Optical Properties of Selenium Quantum Dots Produced with Laser Irradiation of Water Suspended Se Nanoparticles
Semiconductor quantum dots (QDs) and their assemblies have shown potential research interest due to their size dependent optical and electronic properties. Laser irradiation of larger sized semiconductor nanoparticles (NPs) suspended into liquid media is an easy, quick, versatile, environmental frie...
Saved in:
Published in | Journal of physical chemistry. C Vol. 114; no. 41; pp. 17374 - 17384 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
21.10.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Semiconductor quantum dots (QDs) and their assemblies have shown potential research interest due to their size dependent optical and electronic properties. Laser irradiation of larger sized semiconductor nanoparticles (NPs) suspended into liquid media is an easy, quick, versatile, environmental friendly, and rapidly growing method for the synthesis of QDs through melting/vaporization and fragmentation mechanisms. Most of the available reports in this field are related to the laser induced modification of shape, size, and morphology of noble metal nanoparticles, while only few exist for semiconductors. Synthesis of selenium QDs using laser induced melting/vaporization of water suspended selenium NPs of larger size and studies of their irradiation time or size dependent optical properties are subjects of current investigation. The fundamental wavelength of a pulsed nanosecond Nd:YAG laser is used for the irradiation of water suspended 69 nm average sized NPs for different times of irradiation. UV−visible absorption, XRD, TEM, and PL spectroscopic methods are utilized for the characterization of as synthesized QDs and raw NPs. Size and hence optical properties of produced selenium QDs are found to be highly dependent on the time of irradiation. The size of the produced selenium QDs follows a second order exponential decay function of irradiation time, while the rate of size reduction, da/dt, is directly dependent on the diameter, a, of the instantaneous QDs, very similar to the radioactive decay model. Laser irradiation causes transformation of β-Se NPs of 69 nm diameter to α-Se QDs of different sizes depending on the time of irradiation. We have achieved a minimum 2.74 ± 2.32 nm diameter of selenium QDs for 15 min laser irradiation and reported that almost 3.75 ± 0.15 nm size may be the quantum confinement limit for Se QDs. Surface defect density of the selenium QDs increases, while defect/electron trap level energy decreases, with the time of laser irradiation. |
---|---|
AbstractList | Semiconductor quantum dots (QDs) and their assemblies have shown potential research interest due to their size dependent optical and electronic properties. Laser irradiation of larger sized semiconductor nanoparticles (NPs) suspended into liquid media is an easy, quick, versatile, environmental friendly, and rapidly growing method for the synthesis of QDs through melting/vaporization and fragmentation mechanisms. Most of the available reports in this field are related to the laser induced modification of shape, size, and morphology of noble metal nanoparticles, while only few exist for semiconductors. Synthesis of selenium QDs using laser induced melting/vaporization