Hybrid Polymer Composite Materials - Properties and Characterisation
This book presents the latest on these composite materials that can best be described as materials that are comprised of synthetic polymers and biological/inorganic/organic derived constituents. The combination of unique properties that emerge as a consequence of the particular arrangement and inter...
Saved in:
Main Authors | , , |
---|---|
Format | eBook |
Language | English |
Published |
Chantilly
Elsevier
2017
Elsevier Science & Technology |
Edition | 1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- Title Page Table of Contents 1. Functional Materials from Polymer Derivatives: Properties and Characterization 2. Hybrid Thermoplastic Composites Using Nonwood Plant Fibers 3. Epoxy Resin Based Hybrid Polymer Composites 4. Mechanical Properties of Hybrid Polymer Composite 5. Physical Properties of Hybrid Polymer/Clay Composites 6. Carbon Nanotube Hybrid Polymer Composites: Recent Advances in Mechanical Characterization 7. Low-Velocity Impact Behaviour of Hybrid Composites 8. Hybrid Carbon Nanotube/Fiber Thermoplastic Composites: Mechanical, Thermal, and Electrical Characterization 9. Hybrid Bast Fiber Reinforced Thermoset Composites 10. Influence of Interphase and Inclusion Waviness on Stiffness Properties of a Nanoenhanced Matrix 11. Properties and Characterization of Fiber Metal Laminates 12. Impact Resistance and Damage of Fiber Metal Laminates 13. Recent Progress and perspectives on Biofunctionalized CNT Hybrid Polymer Nanocomposites 14. Investigation on Morphology, Properties, and Applications of Hybrid Poly(vinyl Chloride)/Metal Oxide Composites 15. Hybrid Optically Active Polymer/Metal Oxide Composites: Recent Advances and Challenges Index
- Front Cover -- Hybrid Polymer Composite Materials -- Copyright Page -- Contents -- List of Contributors -- 1 Functional materials from polymer derivatives: properties and characterization -- 1.1 Introduction -- 1.2 Section 1. Electro-photoactive polymer materials for optoelectronics -- 1.2.1 History and basics parameters of an organic solar cell -- 1.2.2 Architecture of a polymer solar cell device -- 1.2.3 Morphology of the polymer-PCBM composite (active layer) performance relationship -- 1.2.4 Thermal annealing and postannealing -- 1.2.5 Polymer chemical modification -- 1.2.6 Charge transport and effect of charge carrier mobility -- 1.3 Section 2. Polymeric materials for supercapacitors and electroactive polymer actuators -- 1.3.1 Polymer derivatives in electrochemical supercapacitors -- 1.3.2 Polymeric hybrid materials for electroactive carbon-based actuators -- 1.3.2.1 Overview -- 1.3.2.2 Polymer actuators based on carbon nanotubes -- References -- 2 Hybrid thermoplastic composites using nonwood plant fibers -- 2.1 Introduction -- 2.2 Natural fibers -- 2.2.1 Wood plant fibers -- 2.2.2 Nonwood plant fibers -- 2.2.3 Recycled fibers -- 2.2.4 Mechanical and physical properties of plant fibers -- 2.3 Composites -- 2.4 Thermoplastic composites -- 2.4.1 Low-density polyethylene -- 2.4.2 High-density polyethylene -- 2.4.3 Polypropylene -- 2.4.4 Polystyrene -- 2.4.5 Polyvinyl chloride -- 2.5 Hybrid composites -- 2.6 Modification of plant fibers -- 2.6.1 Chemical modification of plant fibers -- 2.6.2 Physical methods -- 2.7 Conclusions -- References -- 3 Epoxy resin based hybrid polymer composites -- 3.1 Introduction -- 3.1.1 Reinforcements -- 3.1.1.1 Synthetic fibers -- 3.1.1.2 Kevlar fibers -- 3.1.1.3 Carbon fibers -- 3.1.1.4 Glass fibers -- 3.1.1.5 Comparison between synthetic fibers -- 3.1.1.6 Natural fibers -- 3.1.2 Thermoplastics and thermosets
