2003
  ident: ref16/cit16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja021250d
– volume: 294
  start-page: 1901
  year: 2001
  ident: ref12/cit12
  publication-title: Science
  doi: 10.1126/science.1066541
– volume: 103
  start-page: 59
  year: 1999
  ident: ref21/cit21
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp983229y
– volume: 435
  start-page: 758
  year: 2008
  ident: ref33/cit33
  publication-title: Nature
– volume: 104
  start-page: 7867
  year: 2000
  ident: ref9/cit9b
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0011701
– volume: 224
  start-page: 306
  year: 1969
  ident: ref38/cit38b
  publication-title: Physica
– volume: 9
  start-page: 5367
  year: 2009
  ident: ref5/cit5
  publication-title: J. Nanosci. Nanotech.
  doi: 10.1166/jnn.2009.1114
– volume: 101
  start-page: 3706
  year: 1997
  ident: ref38/cit38c
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp962922n
– volume: 109
  start-page: 18260
  year: 2005
  ident: ref7/cit7b
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp052258n
– ident: ref29/cit29b
– volume: 40
  start-page: 724
  year: 2008
  ident: ref6/cit6
  publication-title: Physica E
  doi: 10.1016/j.physe.2007.08.155
– volume: 9
  start-page: 829
  year: 2001
  ident: ref14/cit14
  publication-title: Chem. Commun.
  doi: 10.1039/b100856k
– volume: 104
  start-page: 6152
  year: 2000
  ident: ref9/cit9a
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp000679t
– volume: 110
  start-page: 12890
  year: 2006
  ident: ref17/cit17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp061866f
– volume: 114
  start-page: 300
  year: 2009
  ident: ref26/cit26
  publication-title: Matter. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.09.013
– volume: 54
  start-page: 1333
  year: 1991
  ident: ref39/cit39
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/54/10/002
– volume: 15
  start-page: 1345
  year: 2004
  ident: ref22/cit22
  publication-title: Chin. Chem. Lett.
– volume: 105
  start-page: 297
  year: 1985
  ident: ref37/cit37
  publication-title: Colloid Interface Sci.
  doi: 10.1016/0021-9797(85)90304-2
– volume: 112
  start-page: 2812
  year: 2008
  ident: ref7/cit7a
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0753676
– volume: 12
  start-page: 1419
  year: 2002
  ident: ref15/cit15
  publication-title: J. Mater. Chem.
  doi: 10.1039/b200587e
– volume: 254
  start-page: 1441
  year: 2007
  ident: ref34/cit34
  publication-title: J. Vac. Sci. Technol., B
  doi: 10.1116/1.2748415
– volume: 281
  start-page: 2016
  year: 1998
  ident: ref2/cit2
  publication-title: Science
  doi: 10.1126/science.281.5385.2016
– volume: 74
  start-page: 520
  year: 2002
  ident: ref31/cit31
  publication-title: Anal. Chem.
  doi: 10.1021/ac022124v
– volume-title: Principles of Optics
  year: 1975
  ident: ref36/cit36
– volume: 107
  start-page: 4218
  year: 2003
  ident: ref3/cit3
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp021580k
– volume: 368
  start-page: 425
  year: 2003
  ident: ref28/cit28
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)01918-8
– volume: 102
  start-page: 3123
  year: 1998
  ident: ref40/cit40
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp980009b
– volume: 104
  start-page: 11708
  year: 2000
  ident: ref11/cit11
  publication-title: J Phys. Chem. B
  doi: 10.1021/jp002438r
– volume: 123
  start-page: 11500
  year: 2001
  ident: ref19/cit19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0166895
– volume: 114
  start-page: 3869
  year: 2010
  ident: ref4/cit4
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp911566a
– volume: 281
  start-page: 2013
  year: 1998
  ident: ref1/cit1
  publication-title: Science
  doi: 10.1126/science.281.5385.2013
– volume: 110
  start-page: 75
  year: 1999
  ident: ref35/cit35
  publication-title: Solid State Commun.
  doi: 10.1016/S0038-1098(99)00055-1
SSID ssj0053013
Score 2.3690648
Snippet Semiconductor quantum dots (QDs) and their assemblies have shown potential research interest due to their size dependent optical and electronic properties....