of water suspended selenium NPs of larger size and studies of their irradiation time or size dependent optical properties are subjects of current investigation. The fundamental wavelength of a pulsed nanosecond Nd:YAG laser is used for the irradiation of water suspended 69 nm average sized NPs for different times of irradiation. UV−visible absorption, XRD, TEM, and PL spectroscopic methods are utilized for the characterization of as synthesized QDs and raw NPs. Size and hence optical properties of produced selenium QDs are found to be highly dependent on the time of irradiation. The size of the produced selenium QDs follows a second order exponential decay function of irradiation time, while the rate of size reduction, da/dt, is directly dependent on the diameter, a, of the instantaneous QDs, very similar to the radioactive decay model. Laser irradiation causes transformation of β-Se NPs of 69 nm diameter to α-Se QDs of different sizes depending on the time of irradiation. We have achieved a minimum 2.74 ± 2.32 nm diameter of selenium QDs for 15 min laser irradiation and reported that almost 3.75 ± 0.15 nm size may be the quantum confinement limit for Se QDs. Surface defect density of the selenium QDs increases, while defect/electron trap level energy decreases, with the time of laser irradiation. |
Author | Srivastava, R. K Gopal, R Mishra, S. K Singh, S. C |
Author_xml | – sequence: 1 givenname: S. C surname: Singh fullname: Singh, S. C email: subhash.singh@dcu.ie – sequence: 2 givenname: S. K surname: Mishra fullname: Mishra, S. K – sequence: 3 givenname: R. K surname: Srivastava fullname: Srivastava, R. K – sequence: 4 givenname: R surname: Gopal fullname: Gopal, R |
BookMark | eNptkE9LAzEUxINUsK0e_Aa5ePCwNtnsNt2j1H-FYpUqHpe3yVtM2SZLkqX47d1a8SA9zePxm4GZERlYZ5GQS85uOEv5ZNNyljMhdydkyAuRJjLL88HfnckzMgphw1guGBdD4lZtNAoa-uJdiz4aDNTVdI0NWtNt6WsHNvZ652LYM7pTqOnOxE-6hICeLrwHbSAaZ_fGD4j9c92FFq3uyTXSZ7CuhT5aNRjOyWkNTcCLXx2T94f7t_lTslw9Lua3ywS4zGLC6yrVKAqEqsaCTxlUSqs0rXiqpJZ5Pa1mGQpeCVlUXPSdizoVwBA1ypnmYkyuD7nKuxA81mXrzRb8V8lZuV-q_FuqZyf_WGXiT6PowTRHHVcHB6hQblznbd_lCPcNNM174g |
CitedBy_id | crossref_primary_10_1134_S1070363220010193 crossref_primary_10_1007_s11051_011_0638_y crossref_primary_10_1016_j_isci_2023_106797 crossref_primary_10_1002_inf2_12218 crossref_primary_10_1016_j_jtemb_2021_126904 crossref_primary_10_1063_1_4824148 crossref_primary_10_1007_s13197_018_3167_1 crossref_primary_10_1016_j_optmat_2019_109380 crossref_primary_10_1039_c2ce25145k crossref_primary_10_1039_D1CC01830B crossref_primary_10_1134_S1070363215020218 crossref_primary_10_3390_met13040735 crossref_primary_10_1088_1612_202X_ab17d0 crossref_primary_10_1039_C4CP04051A crossref_primary_10_1007_s13205_021_02992_5 crossref_primary_10_1007_s12034_021_02431_4 crossref_primary_10_1039_D0TC01283A crossref_primary_10_1021_acsanm_3c00050 crossref_primary_10_1016_j_watres_2023_120297 crossref_primary_10_1021_acs_jpcc_1c02950 crossref_primary_10_1021_acsami_9b15774 crossref_primary_10_1039_C9NA00804G crossref_primary_10_1021_la5044415 crossref_primary_10_1039_c3dt51540k crossref_primary_10_1103_PhysRevB_103_094111 crossref_primary_10_1007_s12633_020_00533_y crossref_primary_10_1039_c3cp50248a crossref_primary_10_1088_1361_6528_aaf17e crossref_primary_10_3390_ijms22094576 