- 8.3.2 Thermal properties -- 8.3.2.1 Crystallization and melting behavior -- 8.3.2.2 Thermal conductivity -- 8.3.2.3 Thermal stability and flammability -- 8.3.2.4 Heat distortion temperature and thermal expansion coefficient -- 8.3.3 Mechanical properties -- 8.3.3.1 Dynamic mechanical properties -- 8.3.3.2 Static mechanical properties -- Tensile and flexural -- Impact strength -- Interlaminar and interfacial shear strength -- Fractographic analysis -- 8.3.4 Electrical conductivity -- 8.4 Concluding remarks and future trends -- Acknowledgments -- References -- 9 Hybrid bast fiber reinforced thermoset composites -- 9.1 Introduction -- 9.2 Natural bast fibers -- 9.2.1 Flax -- 9.2.2 Jute -- 9.2.3 Hemp -- 9.2.4 Kenaf -- 9.2.5 Cell wall architecture of bast fibers -- 9.3 Characterization of the bast fibers -- 9.3.1 Chemical composition -- 9.3.2 Physical properties -- 9.3.3 Mechanical properties -- 9.4 Hybrid bast fibers reinforced thermoset composites -- 9.4.1 Potential and challenges in development of hybrid composites -- 9.4.1.1 Fiber-polymer matrix interface -- 9.4.1.2 Moisture content of bast fibers -- 9.4.1.3 Dispersion of bast fibers in the matrix -- 9.4.1.4 Thermal stability -- 9.4.1.5 Biodegradability -- 9.5 Hybrid bast fiber reinforced thermoset composites processing -- 9.6 Physical and mechanical properties of hybrid bast fibers reinforced thermoset composites -- 9.6.1 Epoxy based hybrid composites -- 9.6.2 Polyester based hybrid composites -- 9.6.3 Phenolic based hybrid composites -- 9.6.4 Unsaturated polyester based hybrid composites -- 9.6.5 Vinyl ester based hybrid composites -- 9.7 Applications of hybrid bast fibers reinforced thermoset composites -- 9.8 Conclusion -- References -- 10 Influence of interphase and inclusion waviness on stiffness properties of a nanoenhanced matrix -- 10.1 Introduction
- 4.3.3.3 Hybrid carbon fiber-based composites -- 4.3.3.4 Hybrid glass fiber-based composites -- 4.4 Conclusions -- References -- 5 Physical properties of hybrid polymer/clay composites -- 5.1 Introduction -- 5.2 An overture to clay as reinforcement -- 5.3 Surface modification of nanoclay -- 5.4 Matrices for clay filler -- 5.5 High performance nanoclay reinforced polymeric hybrid -- 5.5.1 Mechanical strength -- 5.5.2 Thermal stability -- 5.5.3 Morphology -- 5.5.4 Flame retardancy -- 5.5.5 Crystallinity -- 5.6 Application of polymer/clay hybrid -- 5.7 Conclusion -- References -- 6 Carbon nanotube hybrid polymer composites: recent advances in mechanical characterization -- 6.1 Introduction -- 6.2 General mechanical characterization of composites -- 6.3 Influence of manufacturing on properties of CNT/fiber hybrid composites -- 6.4 Interlaminar, toughness and damping characteristics of CNT/fiber hybrid composites -- 6.5 Concluding remarks -- Acknowledgments -- References -- 7 Low-velocity impact behaviour of hybrid composites -- 7.1 Introduction -- 7.1.1 Why hybrid materials? -- 7.1.2 Classification of hybrid composites -- 7.2 Overview of the impact behavior of fiber reinforced composites -- 7.2.1 Why are composites prone to impact damage? -- 7.2.2 Impact test techniques for composite materials -- 7.3 Low-velocity impact response of hybrid composites -- 7.3.1 Modes of failure in low-velocity impact -- 7.3.2 Impact resistance and damage tolerance of hybrid composite materials -- 7.4 Identification of further research areas -- References -- 8 Hybrid carbon nanotube/fiber thermoplastic composites: mechanical, thermal, and electrical characterization -- 8.1 Introduction -- 8.2 Manufacture of multiscale composites based on a CNT-reinforced thermoplastic matrix -- 8.3 Characterization of the multiscale composites -- 8.3.1 Surface morphology
