Rough Sets International Joint Conference, IJCRS 2021, Bratislava, Slovakia, September 19-24, 2021, Proceedings

The volume LNAI 12872 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2021, Bratislava, Slovak Republic, in September 2021. The conference was held as a hybrid event due to the COVID-19 pandemic.The 13 full paper and 7 short papers presented were carefully revi...

Full description

Saved in:
Bibliographic Details
Main Authors Ramanna, Sheela, Cornelis, Chris, Ciucci, Davide
Format eBook Conference Proceeding
LanguageEnglish
Published Cham Springer Nature 2021
Springer International Publishing AG
Springer International Publishing
Edition1
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The volume LNAI 12872 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2021, Bratislava, Slovak Republic, in September 2021. The conference was held as a hybrid event due to the COVID-19 pandemic.The 13 full paper and 7 short papers presented were carefully reviewed and selected from 26 submissions, along with 5 invited papers. The papers are grouped in the following topical sections: core rough set models and methods, related methods and hybridization, and areas of applications.
AbstractList The volume LNAI 12872 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2021, Bratislava, Slovak Republic, in September 2021. The conference was held as a hybrid event due to the COVID-19 pandemic.The 13 full paper and 7 short papers presented were carefully reviewed and selected from 26 submissions, along with 5 invited papers. The papers are grouped in the following topical sections: core rough set models and methods, related methods and hybridization, and areas of applications.
Author Cornelis, Chris
Ciucci, Davide
Ramanna, Sheela
Author_xml – sequence: 1
  fullname: Ramanna, Sheela
– sequence: 2
  fullname: Cornelis, Chris
– sequence: 3
  fullname: Ciucci, Davide
BookMark eNpdkM1OwzAQhA0URFv6ANwQF8TB1Gs7dnyEqvxIlZAAcbVsx2kLIS5xCq-P03CB065mvlnt7ggN6lB7hE6BXAEhcqpkjhkmjOBcMsax2kOTpLGk7AS1j4YgAHDXH_zzBmiYeoqV5OwIjYCKnIuMMH6MJjG-EUKopFIqOkSjp7Bdrs6efRtP0GFpqugnv3WMXm_nL7N7vHi8e5hdL7ABodJCoigFiMxzC85Y44jNmVNAi2R7WxSZd5QYQ0ppBAfqKDcyJ8yXwjJLRcHG6LIfbOK7_46rULVRf1XehvAe9Z9LEjvt2bhp1vXSN7qngOjuTx2tmU683gV0l7joE5smfG59bPVusPN125hKz29mQlKV5TSR5z3pTDTVul7rj1CHZWM2q6gzToGBZD93t2qs
ContentType eBook
Conference Proceeding
Copyright Springer Nature Switzerland AG 2021
Copyright_xml – notice: Springer Nature Switzerland AG 2021
DBID I4C
DEWEY 004
DOI 10.1007/978-3-030-87334-9
DatabaseName Casalini Torrossa eBooks Institutional Catalogue
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030873349
303087334X
EISSN 1611-3349
Edition 1
1st Edition 2021
Editor Cornelis, Chris
Ciucci, Davide
Ramanna, Sheela
Editor_xml – sequence: 1
  fullname: Ciucci, Davide
– sequence: 2
  fullname: Cornelis, Chris
– sequence: 3
  fullname: Ramanna, Sheela
ExternalDocumentID 9783030873349
510453
EBC6729582
5421317
GroupedDBID 38.
AABBV
AABLV
ABNDO
ACNBG
ACWLQ
AEDXK
AEKFX
AELOD
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BAHJK
BBABE
CZZ
DBWEY
I4C
IEZ
OCUHQ
ORHYB
SBO
TGIZN
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
ACBPT
AEJLV
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-a16930-6df6165e4b1cabac0b83c912d169ebdd5ec20aa0f7a6412c24a7803ef6b3b26d3
ISBN 9783030873349
303087334X
3030873331
9783030873332
ISSN 0302-9743
IngestDate Tue Apr 22 02:30:51 EDT 2025
Wed Oct 30 02:19:28 EDT 2024
Fri May 30 22:03:29 EDT 2025
Tue Nov 14 22:57:21 EST 2023
IsPeerReviewed true
IsScholarly true
LCCallNum_Ident Q
Language English
LinkModel OpenURL
MeetingName International Joint Conference on Rough Sets
MergedId FETCHMERGED-LOGICAL-a16930-6df6165e4b1cabac0b83c912d169ebdd5ec20aa0f7a6412c24a7803ef6b3b26d3
OCLC 1268465034
PQID EBC6729582
PageCount 320
ParticipantIDs askewsholts_vlebooks_9783030873349
springer_books_10_1007_978_3_030_87334_9
proquest_ebookcentral_EBC6729582
casalini_monographs_5421317
PublicationCentury 2000
PublicationDate 2021
2021-09-17
PublicationDateYYYYMMDD 2021-01-01
2021-09-17
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Netherlands
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationYear 2021
Publisher Springer Nature
Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer Nature
– name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  orcidid: 0000-0001-8816-2693
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002727792
ssj0002792
Score 2.5443938
Snippet The volume LNAI 12872 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2021, Bratislava, Slovak Republic, in September...