crossref_primary_10_1016_j_physb_2024_416237 crossref_primary_10_1021_acsomega_9b03172 crossref_primary_10_1134_S2635167623700271 crossref_primary_10_1016_j_physb_2018_09_024 crossref_primary_10_1142_S2251237324400021 crossref_primary_10_1021_acs_chemrev_5b00049 crossref_primary_10_1016_j_bone_2021_115974 crossref_primary_10_3390_nano10091648 crossref_primary_10_1063_1_4975358 crossref_primary_10_1088_1757_899X_322_2_022049 crossref_primary_10_1016_j_surfin_2023_103388 crossref_primary_10_1016_j_optlastec_2018_07_058 crossref_primary_10_1038_s41598_019_38929_5 crossref_primary_10_1016_j_apsusc_2011_05_018 crossref_primary_10_1021_acsami_1c15772 crossref_primary_10_1007_s00203_020_02042_3 crossref_primary_10_1016_j_apsusc_2017_12_057 crossref_primary_10_1039_D4CP01623H crossref_primary_10_1007_s10853_013_7446_y crossref_primary_10_1007_s10876_023_02525_5 crossref_primary_10_1016_j_optmat_2017_05_050 crossref_primary_10_1016_j_pmatsci_2022_101004 crossref_primary_10_1016_j_nano_2015_04_011 crossref_primary_10_1016_j_optmat_2020_110132 crossref_primary_10_1002_ppsc_202300098 crossref_primary_10_1021_acs_jpcc_1c02894 crossref_primary_10_3390_molecules27010146 crossref_primary_10_1007_s12649_023_02269_3 crossref_primary_10_1088_1361_6528_aacd75 crossref_primary_10_1007_s10854_014_2052_6 crossref_primary_10_1002_adom_202402434 crossref_primary_10_1007_s11051_011_0359_2 crossref_primary_10_1088_0957_4484_22_10_105301 crossref_primary_10_1186_s12903_024_04965_5 crossref_primary_10_1007_s13205_023_03476_4 crossref_primary_10_1016_j_optlastec_2015_04_020 crossref_primary_10_1088_0957_4484_23_6_065302 crossref_primary_10_1016_j_jpowsour_2025_236762 crossref_primary_10_1080_1061186X_2024_2412142 crossref_primary_10_1016_j_apsusc_2019_145169 crossref_primary_10_3390_ma16134676 crossref_primary_10_1063_1_4796106 crossref_primary_10_1039_D2MA00756H crossref_primary_10_1063_1_4909506 crossref_primary_10_1007_s10854_016_5794_5 crossref_primary_10_1039_C6CC01789D crossref_primary_10_1021_cm504522y crossref_primary_10_3724_SP_J_1095_2014_30457 crossref_primary_10_1039_c1jm12320c crossref_primary_10_3103_S1062873815020276 crossref_primary_10_1007_s11051_015_3303_z crossref_primary_10_3389_fbioe_2023_1332993 crossref_primary_10_1364_OE_381898 crossref_primary_10_1007_s11837_020_04407_x crossref_primary_10_1038_ncomms2637 crossref_primary_10_1021_acs_chemrev_6b00468 crossref_primary_10_1039_C1JM14510J crossref_primary_10_1016_j_nut_2016_05_001 crossref_primary_10_1021_acs_jpcc_4c08334 crossref_primary_10_1088_2053_1591_aae615 crossref_primary_10_2147_IJN_S410668 crossref_primary_10_1007_s00339_019_3223_3 crossref_primary_10_3390_nano13030424 crossref_primary_10_1021_acsanm_4c01446 crossref_primary_10_1002_adfm_201102295 crossref_primary_10_1016_j_mtchem_2019_100207 crossref_primary_10_1016_j_jddst_2018_12_010 crossref_primary_10_1016_j_pmatsci_2016_07_001 crossref_primary_10_3390_nano11092274 crossref_primary_10_1016_j_matchemphys_2018_06_069 crossref_primary_10_1051_e3sconf_202345301018 crossref_primary_10_3389_fchem_2024_1463612 crossref_primary_10_3390_molecules29040801 crossref_primary_10_1080_23746149_2024_2357809 crossref_primary_10_1016_j_nano_2016_10_011 crossref_primary_10_1049_iet_nbt_2020_0023 crossref_primary_10_1016_j_optlastec_2024_111772 crossref_primary_10_1088_2053_1591_ab0875 