Mitigating Buried-Interface Energy Losses through Multifunctional Ligands in n–i–p Perovskite/Silicon Tandem Solar Cells
Fabricating efficient monolithic n–i–p perovskite/silicon tandem solar cells remains challenging, as evidenced by substantial recombination losses at the buried interface between the NbO x electron transport layer (ETL) and perovskite. Herein, we introduce a self-assembled fullerene (C60-SAM) interl...
Saved in:
Published in | ACS energy letters Vol. 9; no. 9; pp. 4633 - 4644 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
13.09.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Fabricating efficient monolithic n–i–p perovskite/silicon tandem solar cells remains challenging, as evidenced by substantial recombination losses at the buried interface between the NbO x electron transport layer (ETL) and perovskite. Herein, we introduce a self-assembled fullerene (C60-SAM) interlayer at this interface, with a large monovalent organic cation incorporated. We find this enhances the surface conductivity of the ETL, mitigates interface recombination, and reduces the energetic mismatch with the overlying perovskite. At the device level, this results in efficient electron extraction and suppressed device hysteresis, substantiated by drift-diffusion simulations. The combination of these improvements led to hysteresis-free n–i–p perovskite/silicon tandem solar cells on textured silicon with an efficiency of 27% (over 1 cm2) and an open-circuit voltage reaching 1.9 V. |
---|---|
AbstractList | Fabricating efficient monolithic n–i–p perovskite/silicon tandem solar cells remains challenging, as evidenced by substantial recombination losses at the buried interface between the NbO x electron transport layer (ETL) and perovskite. Herein, we introduce a self-assembled fullerene (C60-SAM) interlayer at this interface, with a large monovalent organic cation incorporated. We find this enhances the surface conductivity of the ETL, mitigates interface recombination, and reduces the energetic mismatch with the overlying perovskite. At the device level, this results in efficient electron extraction and suppressed device hysteresis, substantiated by drift-diffusion simulations. The combination of these improvements led to hysteresis-free n–i–p perovskite/silicon tandem solar cells on textured silicon with an efficiency of 27% (over 1 cm2) and an open-circuit voltage reaching 1.9 V. |
Author | Karalis, Orestis Razzaq, Arsalan Stolterfoht, Martin Prasetio, Adi Vishal, Badri Wang, Jiantao Hnapovskyi, Vladyslav Kalasariya, Nikhil Deger, Caner Babics, Maxime Said, Ahmed Ali De Wolf, Stefaan Yavuz, Ilhan Zhang, Shanshan Liu, Qing Utomo, Drajad Satrio Pininti, Anil Hempel, Hannes Dally, Pia |
AuthorAffiliation | KAUST Solar Center Electronic Engineering Department Department of Physics |
AuthorAffiliation_xml | – name: KAUST Solar Center – name: Electronic Engineering Department – name: Department of Physics |