SourceID askewsholts
springer
proquest
casalini
SourceType Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Computer Applications
Computer Science
Data Mining and Knowledge Discovery
Data processing Computer science
Information Systems Applications (incl. Internet)
Rough sets
Subtitle International Joint Conference, IJCRS 2021, Bratislava, Slovakia, September 19-24, 2021, Proceedings
TableOfContents An Opinion Summarization-Evaluation System Based on Pre-trained Models -- 1 Introduction -- 2 Related Works -- 3 An Opinion Summarization-Evaluation Algorithm -- 3.1 Subjective Analysis and Opinion Mining -- 3.2 Hierarchical Metrics -- 4 Experiments and Analysis -- 4.1 Experimental Settings -- 4.2 Experiment Results and Analysis -- 5 Conclusion and Future Works -- References -- Fuzzy-Rough Nearest Neighbour Approaches for Emotion Detection in Tweets -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Data Cleaning -- 3.2 Tweet Embedding -- 3.3 Similarity Relation -- 3.4 Classification Methods -- 3.5 Evaluation Method -- 4 Experiments -- 4.1 Detecting the Best Setup for Embeddings -- 4.2 Ensembles -- 5 Results on the Test Data -- 6 Conclusion and Future Work -- References -- Three-Way Decisions Based RNN Models for Sentiment Classification -- 1 Introduction -- 2 Related Work -- 2.1 RNN Models -- 2.2 Three-Way Decisions -- 3 The Proposed Method -- 3.1 Algorithm -- 3.2 Probability Adjustment Strategies -- 4 Experiment -- 4.1 Datasets and Baseline Methods -- 4.2 Experimental Results -- 4.3 Parameter Analysis -- 5 Conclusion -- References -- Tolerance-Based Short Text Sentiment Classifier -- 1 Introduction -- 2 Data Sets -- 3 Models -- 3.1 Tolerance Near Sets -- 3.2 Transformer Model -- 4 Experiments and Analysis of Results -- 5 Conclusion -- References -- Knowledge Graph Representation Learning for Link Prediction with Three-Way Decisions -- 1 Introduction -- 2 Related Work -- 2.1 Knowledge Graph Embedding Models -- 2.2 Three-Way Decisions -- 3 Our Approach -- 3.1 Relation Neighbor -- 3.2 Knowledge Representation with Three-Way Decisions -- 3.3 Loss Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Baselines and Experiment Setting -- 4.3 Evaluation Metrics -- 4.4 Experiment Results -- 5 Conclusion -- References
2.4 Closure Operators -- 2.5 Relationships on Attribute Sets -- 3 Functional Dependency Relations -- 4 Conclusions -- References -- The RSDS: A Current State and Future Plans -- 1 Generally About the RSDS -- 2 Further Plans -- 3 Final Remarks -- References -- Many-Valued Dynamic Object-Oriented Inheritance and Approximations -- 1 Introduction -- 2 Preliminaries -- 2.1 Many-Valued Logics -- 2.2 Nested Structures -- 2.3 Rule-Based Object-Oriented Query Languages -- 3 Many-Valued Dynamic Object Inheritance -- 4 Approximations -- 5 Conclusions -- References -- Related Methods and Hybridization -- Minimizing Depth of Decision Trees with Hypotheses -- 1 Introduction -- 2 Decision Tables -- 3 Decision Trees -- 4 Construction of Directed Acyclic Graph (T) -- 5 Minimizing the Depth of Decision Trees -- 6 Results of Experiments -- 7 Conclusions -- References -- The Influence of Fuzzy Expectations on Triples of Triangular Norms in the Weighted Fuzzy Petri Net for the Subject Area of Passenger Transport Logistics -- 1 Introduction -- 2 Fuzzy Expectations for wFPN -- 3 The Review of wFPN Model for the Experiment on Triples of Functions -- 4 The Influence of Fuzzy Expectations on the Results of the wFPN Model -- 5 Conclusions -- References -- Possibility Distributions Generated by Intuitionistic L-Fuzzy Sets -- 1 Introduction -- 2 Preliminaries -- 2.1 Algebraic Structures of Truth Values -- 2.2 Intuitionistic Fuzzy Sets and Intuitionistic L-fuzzy Sets -- 3 From Intuitionistic L-Fuzzy Sets to Possibility Distributions -- 3.1 Possibility Distributions -- 3.2 Possibility Distributions Generated by Intuitionistic L-fuzzy Sets -- 3.3 Possibility Distributions Generated by Intuitionistic L-fuzzy Sets Based on an IMTL-algebra -- 4 From Possibility Distributions to Intuitionistic Fuzzy Sets