crossref_primary_10_1063_1_4895601 crossref_primary_10_1088_1612_2011_12_1_016003 crossref_primary_10_1002_slct_201901267 crossref_primary_10_1016_j_jlumin_2019_03_056 crossref_primary_10_2174_0122106812220085241024041311 crossref_primary_10_3389_fmicb_2018_03178 crossref_primary_10_1007_s11274_020_02917_z crossref_primary_10_1515_psr_2017_0100 crossref_primary_10_1002_eom2_12161 crossref_primary_10_1016_j_ccr_2025_216626 crossref_primary_10_1515_nanoph_2020_0239 crossref_primary_10_1021_acsaem_1c03896 crossref_primary_10_1021_jp109010c crossref_primary_10_1039_D2DT02065C crossref_primary_10_3390_antibiotics10121473 crossref_primary_10_1016_j_jfutfo_2024_01_001 crossref_primary_10_1016_j_apmt_2020_100657 |
Cites_doi | 10.1016/S0022-3697(01)00098-1 10.1088/0957-4484/19/29/295601 10.1016/j.ssc.2007.11.003 10.1103/PhysRev.111.1067 10.1021/jp1018907 10.1016/j.matchemphys.2005.05.051 10.1021/bi061903t 10.1021/jp983503o 10.1088/0957-4484/18/38/385607 10.1063/1.447218 10.1039/a605665b 10.1016/j.materresbull.2006.02.030 10.1007/s11051-009-9696-9 10.1021/ja021250d 10.1126/science.1066541 10.1021/jp983229y 10.1021/jp0011701 10.1166/jnn.2009.1114 10.1021/jp962922n 10.1021/jp052258n 10.1016/j.physe.2007.08.155 10.1039/b100856k 10.1021/jp000679t 10.1021/jp061866f 10.1016/j.matchemphys.2008.09.013 10.1088/0034-4885/54/10/002 10.1016/0021-9797(85)90304-2 10.1021/jp0753676 10.1039/b200587e 10.1116/1.2748415 10.1126/science.281.5385.2016 10.1021/ac022124v 10.1021/jp021580k 10.1016/S0009-2614(02)01918-8 10.1021/jp980009b 10.1021/jp002438r 10.1021/ja0166895 10.1021/jp911566a 10.1126/science.281.5385.2013 10.1016/S0038-1098(99)00055-1 |
ContentType | Journal Article |
Copyright | Copyright © 2010 American Chemical Society |
Copyright_xml | – notice: Copyright © 2010 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/jp105037w |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Optical Properties of Selenium Quantum Dots |
EISSN | 1932-7455 |
EndPage | 17384 |
ExternalDocumentID | 10_1021_jp105037w c700835710 |
GroupedDBID | .K2 4.4 53G 55A 5GY 5VS 7~N 85S 8RP AABXI ABFLS ABMVS ABPPZ ABUCX ACGFS ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 D0L DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 LG6 RNS ROL UI2 UKR VF5 VG9 VQA W1F AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AHGAQ CITATION CUPRZ GGK |
ID | FETCH-LOGICAL-a174t-1fb2de39eabfe9160abcdc22b12c7d75f6b84e31b379b131059f23a0eede78d13 |
IEDL.DBID | ACS |
ISSN | 1932-7447 |
IngestDate | Tue Jul 01 03:35:45 EDT 2025 Thu Apr 24 23:02:30 EDT 2025 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a174t-1fb2de39eabfe9160abcdc22b12c7d75f6b84e31b379b131059f23a0eede78d13 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1021_jp105037w crossref_citationtrail_10_1021_jp105037w acs_journals_10_1021_jp105037w |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20101021 2010-10-21 |
PublicationDateYYYYMMDD | 2010-10-21 |
PublicationDate_xml | – month: 10 year: 2010 text: 20101021 day: 21 |
PublicationDecade | 2010 |
PublicationTitle | Journal of physical chemistry. C |
PublicationTitleAlternate | J. Phys. Chem. C |
