Rough Sets International Joint Conference, IJCRS 2021, Bratislava, Slovakia, September 19-24, 2021, Proceedings
The volume LNAI 12872 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2021, Bratislava, Slovak Republic, in September 2021. The conference was held as a hybrid event due to the COVID-19 pandemic.The 13 full paper and 7 short papers presented were carefully revi...
Saved in:
Main Authors | , , |
---|---|
Format | eBook Conference Proceeding |
Language | English |
Published |
Cham
Springer Nature
2021
Springer International Publishing AG Springer International Publishing |
Edition | 1 |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The volume LNAI 12872 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2021, Bratislava, Slovak Republic, in September 2021. The conference was held as a hybrid event due to the COVID-19 pandemic.The 13 full paper and 7 short papers presented were carefully reviewed and selected from 26 submissions, along with 5 invited papers. The papers are grouped in the following topical sections: core rough set models and methods, related methods and hybridization, and areas of applications. |
---|---|
AbstractList | The volume LNAI 12872 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2021, Bratislava, Slovak Republic, in September 2021. The conference was held as a hybrid event due to the COVID-19 pandemic.The 13 full paper and 7 short papers presented were carefully reviewed and selected from 26 submissions, along with 5 invited papers. The papers are grouped in the following topical sections: core rough set models and methods, related methods and hybridization, and areas of applications. |
Author | Cornelis, Chris Ciucci, Davide Ramanna, Sheela |
Author_xml | – sequence: 1 fullname: Ramanna, Sheela – sequence: 2 fullname: Cornelis, Chris – sequence: 3 fullname: Ciucci, Davide |
BookMark | eNpdkM1OwzAQhA0URFv6ANwQF8TB1Gs7dnyEqvxIlZAAcbVsx2kLIS5xCq-P03CB065mvlnt7ggN6lB7hE6BXAEhcqpkjhkmjOBcMsax2kOTpLGk7AS1j4YgAHDXH_zzBmiYeoqV5OwIjYCKnIuMMH6MJjG-EUKopFIqOkSjp7Bdrs6efRtP0GFpqugnv3WMXm_nL7N7vHi8e5hdL7ABodJCoigFiMxzC85Y44jNmVNAi2R7WxSZd5QYQ0ppBAfqKDcyJ8yXwjJLRcHG6LIfbOK7_46rULVRf1XehvAe9Z9LEjvt2bhp1vXSN7qngOjuTx2tmU683gV0l7joE5smfG59bPVusPN125hKz29mQlKV5TSR5z3pTDTVul7rj1CHZWM2q6gzToGBZD93t2qs |
ContentType | eBook Conference Proceeding |
Copyright | Springer Nature Switzerland AG 2021 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2021 |
DBID | I4C |
DEWEY | 004 |
DOI | 10.1007/978-3-030-87334-9 |
DatabaseName | Casalini Torrossa eBooks Institutional Catalogue |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030873349 303087334X |
EISSN | 1611-3349 |
Edition | 1 1st Edition 2021 |
Editor | Cornelis, Chris Ciucci, Davide Ramanna, Sheela |
Editor_xml | – sequence: 1 fullname: Ciucci, Davide – sequence: 2 fullname: Cornelis, Chris – sequence: 3 fullname: Ramanna, Sheela |
ExternalDocumentID | 9783030873349 510453 EBC6729582 5421317 |
GroupedDBID | 38. AABBV AABLV ABNDO ACNBG ACWLQ AEDXK AEKFX AELOD AIYYB ALMA_UNASSIGNED_HOLDINGS BAHJK BBABE CZZ DBWEY I4C IEZ OCUHQ ORHYB SBO TGIZN TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z83 Z84 Z85 Z87 Z88 ACBPT AEJLV -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-a16930-6df6165e4b1cabac0b83c912d169ebdd5ec20aa0f7a6412c24a7803ef6b3b26d3 |
ISBN | 9783030873349 303087334X 3030873331 9783030873332 |
ISSN | 0302-9743 |
IngestDate | Tue Apr 22 02:30:51 EDT 2025 Wed Oct 30 02:19:28 EDT 2024 Fri May 30 22:03:29 EDT 2025 Tue Nov 14 22:57:21 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum_Ident | Q |
Language | English |
LinkModel | OpenURL |
MeetingName | International Joint Conference on Rough Sets |
MergedId | FETCHMERGED-LOGICAL-a16930-6df6165e4b1cabac0b83c912d169ebdd5ec20aa0f7a6412c24a7803ef6b3b26d3 |
OCLC | 1268465034 |
PQID | EBC6729582 |
PageCount | 320 |
ParticipantIDs | askewsholts_vlebooks_9783030873349 springer_books_10_1007_978_3_030_87334_9 proquest_ebookcentral_EBC6729582 casalini_monographs_5421317 |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-09-17 |
PublicationDateYYYYMMDD | 2021-01-01 2021-09-17 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Netherlands – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationYear | 2021 |
Publisher | Springer Nature Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer Nature – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard orcidid: 0000-0001-8816-2693 surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002727792 ssj0002792 |
Score | 2.5443938 |
Snippet | The volume LNAI 12872 constitutes the proceedings of the International Joint Conference on Rough Sets, IJCRS 2021, Bratislava, Slovak Republic, in September... |
SourceID | askewsholts springer proquest casalini |
SourceType | Aggregation Database Publisher |