Author_xml | – sequence: 1 givenname: Shanshan surname: Zhang fullname: Zhang, Shanshan email: shanshan.zhang@kaust.edu.sa organization: KAUST Solar Center – sequence: 2 givenname: Jiantao surname: Wang fullname: Wang, Jiantao organization: KAUST Solar Center – sequence: 3 givenname: Nikhil surname: Kalasariya fullname: Kalasariya, Nikhil organization: Electronic Engineering Department – sequence: 4 givenname: Pia surname: Dally fullname: Dally, Pia organization: KAUST Solar Center – sequence: 5 givenname: Caner orcidid: 0000-0002-8472-1651 surname: Deger fullname: Deger, Caner organization: Department of Physics – sequence: 6 givenname: Ilhan orcidid: 0000-0002-3268-6268 surname: Yavuz fullname: Yavuz, Ilhan organization: Department of Physics – sequence: 7 givenname: Arsalan orcidid: 0000-0003-1396-0054 surname: Razzaq fullname: Razzaq, Arsalan organization: KAUST Solar Center – sequence: 8 givenname: Badri surname: Vishal fullname: Vishal, Badri organization: KAUST Solar Center – sequence: 9 givenname: Adi surname: Prasetio fullname: Prasetio, Adi organization: KAUST Solar Center – sequence: 10 givenname: Drajad Satrio surname: Utomo fullname: Utomo, Drajad Satrio organization: KAUST Solar Center – sequence: 11 givenname: Orestis surname: Karalis fullname: Karalis, Orestis – sequence: 12 givenname: Hannes surname: Hempel fullname: Hempel, Hannes – sequence: 13 givenname: Vladyslav surname: Hnapovskyi fullname: Hnapovskyi, Vladyslav organization: KAUST Solar Center – sequence: 14 givenname: Qing surname: Liu fullname: Liu, Qing organization: KAUST Solar Center – sequence: 15 givenname: Maxime orcidid: 0000-0003-3105-7416 surname: Babics fullname: Babics, Maxime organization: KAUST Solar Center – sequence: 16 givenname: Ahmed Ali surname: Said fullname: Said, Ahmed Ali organization: KAUST Solar Center – sequence: 17 givenname: Anil surname: Pininti fullname: Pininti, Anil organization: KAUST Solar Center – sequence: 18 givenname: Martin surname: Stolterfoht fullname: Stolterfoht, Martin email: mstolterfoht@ee.cuhk.edu.hk organization: Electronic Engineering Department – sequence: 19 givenname: Stefaan orcidid: 0000-0003-1619-9061 surname: De Wolf fullname: De Wolf, Stefaan email: stefaan.dewolf@kaust.edu.sa organization: KAUST Solar Center |
BookMark | eNqFkN1KAzEQhYNUsNY-gpAX2DbZv2YvtVQtbFFovV6y2WSbmiYlyQqFXvgOvqFPYmp7oVcyDDMw8x045xr0tNEcgFuMRhjFeEyZ45rbdq-496OUIUxSfAH6cUJQRHCR9X7tV2Do3AYhhHOSheqDw0J62VIvdQvvOyt5E82151ZQxuHsRxiWxjnuoF9b07VruOiUl6LTzEujqYJl4HXjoNRQf318ytA7-MKteXdv0vPxUirJjIar8MW3cGkUtXDKlXI34FJQ5fjwPAfg9WG2mj5F5fPjfHpXRhRPEh_RSUZE2hQ4LViSCxYWliEmSHM0gYgQcc0KlKIij2tSN3lNE0LzoonrNJuINBmA7KTLbLBiuah2Vm6p3VcYVccUqz8pVucUA4dPXDhXG9PZYNf9w3wDSXCBLA |
Cites_doi | 10.1002/solr.202200355 10.1038/s41586-022-05541-z 10.1002/adma.202110438 10.1002/adma.202308370 10.1038/s41560-018-0219-8 10.1039/C6CP06989D 10.1002/aenm.202101447 10.1126/science.adi4107 10.1002/solr.202201080 10.1039/D1EE01206A 10.1021/acsami.0c02960 10.3390/mi14061095 10.1126/science.adf5872 10.1038/s41467-023-36141-8 10.1002/aenm.202103567 10.1002/solr.202100219 10.1038/s41586-023-06667-4 10.1126/science.abn8910 10.1021/acs.jpclett.3c00530 10.1002/adma.201908107 10.1002/adma.202302552 10.1016/j.nanoen.2021.106428 10.1021/acsenergylett.2c01766 10.1021/jacs.9b09182 10.1002/advs.202201768 10.1002/aenm.202201109 10.1002/adma.201901090 10.1364/OE.458953 10.1038/s41560-024-01487-w 10.1021/acsenergylett.1c02148 10.1002/anie.202203088 10.1007/s12274-023-6291-9 10.1016/j.scib.2021.02.029 10.1038/s41467-022-34203-x 10.1021/acsenergylett.6b00060 10.1016/j.joule.2021.07.016 10.1039/C6EE00612D 10.1039/C9EE02020A 10.1002/solr.202100772 10.1038/ncomms12806 10.1038/s41598-022-11899-x 10.1038/s43246-020-0028-z 10.1021/acs.jpclett.5b00902 10.1126/science.aao5561 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsenergylett.4c01841 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2380-8195 |