PublicationYear | 2010 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Jin R. (ref12/cit12) 2001; 294 Bruchez M. (ref1/cit1) 1998; 281 Chan W. C. W. (ref2/cit2) 1998; 281 ref29/cit29b Hodak J. H. (ref11/cit11) 2000; 104 Mafuné F. (ref3/cit3) 2003; 107 Farrell H. H. (ref34/cit34) 2007; 254 Singh S. C. (ref8/cit8a) 2009; 11 Kim S. (ref33/cit33) 2008; 435 Murphy C. J. (ref31/cit31) 2002; 74 Singh S. C. (ref5/cit5) 2009; 9 Shah C. P. (ref23/cit23) 2007; 18 Jiang Z.-Y. (ref28/cit28) 2003; 368 Abid J.-P. (ref14/cit14) 2001; 9 Rajlaxmi M. (ref35/cit35) 1999; 110 Mainfray G. (ref39/cit39) 1991; 54 Chen Y. (ref27/cit27) 2006; 98 Mehta S. K. (ref24/cit24) 2008; 1 Brus L. E. (ref30/cit30) 1984; 80 Wyckoff R. W. G. (ref29/cit29a) 1964; 1 Link S. (ref9/cit9a) 2000; 104 Singh S. C. (ref8/cit8b) 2010; 114 Yan S. (ref26/cit26) 2009; 114 Singh S. C. (ref6/cit6) 2008; 40 Teh H. F. (ref32/cit32) 2007; 46 Kerker M. J. (ref37/cit37) 1985; 105 Kamat P. V. (ref40/cit40) 1998; 102 Zhang X. Y. (ref20/cit20) 2006; 41 Alvarez M. M. (ref38/cit38c) 1997; 101 Zeng H. (ref7/cit7b) 2005; 109 Usui H. (ref17/cit17) 2006; 110 Henshaw G. (ref18/cit18) 1997; 2 Born M. (ref36/cit36) 1975 Link S. (ref9/cit9b) 2000; 104 Mafune F. (ref16/cit16) 2003; 125 Singh S. C. (ref7/cit7a) 2008; 112 Fragstein C. V. (ref38/cit38b) 1969; 224 Raevskaya A. E. (ref25/cit25) 2008; 145 Johnson J. A. (ref21/cit21) 1999; 103 Yan Z. (ref4/cit4) 2010; 114 Gates B. (ref19/cit19) 2001; 123 Zhang J. (ref22/cit22) 2004; 15 Takami A. (ref10/cit10) 1999; 103 Doyle W. T. (ref38/cit38a) 1958; 111 Chen Y.-H. (ref15/cit15) 2002; 12 Chen C.-D. (ref13/cit13) 2001; 62 |
References_xml | – volume: 62 start-page: 1587 year: 2001 ident: ref13/cit13 publication-title: J. Phys. Chem. Solids doi: 10.1016/S0022-3697(01)00098-1 – volume: 1 start-page: 295601 year: 2008 ident: ref24/cit24 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/29/295601 – volume: 145 start-page: 288 year: 2008 ident: ref25/cit25 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.11.003 – volume: 111 start-page: 1067 year: 1958 ident: ref38/cit38a publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRev.111.1067 – volume: 114 start-page: 9277 year: 2010 ident: ref8/cit8b publication-title: J. Phys. Chem. C doi: 10.1021/jp1018907 – volume: 98 start-page: 191 year: 2006 ident: ref27/cit27 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.05.051 – volume: 46 start-page: 2127 year: 2007 ident: ref32/cit32 publication-title: Biochemistry doi: 10.1021/bi061903t – volume: 103 start-page: 1226 year: 1999 ident: ref10/cit10 publication-title: J. Phys. Chem. B doi: 10.1021/jp983503o – volume: 18 start-page: 385607 year: 2007 ident: ref23/cit23 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/38/385607 – volume: 80 start-page: 4403 year: 1984 ident: ref30/cit30 publication-title: J. Chem. Phys. doi: 10.1063/1.447218 – volume: 2 start-page: 231 year: 1997 ident: ref18/cit18 publication-title: J. Chem. Soc., Dalton Trans. doi: 10.1039/a605665b – volume: 41 start-page: 1729 year: 2006 ident: ref20/cit20 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2006.02.030 – volume: 1 start-page: 39 year: 1964 ident: ref29/cit29a publication-title: Cryst. Struct. – volume: 11 start-page: 1831 year: 2009 ident: ref8/cit8a publication-title: J. Nanopart. Res. doi: 10.1007/s11051-009-9696-9 – volume: 125 start-page: 1686 year: 2003 ident: ref16/cit16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja021250d – volume: 294 start-page: 1901 year: 2001 ident: ref12/cit12 publication-title: Science doi: 10.1126/science.1066541 – volume: 103 start-page: 59 year: 1999 ident: ref21/cit21 publication-title: J. Phys. Chem. B doi: 10.1021/jp983229y – volume: 435 start-page: 758 year: 2008 ident: ref33/cit33 publication-title: Nature – volume: 104 start-page: 7867 year: 2000 ident: ref9/cit9b publication-title: J. Phys. Chem. B doi: 10.1021/jp0011701 – volume: 224 start-page: 306 year: 1969 ident: ref38/cit38b publication-title: Physica – volume: 9 start-page: 5367 year: 2009 ident: ref5/cit5 publication-title: J. Nanosci. Nanotech. doi: 10.1166/jnn.2009.1114 – volume: 101 start-page: 3706 year: 1997 ident: ref38/cit38c publication-title: J. Phys. Chem. B doi: 10.1021/jp962922n – volume: 109 start-page: 18260 year: 2005 ident: ref7/cit7b publication-title: J. Phys. Chem. B doi: 10.1021/jp052258n – ident: ref29/cit29b – volume: 40 start-page: 724 year: 2008 ident: ref6/cit6 publication-title: Physica E doi: 10.1016/j.physe.2007.08.155 – volume: 9 start-page: 829 year: 2001 ident: ref14/cit14 publication-title: Chem. Commun. doi: 10.1039/b100856k – volume: 104 start-page: 6152 year: 2000 ident: ref9/cit9a publication-title: J. Phys. Chem. B doi: 10.1021/jp000679t – volume: 110 start-page: 12890 year: 2006 ident: ref17/cit17 publication-title: J. Phys. Chem. B doi: 10.1021/jp061866f – volume: 114 start-page: 300 year: 2009 ident: ref26/cit26 publication-title: Matter. Chem. Phys. doi: 10.1016/j.matchemphys.2008.09.013 – volume: 54 start-page: 1333 year: 1991 ident: ref39/cit39 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/54/10/002 – volume: 15 start-page: 1345 year: 2004 ident: ref22/cit22 publication-title: Chin. Chem. Lett. – volume: 105 start-page: 297 year: 1985 ident: ref37/cit37 publication-title: Colloid Interface Sci. doi: 10.1016/0021-9797(85)90304-2 – volume: 112 start-page: 2812 year: 2008 ident: ref7/cit7a publication-title: J. Phys. Chem. C doi: 10.1021/jp0753676 – volume: 12 start-page: 1419 year: 2002 ident: ref15/cit15 publication-title: J. Mater. Chem. doi: 10.1039/b200587e – volume: 254 start-page: 1441 year: 2007 ident: ref34/cit34 publication-title: J. Vac. Sci. Technol., B doi: 10.1116/1.2748415 – volume: 281 start-page: 2016 year: 1998 ident: ref2/cit2 publication-title: Science doi: 10.1126/science.281.5385.2016 – volume: 74 start-page: 520 year: 2002 ident: ref31/cit31 publication-title: Anal. Chem. doi: 10.1021/ac022124v – volume-title: Principles of Optics year: 1975 ident: ref36/cit36 – volume: 107 start-page: 4218 year: 2003 ident: ref3/cit3 publication-title: J. Phys. Chem. B doi: 10.1021/jp021580k – volume: 368 start-page: 425 year: 2003 ident: ref28/cit28 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)01918-8 – volume: 102 start-page: 3123 year: 1998 ident: ref40/cit40 publication-title: J. Phys. Chem. B doi: 10.1021/jp980009b – volume: 104 start-page: 11708 year: 2000 ident: ref11/cit11 publication-title: J Phys. Chem. B doi: 10.1021/jp002438r – volume: 123 start-page: 11500 year: 2001 ident: ref19/cit19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0166895 – volume: 114 start-page: 3869 year: 2010 ident: ref4/cit4 publication-title: J. Phys. Chem. C doi: 10.1021/jp911566a – volume: 281 start-page: 2013 year: 1998 ident: ref1/cit1 publication-title: Science doi: 10.1126/science.281.5385.2013 – volume: 110 start-page: 75 year: 1999 ident: ref35/cit35 publication-title: Solid State Commun. doi: 10.1016/S0038-1098(99)00055-1 |