PNeS in Modelling, Control and Analysis of Concurrent Systems
4.1 An Algorithm to Find the Intuitionistic L-fuzzy Set Generating a Given Possibility Distribution -- 5 Conclusions and Future Directions -- References -- Feature Selection and Disambiguation in Learning from Fuzzy Labels Using Rough Sets -- 1 Introduction -- 2 Background -- 2.1 Possibility Theory -- 2.2 Rough Set Theory -- 2.3 Belief Function Theory -- 3 Possibilistic Decision Tables and Reducts -- 3.1 Possibilistic Decision Tables -- 3.2 Possibilistic Reducts -- 3.3 Entropy Reducts -- 4 Conclusion -- References -- Right Adjoint Algebras Versus Operator Left Residuated Posets -- 1 Introduction -- 2 Preliminaries -- 2.1 Dedekind-MacNeille Completion -- 2.2 Algebraic Structures -- 3 Adjoint Property in Operator Left Residuated Posets -- 3.1 Extension of M and R to 2P -- 3.2 Requirements for a Proper Fuzzy Modus Ponens -- 3.3 Extension of Operator Left Residuated Posets -- 4 Operator Left Residuated Posets from a Dedekind-MacNeille Completion -- 5 Conclusions and Future Work -- References -- Adapting Fuzzy Rough Setspg for Classification with Missing Values -- 1 Introduction -- 2 Interval-Valued Fuzzy Rough Sets -- 3 FRNN with Interval-Valued Approximations -- 4 Conclusion -- References -- Areas of Applications -- Spark Accelerated Implementation of Parallel Attribute Reduction from Incomplete Data -- 1 Introduction -- 2 Preliminaries -- 2.1 Apache Spark Computing Model -- 3 Spark Parallelization of Attribute Reduction from Incomplete Data -- 4 Experimental Evaluation -- 4.1 Selection of the Number of Data Partitions -- 4.2 Evaluation of the Parallelism Metrics -- 5 Conclusions -- References -- Attention Enhanced Hierarchical Feature Representation for Three-Way Decision Boundary Processing -- 1 Introduction -- 2 Proposed Method -- 3 Performance Evaluation -- 4 Conclusion -- References
2.1 Seismic Noise Reduction Methods -- 2.2 Noise Modeling Based Denoising Methods -- 2.3 AutoEncoder Based Denoising Methods -- 3 DDAE-GAN Based Blind Denoiser -- 3.1 Paried Data Constructing -- 3.2 Pre-training -- 3.3 Transfer Learning -- 4 Examples -- 4.1 Synthetic Examples -- 4.2 Field Examples -- 5 Conclusions -- References -- Classification of Multi-class Imbalanced Data: Data Difficulty Factors and Selected Methods for Improving Classifiers -- 1 Introduction -- 2 Related Works on Classification of Multi-class Imbalanced Data -- 3 Difficulty Factors in Imbalanced Data -- 3.1 Earlier Studies on Binary Imbalanced Classes -- 3.2 Multi-class Difficulties -- 4 Identifying Types of Examples in Multi-class Imbalanced Data -- 5 Discovering Split of Classes into Sub-concepts and Rare Examples -- 6 Multi-class Hybrid Resampling Algorithm SOUP -- 7 Multi-class Variant of BRACID Algorithm -- 7.1 Rule Induction from Binary Imbalanced Data with BRACID -- 7.2 Generalizing BRACID for Multiple Imbalanced Classes -- 8 Multi-class Extension of Bagging Ensemble -- 9 Software Implementations of Specialized Algorithms for Multi-class Imbalanced Data -- 10 Future Research Directions and Conclusions -- References -- Core Rough Set Models and Methods -- General Rough Modeling of Cluster Analysis -- 1 Introduction -- 1.1 Background -- 2 New Rough Semantic Approaches -- References -- Possible Coverings in Incomplete Information Tables with Similarity of Values -- 1 Introduction -- 2 Rough Sets from Coverings in Complete Information Tables -- 3 Rough Sets from Possible Coverings in Incomplete Information Tables -- 4 Conclusions -- References -- Attribute Reduction Using Functional Dependency Relations in Rough Set Theory -- 1 Introduction -- 2 Preliminaries -- 2.1 Rough Sets -- 2.2 Reducts for Information Systems -- 2.3 Functional Dependency Relations
Intro -- Preface -- Organization -- Contents -- Invited Papers -- Mining Incomplete Data Using Global and Saturated Probabilistic Approximations Based on Characteristic Sets and Maximal Consistent Blocks -- 1 Introduction -- 2 Incomplete Data -- 3 Probabilistic Approximations -- 3.1 Global Probabilistic Approximations Based on Characteristic Sets -- 3.2 Saturated Probabilistic Approximations Based on Characteristic Sets -- 3.3 Global Probabilistic Approximations Based on Maximal Consistent Blocks -- 3.4 Saturated Probabilistic Approximations Based on Maximal Consistent Blocks -- 3.5 Rule Induction -- 4 Experiments -- 5 Conclusions -- References -- Determining Tanimoto Similarity Neighborhoods of Real-Valued Vectors by Means of the Triangle Inequality and Bounds on Lengths -- 1 Introduction -- 2 Basic Notions and Properties -- 2.1 The Euclidean Distance, the Cosine Similarity and the Tanimoto Similarity -- 2.2 ε-Neighborhoods and k Nearest Neighbors -- 3 Using the Triangle Inequality Property to Calculate Euclidean and Cosine ε-Neighborhoods -- 3.1 Using the Triangle Inequality to Calculate Euclidean ε-Neighborhoods -- 3.2 Calculating Cosine ε-Neighborhoods by Means of the Triangle Inequality -- 4 Using Bounds on Vector Lengths to Calculate Tanimoto Similarity ε-Neighborhoods -- 5 Calculating Tanimoto ε-Neighborhoods by Means of the Triangle Inequality -- 6 Calculating Tanimoto ε-Neighborhoods by Means of the Triangle Inequality and Lengths of Vectors -- 7 Summary -- References -- Rough-Fuzzy Segmentation of Brain MR Volumes: Applications in Tumor Detection and Malignancy Assessment -- 1 Introduction -- 2 Segmentation of Brain MR Images -- 3 Brain Tumor Detection and Gradation -- References -- DDAE-GAN: Seismic Data Denoising by Integrating Autoencoder and Generative Adversarial Network -- 1 Introduction -- 2 Related Work
Title Rough Sets
URI http://digital.casalini.it/9783030873349
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6729582
http://link.springer.com/10.1007/978-3-030-87334-9
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030873349
Volume 12872
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71cWkvQCli6UMR4oCEgvyKszn0QKtFVdVWCErVm2U7zqXVVmoCB349YztOdld7KBw2WiW7ntifPZ7xeD4DfKBNKdELELkmTufCOpobIWxuK6lrT1FGA6nP1bU8_yku7oq7kV4gZJd05rP9szav5H9QxXuIq8-S_Qdkh0LxBn5HfPGKCON1xfhdO898Dyfs_HCRjCmIdO3JZR8VuH7swmarT-nghjSOFx19Rlcc_bTQt7JUOK5WLXmGPFD9cb60eMhR-6H_EBWKiwpPehpDHmlDB42IbhRbq18Xt1RgcbkXIfJqnEyGLX441kXBN2GznKK-3P4yu7i8HRa_GFpNZTXyfHkWwxjuiS_ok3BSBWikSRorlGLTPT3w0ovswq5u73F6wKmja72toVvtU0yXHIiVmHcwJW5ewv6YZJl9G2B9BRtuvgcvElhZD9Zr2AkwZx7mfbj9Ors5O8_7Eyxy7Ulu0DGvG4m93QlDrTbaEjPltqKsxsfO1HXhLCNak6bUUlBmmdDllHDXSMMNkzV_A1vzx7l7C5lpCmvKWmrtmDC8Mo0VnJCGk5o0-JnA-4Wqq98PIdreqoW2E9UEDlKLKBwMkRW9VYVgFA3JCWSpkVT4d79BWM1OzyR6YcWUTeBjajwVy0-81yhHcYWSVBClqnfP_-kB7Iw9_hC2uqdf7giNvc4c913nL_CzRkI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Rough+Sets&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030873332&rft.issn=0302-9743&rft.eissn=1611-3349&rft.volume=12872&rft_id=info:doi/10.1007%2F978-3-030-87334-9&rft.externalDocID=510453
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830308%2F9783030873349.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-030-87334-9