- 10.2 Stiffness properties of nanoenhanced matrix -- 10.3 Interphase model -- 10.4 Waviness model -- 10.5 Summary and conclusion -- Acknowledgment -- References -- 11 Properties and characterization of fiber metal laminates -- 11.1 Introduction -- 11.2 Mechanical behavior -- 11.2.1 Static properties -- 11.2.1.1 Tensile strength -- 11.2.1.2 Compressive strength -- 11.2.1.3 In-plane shear behavior -- 11.2.1.4 Buckling -- 11.2.2 Fatigue properties -- 11.2.3 Impact -- 11.3 Durability -- 11.3.1 Environmental effect -- 11.3.2 Corrosion -- 11.4 The application of FMLs -- 11.5 Future trends in FMLs -- Acknowledgements -- References -- 12 Impact resistance and damage of fiber metal laminates -- 12.1 Impact resistance and damage of fiber metal laminates -- 12.1.1 Low-velocity impact: definitions and test procedures -- 12.1.1.1 Definitions -- 12.1.1.2 Procedures -- 12.1.2 Measurements of FML impact resistance -- 12.1.2.1 Force-time curves -- 12.1.2.2 Force-displacement curves -- 12.1.2.3 Damage description -- 12.1.3 Experimental methods for damage assessment -- 12.1.4 Failure modes in low-velocity impact damage -- 12.1.4.1 Matrix cracks and delaminations -- 12.1.4.2 Fiber and metal damage -- 12.1.4.3 Fiber damage -- 12.1.4.4 Metal damage -- 12.1.5 Parameters affecting impact damage of FMLs -- 12.1.5.1 Influence of type of metal and fibers -- Metal type -- Fiber type -- 12.1.5.2 The fibers arrangement -- 12.1.6 Numerical modeling of low-velocity impact of FMLs -- 12.1.7 The future perspectives of low-velocity impact resistance of FML -- 12.1.7.1 Titanium alloys in FML -- 12.1.7.2 CAI of FML -- Acknowledgments -- References -- 13 Recent progress and perspectives on biofunctionalized CNT hybrid polymer nanocomposites -- 13.1 Introduction to carbon nanotubes -- 13.2 Strategies of CNT functionalization -- 13.3 CNT embedded polymer NCs
- 13.4 Functionalization of CNTs with biomolecules and their applications
- 3.1.2.1 Epoxy resin -- 3.2 Polymer composites -- 3.3 Natural fibers polymer composites -- 3.4 Hybrid composites -- 3.5 Epoxy based hybrid polymer composites -- 3.5.1 Natural fibers/synthetic fibers based epoxy hybrid polymer composites -- 3.5.2 Natural fibers/natural fibers based epoxy hybrid polymer composites -- 3.5.3 Synthetic/synthetic fibers based epoxy hybrid polymer composites -- 3.5.4 Epoxy based hybrid polymer nanocomposites -- 3.6 Applications -- 3.6.1 Applications of epoxy based polymer composites -- 3.6.2 Applications of epoxy based hybrid polymer composites -- 3.7 Conclusion -- Acknowledgments -- References -- 4 Mechanical properties of hybrid polymer composite -- 4.1 Introduction -- 4.2 Polymer matrix composites (PMCs) -- 4.2.1 Reinforcing fibers -- 4.2.1.1 Natural fibers -- 4.2.1.2 Man-made fibers -- 4.2.1.3 Nanofillers -- 4.2.2 Polymer matrices -- 4.2.2.1 Thermosetting resins -- 4.2.2.2 Thermoplastic resins -- 4.2.3 Manufacturing processes for PMCs -- 4.3 Hybrid composites and their mechanical properties -- 4.3.1 Introduction -- 4.3.2 Hybrid natural fiber-reinforced composites -- 4.3.2.1 Hybrid bagasse/jute fiber-reinforced composites -- 4.3.2.2 Hybrid bamboo fiber-reinforced composites -- 4.3.2.3 Banana/kenaf and banana/sisal hybrid composites -- 4.3.2.4 Hybrid coconut/cork fiber-reinforced composites -- 4.3.2.5 Hybrid coir/silk fiber-reinforced composites -- 4.3.2.6 Hybrid corn husk/kenaf fiber-reinforced composites -- 4.3.2.7 Hybrid cotton fiber-reinforced composites -- 4.3.2.8 Hybrid jute/oil palm EFB fiber-reinforced composites -- 4.3.2.9 Hybrid kenaf/PALF fiber-reinforced composites -- 4.3.2.10 Hybrid sisal fiber-reinforced composites -- 4.3.3 Hybrid natural/synthetic fiber-reinforced composites -- 4.3.3.1 Hybrid aramid fiber-based composites -- 4.3.3.2 Hybrid basalt fiber-based composites