SSID | ssj0053013 |
Score | 2.3690648 |
Snippet | Semiconductor quantum dots (QDs) and their assemblies have shown potential research interest due to their size dependent optical and electronic properties.... |
SourceID | crossref acs |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 17374 |
SubjectTerms | C: Nanops and Nanostructures |
Title | Optical Properties of Selenium Quantum Dots Produced with Laser Irradiation of Water Suspended Se Nanoparticles |
URI | http://dx.doi.org/10.1021/jp105037w |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1JSwMxFA61HvTiLtalBPXgZWqTzEw6R2ktVVypRW8lmSTg1imzIPjrfZlFCnWBgbm8ZIZ8Sd73snwPoWMpqRI8JI7RfsdxmZKO8NrG8Y0fEAOA0xzp6xt_MHIvn7ynGjr6ZQefktOXKbGaJfxjAS1SHwav5T_dYTXdetBDWbF1DFTRdXklHzRb1LqeMJlxPTM-pL-KetVNnOLoyGsrS2Ur_JwXZvzr99bQSskh8VkB-jqq6ckGWupWqds2UXQ7zZeo8Z1dao-tZiqODB5aF_OcveP7DNoT3r0oTayNAnwVtkuy-Aq8Wowv4thqFljQbMFHIKQxHmZJnjBXQUUYZmUIt8tTdVto1D9_6A6cMrOCIyACSR1iACLNAi2k0UAQ20KGKqRUEhpyxT3jy46rGZGMB5Iwy8EMZaINDlXzjiJsG9Un0UTvIAzxVUC59iQTMOkaIbkOqau5tpe5gFs0UBOaflyOjGScb3pTCDqqdmugkwqVcVjqktv0GG8_mR5-m04LMY55o93_PriHlvMjAPBQso_qaZzpA2AWqWzmPesLS-bJlw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86H-aL3-L8mEF88KVzSdpmexzTsek2lW3oW2naBPxaRz8Q_Ou9ZK0OFRQKfbmkIXfN_S6X_A6hUyFo6POAWEq6DctmobB8p64sV7lNokDh1Gh6MHS7E_vqwXnIaXL0XRgYRAI9JSaJ_8UuQM6fZkRTl_C3ZbQCIIRqa261R8Wq64ChsnkGGRCjbfOCRWixqfZAQbLggRZcSWd9XpPIDMKcIHmuZamoBe_f-Bn_N8oNtJYjStyam8AmWpLTLVRuF4XctlF0MzMb1vhWb7zHmkEVRwqPtMN5zF7xXQazC--LKE20TAjaDrHeoMV98HEx7sWxZjDQKtQN7wGexniUJaZ8bggdYVijIfjOz9jtoEnnctzuWnmdBcuHeCS1iAKFSdaUvlAS4GLdF0EYUCoIDXjIHeWKhi0ZEYw3BWEakSnK_Dq4V8kbIWG7qDSNpnIPYYi2mpRLRzAflmDlCy4Daksu9dUuQBoVVIVp8_L_JPFMCpxCCFLMWwWdFcrxgpylXBfLePlN9ORTdDan5vgptP_XB49RuTse9L1-b3h9gFbN4QB4KDlEpTTO5BFgjlRUjbF9AEMo0fg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA86QX3xW5yfQXzwpXNJ2mZ7HNMxPzeZom-jaRLwayv9QPCv965rZaigUOjLpQ25S-53ueR3hBwpxXUgQ-ZY4zccV2jlBF7dOr71m8yCwnmu6esbv3vvXjx6j0WgiHdhoBMJfCnJk_g4qyNtC4YBdvIcMaQvke-zZA7TdWjRrfagXHk9MFYxySIDanRdWTIJTTdFLxQmU15oyp10lknvqyP5KZKXWpaqWvjxjaPx_z1dIUsFsqStiSmskhkzWiML7bKg2zoZ96J845r2cQM-RiZVOrZ0gI7nKXujtxmMMrxPx2mCMhq0rilu1NIr8HUxPY9jZDJAVWLDB4CpMR1kSV5GV8OHKKzVEIQXZ-02yH3n7K7ddYp6C04AcUnqMAuKM6JpAmUNwMZ6oEIdcq4YD6WWnvVVwzWCKSGbiglEZpaLoA5u1siGZmKTVEbjkdkiFKKuJpfGUyKApdgGSpqQu0YavOIFiKNK9mHohsV8SYZ5KpxDKFKOW5UclwoahgVbORbNeP1N9PBLNJpQdPwU2v7rhwdkvn_aGV6d31zukMX8jAA8nO2SShpnZg-gR6r2c3v7BDDC1Hs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optical+Properties+of+Selenium+Quantum+Dots+Produced+with+Laser+Irradiation+of+Water+Suspended+Se+Nanoparticles&rft.jtitle=Journal+of+physical+chemistry.+C&rft.au=Singh%2C+S.+C&rft.au=Mishra%2C+S.+K&rft.au=Srivastava%2C+R.+K&rft.au=Gopal%2C+R&rft.date=2010-10-21&rft.pub=American+Chemical+Society&rft.issn=1932-7447&rft.eissn=1932-7455&rft.volume=114&rft.issue=41&rft.spage=17374&rft.epage=17384&rft_id=info:doi/10.1021%2Fjp105037w&rft.externalDocID=c700835710 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-7447&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-7447&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-7447&client=summon |