SourceID crossref
acs
SourceType Enrichment Source
Index Database
Publisher
StartPage 17374
SubjectTerms C: Nanops and Nanostructures
Title Optical Properties of Selenium Quantum Dots Produced with Laser Irradiation of Water Suspended Se Nanoparticles
URI http://dx.doi.org/10.1021/jp105037w
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JSwMxFA61HvTiLtalBPXgZWqTzEw6R2ktVVypRW8lmSTg1imzIPjrfZlFCnWBgbm8ZIZ8Sd73snwPoWMpqRI8JI7RfsdxmZKO8NrG8Y0fEAOA0xzp6xt_MHIvn7ynGjr6ZQefktOXKbGaJfxjAS1SHwav5T_dYTXdetBDWbF1DFTRdXklHzRb1LqeMJlxPTM-pL-KetVNnOLoyGsrS2Ur_JwXZvzr99bQSskh8VkB-jqq6ckGWupWqds2UXQ7zZeo8Z1dao-tZiqODB5aF_OcveP7DNoT3r0oTayNAnwVtkuy-Aq8Wowv4thqFljQbMFHIKQxHmZJnjBXQUUYZmUIt8tTdVto1D9_6A6cMrOCIyACSR1iACLNAi2k0UAQ20KGKqRUEhpyxT3jy46rGZGMB5Iwy8EMZaINDlXzjiJsG9Un0UTvIAzxVUC59iQTMOkaIbkOqau5tpe5gFs0UBOaflyOjGScb3pTCDqqdmugkwqVcVjqktv0GG8_mR5-m04LMY55o93_PriHlvMjAPBQso_qaZzpA2AWqWzmPesLS-bJlw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86H-aL3-L8mEF88KVzSdpmexzTsek2lW3oW2naBPxaRz8Q_Ou9ZK0OFRQKfbmkIXfN_S6X_A6hUyFo6POAWEq6DctmobB8p64sV7lNokDh1Gh6MHS7E_vqwXnIaXL0XRgYRAI9JSaJ_8UuQM6fZkRTl_C3ZbQCIIRqa261R8Wq64ChsnkGGRCjbfOCRWixqfZAQbLggRZcSWd9XpPIDMKcIHmuZamoBe_f-Bn_N8oNtJYjStyam8AmWpLTLVRuF4XctlF0MzMb1vhWb7zHmkEVRwqPtMN5zF7xXQazC--LKE20TAjaDrHeoMV98HEx7sWxZjDQKtQN7wGexniUJaZ8bggdYVijIfjOz9jtoEnnctzuWnmdBcuHeCS1iAKFSdaUvlAS4GLdF0EYUCoIDXjIHeWKhi0ZEYw3BWEakSnK_Dq4V8kbIWG7qDSNpnIPYYi2mpRLRzAflmDlCy4Daksu9dUuQBoVVIVp8_L_JPFMCpxCCFLMWwWdFcrxgpylXBfLePlN9ORTdDan5vgptP_XB49RuTse9L1-b3h9gFbN4QB4KDlEpTTO5BFgjlRUjbF9AEMo0fg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86QX3xW5yfQXzwpXNJ2mZ7HNMxPzeZom-jaRLwayv9QPCv965rZaigUOjLpQ25S-53ueR3hBwpxXUgQ-ZY4zccV2jlBF7dOr71m8yCwnmu6esbv3vvXjx6j0WgiHdhoBMJfCnJk_g4qyNtC4YBdvIcMaQvke-zZA7TdWjRrfagXHk9MFYxySIDanRdWTIJTTdFLxQmU15oyp10lknvqyP5KZKXWpaqWvjxjaPx_z1dIUsFsqStiSmskhkzWiML7bKg2zoZ96J845r2cQM-RiZVOrZ0gI7nKXujtxmMMrxPx2mCMhq0rilu1NIr8HUxPY9jZDJAVWLDB4CpMR1kSV5GV8OHKKzVEIQXZ-02yH3n7K7ddYp6C04AcUnqMAuKM6JpAmUNwMZ6oEIdcq4YD6WWnvVVwzWCKSGbiglEZpaLoA5u1siGZmKTVEbjkdkiFKKuJpfGUyKApdgGSpqQu0YavOIFiKNK9mHohsV8SYZ5KpxDKFKOW5UclwoahgVbORbNeP1N9PBLNJpQdPwU2v7rhwdkvn_aGV6d31zukMX8jAA8nO2SShpnZg-gR6r2c3v7BDDC1Hs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Properties+of+Selenium+Quantum+Dots+Produced+with+Laser+Irradiation+of+Water+Suspended+Se+Nanoparticles&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Singh%2C+S.+C&rft.au=Mishra%2C+S.+K&rft.au=Srivastava%2C+R.+K&rft.au=Gopal%2C+R&rft.date=2010-10-21&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=114&rft.issue=41&rft.spage=17374&rft.epage=17384&rft_id=info:doi/10.1021%2Fjp105037w&rft.externalDocID=c700835710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon