Thermodynamic cycles for renewable energy technologies
This research and reference text surveys the role of specialised thermodynamic cycles in renewable energy technologies. The latest innovations in the technology of the Rankine, Stirling, Brayton, Kalina, Goswami and OTEC Rankine cycles are analysed.
Saved in:
Main Authors | , , , , , , , , , |
---|---|
Format | eBook |
Language | English |
Published |
Bristol England (Temple Circus, Temple Way, Bristol BS1 6HG, UK)
IOP Publishing
2021
Institute of Physics Publishing |
Edition | 1 |
Series | IOP series in renewable and sustainable power |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- 1. Innovations in vapour and gas power cycles / P.B. Nagaraj and Lokesha -- 2. Vapour cycles for concentrating solar power generation using novel working fluids / K. Ravi Kumar, Naveen Krishnan and K.S. Reddy -- 3. Storage of electricity generated from the renewable sources using electrochemical energy conversion devices / Roushan Nigam Ramnath Shaw, Ravi Sankannavar, G.M. Madhu, A. Sarkar, K.R.V. Subramanian and Raji George -- 4. Thermodynamic cycles for renewable energy utilization / Entesar H. Betelmal -- 5. Waste heat recovery / Prakriti Gupta and G.M. Madhu -- 6. OTEC Rankine and Stirling engines / B.V. Raghuvamshi Krishna -- 7. The Goswami cycle and its applications / Gokmen Demirkaya, Martina Leveni, Ricardo Vasquez Padilla and D. Yogi Goswami.
- 1.31 The solid oxide fuel cell (SOFC) and gas turbine (GT) hybrid system -- 1.32 Solid oxide fuel cell (SOFC)-gas turbine hybrid system -- 1.33 Helium Brayton cycles with solar central receivers -- 1.34 Advanced power cycles for concentrated solar power -- 1.35 Solar gas turbine systems -- 1.36 Integrated solar combined cycle systems (ISCCS) and the bottoming cycle storage systems (BCSS) -- References -- Chapter 2 Vapour cycles for concentrating solar power generation using novel working fluids -- 2.1 Introduction -- 2.2 Concentrating solar power technologies -- 2.2.1 Parabolic trough collector -- 2.2.2 Linear Fresnel reflector -- 2.2.3 Central receiver -- 2.2.4 Parabolic dish collector -- 2.2.5 Heat transfer fluids -- 2.3 Thermodynamic analysis of vapour power cycles -- 2.3.1 Rankine cycle -- 2.3.2 Binary vapour power cycle -- 2.3.3 Tertiary vapour power cycle -- 2.4 Novel working fluids for vapour cycles -- 2.4.1 Selection criteria for novel working fluids -- 2.4.2 Low-temperature working fluids -- 2.4.3 Medium-temperature working fluids -- 2.4.4 High-temperature working fluids -- 2.4.5 Novel working fluids for enhancement of cycle efficiency -- 2.5 Power generation from concentrating solar power -- 2.5.1 Indirect steam generation -- 2.5.2 Direct steam generation -- 2.5.3 Solar-aided power generation -- 2.6 4-E analysis of CSP generation -- 2.6.1 Energy analysis -- 2.6.2 Exergy analysis -- 2.6.3 Environmental impacts of concentrating solar power plants -- 2.6.4 Economic analysis of concentrating solar power plants -- 2.7 Recent advancements and future aspects in CSP generation -- 2.7.1 Advancements in the solar concentrator -- 2.7.2 Advancements in heat transfer fluids -- 2.7.3 Advancements in thermal energy storage systems (TES) -- 2.8 Summary -- Nomenclature -- Abbreviations -- References
- 4.12.1 Energy and exergy analysis of Kalina cycle -- 4.12.2 Exergy analysis -- 4.12.3 Kalina cycle working fluid -- 4.12.4 Kalina cycle with heat recovery energy -- 4.12.5 Kalina cycle waste heat recovery -- 4.12.6 Geothermal Kalina cycle -- 4.12.7 Solar Kalina cycle -- 4.13 Thermal energy storage -- 4.13.1 Integrating thermal energy storage with concentrated solar power -- References -- Chapter 5 Waste heat recovery -- 5.1 Introduction -- 5.2 Process integration -- 5.3 Targeting -- 5.4 Pinch analysis -- 5.4.1 Heating and cooling utilities estimation based on heat pinch analysis -- 5.5 Heat recycling -- 5.5.1 Algebraic approach for heat integration -- 5.5.2 Graphical thermal pinch diagram for heat integration -- 5.5.3 Mathematical approach for synthesis of heat exchange network to predict minimum heating and cooling utilities -- 5.6 Combined heat power integration -- 5.6.1 Heat recovery from high temperature equipment -- 5.6.2 Combined heat and power integration -- 5.7 Thermal energy storage(TES) -- 5.7.1 Sensible heat storage -- 5.7.2 Phase change materials (PCMs) -- 5.7.3 Thermo-chemical storage (TCS) -- 5.7.4 Comparative study of TES strategies -- 5.8 Conclusion -- References -- Chapter 6 OTEC Rankine and Stirling engines -- 6.1 Introduction -- 6.1.1 Wind energy -- 6.1.2 Solar energy -- 6.1.3 Ocean thermal energy conversion -- 6.1.4 Stirling engine performance (SE) -- 6.2 Conclusion -- References -- Chapter 7 The Goswami cycle and its applications -- 7.1 Introduction -- 7.2 Process description -- 7.2.1 Efficiency evaluation of the combined power and cooling cycles -- 7.3 Low-temperature implementations -- 7.3.1 Simulation details -- 7.3.2 Low-grade solar implementation -- 7.3.3 Case study: industrial waste heat implementation -- 7.4 Geothermal implementation -- 7.4.1 Goswami cycle costs analysis