EndPage | 4644 |
ExternalDocumentID | 10_1021_acsenergylett_4c01841 a995827933 |
GroupedDBID | ABQRX ABUCX ACGFS ACS AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ EBS GGK VF5 VG9 AAYXX CITATION |
ID | FETCH-LOGICAL-a173t-a758f4d9149c36fc914c50cf8d858508ff2bc9040962b8bd6ba38a69d2b457f43 |
IEDL.DBID | ACS |
ISSN | 2380-8195 |
IngestDate | Wed Sep 18 12:55:32 EDT 2024 Tue Sep 17 03:59:45 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a173t-a758f4d9149c36fc914c50cf8d858508ff2bc9040962b8bd6ba38a69d2b457f43 |
ORCID | 0000-0002-3268-6268 0000-0003-3105-7416 0000-0003-1396-0054 0000-0003-1619-9061 0000-0002-8472-1651 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1021_acsenergylett_4c01841 acs_journals_10_1021_acsenergylett_4c01841 |
PublicationCentury | 2000 |
PublicationDate | 2024-09-13 |
PublicationDateYYYYMMDD | 2024-09-13 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | ACS energy letters |
PublicationTitleAlternate | ACS Energy Lett |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 Dittrich T. (ref35/cit35) 2019 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref46/cit46 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref29/cit29 doi: 10.1002/solr.202200355 – ident: ref13/cit13 doi: 10.1038/s41586-022-05541-z – ident: ref16/cit16 doi: 10.1002/adma.202110438 – ident: ref9/cit9 doi: 10.1002/adma.202308370 – ident: ref3/cit3 doi: 10.1038/s41560-018-0219-8 – ident: ref40/cit40 doi: 10.1039/C6CP06989D – ident: ref46/cit46 doi: 10.1002/aenm.202101447 – ident: ref14/cit14 doi: 10.1126/science.adi4107 – ident: ref17/cit17 doi: 10.1002/solr.202201080 – ident: ref15/cit15 doi: 10.1039/D1EE01206A – ident: ref4/cit4 doi: 10.1021/acsami.0c02960 – ident: ref21/cit21 doi: 10.3390/mi14061095 – ident: ref34/cit34 doi: 10.1126/science.adf5872 – ident: ref31/cit31 doi: 10.1038/s41467-023-36141-8 – ident: ref8/cit8 doi: 10.1002/aenm.202103567 – ident: ref44/cit44 doi: 10.1002/solr.202100219 – ident: ref2/cit2 doi: 10.1038/s41586-023-06667-4 – ident: ref12/cit12 doi: 10.1126/science.abn8910 – ident: ref43/cit43 doi: 10.1021/acs.jpclett.3c00530 – ident: ref1/cit1 – ident: ref28/cit28 doi: 10.1002/adma.201908107 – ident: ref38/cit38 doi: 10.1002/adma.202302552 – ident: ref39/cit39 doi: 10.1016/j.nanoen.2021.106428 – ident: ref32/cit32 doi: 10.1021/acsenergylett.2c01766 – volume-title: Surface Photovoltage Analysis of Photoactive Materials year: 2019 ident: ref35/cit35 contributor: fullname: Dittrich T. – ident: ref20/cit20 doi: 10.1021/jacs.9b09182 – ident: ref30/cit30 doi: 10.1002/advs.202201768 – ident: ref33/cit33 doi: 10.1002/aenm.202201109 – ident: ref7/cit7 doi: 10.1002/adma.201901090 – ident: ref11/cit11 doi: 10.1364/OE.458953 – ident: ref45/cit45 doi: 10.1038/s41560-024-01487-w – ident: ref10/cit10 doi: 10.1021/acsenergylett.1c02148 – ident: ref18/cit18 doi: 10.1002/anie.202203088 – ident: ref19/cit19 doi: 10.1007/s12274-023-6291-9 – ident: ref27/cit27 doi: 10.1016/j.scib.2021.02.029 – ident: ref6/cit6 doi: 10.1038/s41467-022-34203-x – ident: ref25/cit25 doi: 10.1021/acsenergylett.6b00060 – ident: ref36/cit36 doi: 10.1016/j.joule.2021.07.016 – ident: ref37/cit37 doi: 10.1039/C6EE00612D – ident: ref5/cit5 doi: 10.1039/C9EE02020A – ident: ref42/cit42 doi: 10.1002/solr.202100772 – ident: ref26/cit26 doi: 10.1038/ncomms12806 – ident: ref41/cit41 doi: 10.1038/s41598-022-11899-x – ident: ref23/cit23 doi: 10.1038/s43246-020-0028-z – ident: ref24/cit24 doi: 10.1021/acs.jpclett.5b00902 – ident: ref22/cit22 doi: 10.1126/science.aao5561 |
SSID | ssj0001685858 |
Score | 2.3145494 |
Snippet | Fabricating efficient monolithic n–i–p perovskite/silicon tandem solar cells remains challenging, as evidenced by substantial recombination losses at the... |
SourceID | crossref acs |
SourceType | Aggregation Database Publisher |
StartPage | 4633 |
Title | Mitigating Buried-Interface Energy Losses through Multifunctional Ligands in n–i–p Perovskite/Silicon Tandem Solar Cells |
URI | http://dx.doi.org/10.1021/acsenergylett.4c01841 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5KvejBt1hf7MGTkDTZ3WySo5aWIlYKbaG3kH1JsKalST2IB_-D_9Bf4m6SYkUqegjkskMy-5j5ZvabAeCSU-EIw8x1vYBZRJj8rvCF5ShP0TiQAjEDFHv3tDsit2NvXAPNNRl85DZjnsmCBqf_I7cJdzQm0XBnA_l6gxhfqDX4CqoU1dSLLnQ4cCyTI1qydtZJMlaJZytWacW8dHZAf0nSKW-VPNqLnNn85WfNxr9--S7YrlxNeF2ujT1Qk-k-2FopQHgAXntJWWMjfYA3pnmdsIoQoYq5hO1CKrybmrwwrBr6wIKxa6xhGUSEd3p8KjKYpDD9eHtP9DODfTmfPmcmMNwcJBO92FI4NNHqJzgwUBq25GSSHYJRpz1sda2qH4MVuz7OrVhjC0VEqEEVx1Rx_cI9h6tAGK07gVKI8VCfCiFFLGCCshgHMQ31fBPPVwQfgXo6TeUxgAr7nuJIKexhEjoyiBHnjBtir0cZ4Q1wpbUXVfspi4pUOXKjbyqNKpU2gL2cvGhW1uj4fcDJf6Sfgk2kHRlzR8TFZ6CezxfyXDsiObsoFt8n5VjgcA |
link.rule.ids | 315,783,787,2772,27088,27936,27937,57070,57120 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5ED-rBt1ife_AkpE2y2U1y1FKp2orQir2F7EuKNRWTehAP_gf_ob_E2W2qVVDwEAiBHXZnZzOvnW8QOhRMutJU5no04k4gTX5XhtJxNdUsjZT0uXEU25eseR2c92hvBrFJLQxMIgdKuU3if6ELeDX4pmw1HCynqAbCBdcEvJ45GoLQGpOo3vmKrVhQdduMjkSuY1JFk-Kd3ygZ5STyKeU0pWVOl9HN5_zs5ZK76qjgVfH8A7rx_wtYQUul4YmPx5KyimZUtoYWp-AI19FLuz9G3Mhu8YlpZScdGzDUqVC4Yani1tBkiXHZ3gfb-l2jG8chRdyC8ZnMcT_D2fvrWx-eB3ylHodPuQkT1zr9AYhehrsmdn2PO8axxnU1GOQb6Pq00a03nbI7g5N6ISmcFDwNHcgYXCxBmBbwIqgrdCQN891Ia5-LGP4RMfN5xCXjKYlSFsPuBzTUAdlEs9kwU1sIaxJSLXytCSVB7Koo9YXgwpT5UsYDUUFHwL2kPF15YhPnvpd8Y2lSsrSCqpM9TB7GiB1_D9j-D_UDNN_stltJ6-zyYgct-GDimNsjHtlFs8XjSO2BiVLwfSuPH-qP6NA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIHrwLa7PHDwJXdum6eOoq4uPVYRVEDyU5iWLa3ex1YN48D_4D_0lzmSrroKCHgqlkCGZTDqZ1zeEbMpQuQorcz0eCydQGN9VkXJcw02YxVr5Ag3Fk9Pw4CI4uuSXVVYl1sLAJAqgVNggPp7qvjIVwoC3Dd-1rYiDJZX1QLpgnoDlM8Yjz8e2DTuN9qd_xQKr24Z0LHYdDBe9F_D8RAkVlCyGFNSQpmlOk6uPOdoEk5v6fSnq8vEbfOP_FjFDpqoLKN0ZSMwsGdH5HJkcgiWcJ08nnQHyRn5Nd7GlnXKs49BkUtN9S5W2ehgtplWbH2rreFFHDlyLtAXjc1XQTk7z1-eXDjx9eqbveg8Fuou3250uiGBOz9GHfUvbaGDThu52iwVy0dw_bxw4VZcGJ_MiVjoZWBwmUAmYWpKFRsKL5K40scINcGNjfCET-FckoS9ioUKRsTgLE5CCgEcmYItkNO_leolQwyJupG8M4yxIXB1nvpRCYrkvD0Uga2QLuJdWp6xIbQDd99IvLE0rltZI_X0f0_4AueP3Act_ob5Bxs_2mmnr8PR4hUz4cNPBJBKPrZLR8u5er8FNpRTrViTfADM660o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitigating+Buried-Interface+Energy+Losses+through+Multifunctional+Ligands+in+n%E2%80%93i%E2%80%93p+Perovskite%2FSilicon+Tandem+Solar+Cells&rft.jtitle=ACS+energy+letters&rft.au=Zhang%2C+Shanshan&rft.au=Wang%2C+Jiantao&rft.au=Kalasariya%2C+Nikhil&rft.au=Dally%2C+Pia&rft.date=2024-09-13&rft.pub=American+Chemical+Society&rft.issn=2380-8195&rft.eissn=2380-8195&rft.volume=9&rft.issue=9&rft.spage=4633&rft.epage=4644&rft_id=info:doi/10.1021%2Facsenergylett.4c01841&rft.externalDocID=a995827933 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2380-8195&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2380-8195&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2380-8195&client=summon |