- 7.4.2 Case study: the geothermal reservoir of Torre Alfina (Italy) -- 7.5 Desalination implementation -- 7.6 Remarks and conclusions -- References
- Intro -- Preface -- Editor biographies -- K R V Subramanian -- Raji George -- List of contributors -- Chapter 1 Innovations in vapour and gas power cycles -- 1.1 Introduction -- 1.2 Organic Rankine cycle -- 1.3 Organic flash cycle (OFC) -- 1.4 Zeotropic vapour cycle -- 1.5 The Kalina cycle -- 1.6 Uehara cycle -- 1.7 The Maloney-Robertson cycle -- 1.8 Transcritical and supercritical cycles -- 1.9 Carbon dioxide transcritical cycle -- 1.10 Combined power and cooling cycles -- 1.11 Combined cycle to recover exhaust heat from marine gas turbine -- 1.12 Power and cooling cogeneration system with a mid/low-temperature heat source -- 1.13 Advanced hybrid solar tower combined-cycle power plants -- 1.14 Combined power and cooling cycle with two turbines -- 1.15 Supercritical Rankine cycle for a modern steam power plant -- 1.16 Combined gas-steam power plant with a waste heat recovery steam generator -- 1.17 Cogeneration plants -- 1.18 Vapour jet refrigeration cycle -- 1.19 Organic Rankine cycle/vapour compression cycle for producing cooling effect by utilising solar energy -- 1.20 Ejector-absorption combined refrigeration cycle -- 1.21 Absorption cycle integrated with a booster compressor -- 1.22 Generator-absorber-heat exchanger (GAX) absorption refrigeration cycle -- 1.23 Hybrid generator-absorber-heat exchanger (HGAX) absorption refrigeration system -- 1.24 Triple-effect absorption refrigeration system (TEAR) -- 1.25 Thermodynamic optimization of combined gas/steam power plants -- 1.26 Integrated solar combined cycle power plant (ISCC) -- 1.27 Supercritical-CO2 closed Brayton cycle (sCO2-CBC) control in a concentrating solar thermal (CST) power plant -- 1.28 Cascaded humidified advanced turbine (CHAT) -- 1.29 Advanced integrated coal gasification combined cycle -- 1.30 Advanced integrated coal gasification combined cycle
- Chapter 3 Storage of electricity generated from the renewable sources using electrochemical energy conversion devices -- 3.1 Introduction -- 3.2 Water electrolyzers -- 3.2.1 Renewable energy utilization for hydrogen production -- 3.2.2 Thermodynamics of water electrolyzer -- 3.3 Redox flow batteries -- 3.3.1 Construction and principle of redox flow batteries -- 3.3.2 Working principle of vanadium redox flow batteries -- 3.3.3 Electrochemistry of redox flow batteries -- 3.3.4 Thermodynamics of redox flow batteries -- 3.4 Flow capacitors -- 3.4.1 Use of nanomaterials in the electrochemical flow capacitor -- 3.5 Summary -- References -- Chapter 4 Thermodynamic cycles for renewable energy utilization -- 4.1 General considerations in energy sources -- 4.2 Exergy concept -- 4.3 Rankine cycle -- 4.3.1 Energy analysis of real cycle -- 4.3.2 Exergy analysis -- 4.4 Organic Rankine cycle -- 4.4.1 Working fluid -- 4.4.2 Effects of different working fluids and its thermophysical properties on exergy analysis -- 4.5 Solar Rankine cycle -- 4.5.1 Nanofluids as working fluid for solar Rankine cycle -- 4.5.2 Energy analysis -- 4.5.3 Exergy analysis -- 4.6 Geothermal energy application -- 4.6.1 Type of geothermal heat sources -- 4.7 Biomass power plant -- 4.8 How could the efficiency of the Rankine cycle be increased? -- 4.9 Rankine cycle in ocean thermal energy conversion (OTEC) -- 4.9.1 Tyap of ocean thermal energy conversion (OTEC) cycles -- 4.9.2 Working fluid of Rankine cycle -- 4.9.3 Thermodynamic analysis -- 4.9.4 Exergy analysis -- 4.10 Brayton cycle -- 4.10.1 Exergy analysis -- 4.10.2 Exergy analysis of the Brayton cycle -- 4.10.3 Solar Brayton cycle -- 4.11 Stirling cycle -- 4.11.1 Stirling working fluid -- 4.11.2 Energy analysis -- 4.11.3 Exergy analysis -- 4.11.4 Solar Stirling engine -- 4.12 The value of Kalina cycle in engineering