SubjectTerms | Artificial Intelligence Computer Applications Computer Science Data Mining and Knowledge Discovery Data processing Computer science Information Systems Applications (incl. Internet) Rough sets |
Subtitle | International Joint Conference, IJCRS 2021, Bratislava, Slovakia, September 19-24, 2021, Proceedings |
TableOfContents | An Opinion Summarization-Evaluation System Based on Pre-trained Models -- 1 Introduction -- 2 Related Works -- 3 An Opinion Summarization-Evaluation Algorithm -- 3.1 Subjective Analysis and Opinion Mining -- 3.2 Hierarchical Metrics -- 4 Experiments and Analysis -- 4.1 Experimental Settings -- 4.2 Experiment Results and Analysis -- 5 Conclusion and Future Works -- References -- Fuzzy-Rough Nearest Neighbour Approaches for Emotion Detection in Tweets -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Data Cleaning -- 3.2 Tweet Embedding -- 3.3 Similarity Relation -- 3.4 Classification Methods -- 3.5 Evaluation Method -- 4 Experiments -- 4.1 Detecting the Best Setup for Embeddings -- 4.2 Ensembles -- 5 Results on the Test Data -- 6 Conclusion and Future Work -- References -- Three-Way Decisions Based RNN Models for Sentiment Classification -- 1 Introduction -- 2 Related Work -- 2.1 RNN Models -- 2.2 Three-Way Decisions -- 3 The Proposed Method -- 3.1 Algorithm -- 3.2 Probability Adjustment Strategies -- 4 Experiment -- 4.1 Datasets and Baseline Methods -- 4.2 Experimental Results -- 4.3 Parameter Analysis -- 5 Conclusion -- References -- Tolerance-Based Short Text Sentiment Classifier -- 1 Introduction -- 2 Data Sets -- 3 Models -- 3.1 Tolerance Near Sets -- 3.2 Transformer Model -- 4 Experiments and Analysis of Results -- 5 Conclusion -- References -- Knowledge Graph Representation Learning for Link Prediction with Three-Way Decisions -- 1 Introduction -- 2 Related Work -- 2.1 Knowledge Graph Embedding Models -- 2.2 Three-Way Decisions -- 3 Our Approach -- 3.1 Relation Neighbor -- 3.2 Knowledge Representation with Three-Way Decisions -- 3.3 Loss Function -- 4 Experiments -- 4.1 Datasets -- 4.2 Baselines and Experiment Setting -- 4.3 Evaluation Metrics -- 4.4 Experiment Results -- 5 Conclusion -- References 2.4 Closure Operators -- 2.5 Relationships on Attribute Sets -- 3 Functional Dependency Relations -- 4 Conclusions -- References -- The RSDS: A Current State and Future Plans -- 1 Generally About the RSDS -- 2 Further Plans -- 3 Final Remarks -- References -- Many-Valued Dynamic Object-Oriented Inheritance and Approximations -- 1 Introduction -- 2 Preliminaries -- 2.1 Many-Valued Logics -- 2.2 Nested Structures -- 2.3 Rule-Based Object-Oriented Query Languages -- 3 Many-Valued Dynamic Object Inheritance -- 4 Approximations -- 5 Conclusions -- References -- Related Methods and Hybridization -- Minimizing Depth of Decision Trees with Hypotheses -- 1 Introduction -- 2 Decision Tables -- 3 Decision Trees -- 4 Construction of Directed Acyclic Graph (T) -- 5 Minimizing the Depth of Decision Trees -- 6 Results of Experiments -- 7 Conclusions -- References -- The Influence of Fuzzy Expectations on Triples of Triangular Norms in the Weighted Fuzzy Petri Net for the Subject Area of Passenger Transport Logistics -- 1 Introduction -- 2 Fuzzy Expectations for wFPN -- 3 The Review of wFPN Model for the Experiment on Triples of Functions -- 4 The Influence of Fuzzy Expectations on the Results of the wFPN Model -- 5 Conclusions -- References -- Possibility Distributions Generated by Intuitionistic L-Fuzzy Sets -- 1 Introduction -- 2 Preliminaries -- 2.1 Algebraic Structures of Truth Values -- 2.2 Intuitionistic Fuzzy Sets and Intuitionistic L-fuzzy Sets -- 3 From Intuitionistic L-Fuzzy Sets to Possibility Distributions -- 3.1 Possibility Distributions -- 3.2 Possibility Distributions Generated by Intuitionistic L-fuzzy Sets -- 3.3 Possibility Distributions Generated by Intuitionistic L-fuzzy Sets Based on an IMTL-algebra -- 4 From Possibility Distributions to Intuitionistic Fuzzy Sets PNeS in Modelling, Control and Analysis of Concurrent Systems 4.1 An Algorithm to Find the Intuitionistic L-fuzzy Set Generating a Given Possibility Distribution -- 5 Conclusions and Future Directions -- References -- Feature Selection and Disambiguation in Learning from Fuzzy Labels Using Rough Sets -- 1 Introduction -- 2 Background -- 2.1 Possibility Theory -- 2.2 Rough Set Theory -- 2.3 Belief Function Theory -- 3 Possibilistic Decision Tables and Reducts -- 3.1 Possibilistic Decision Tables -- 3.2 Possibilistic Reducts -- 3.3 Entropy Reducts -- 4 Conclusion -- References -- Right Adjoint Algebras Versus Operator Left Residuated Posets -- 1 Introduction -- 2 Preliminaries -- 2.1 Dedekind-MacNeille Completion -- 2.2 Algebraic Structures -- 3 Adjoint Property in Operator Left Residuated Posets -- 3.1 Extension of M and R to 2P -- 3.2 Requirements for a Proper Fuzzy Modus Ponens -- 3.3 Extension of Operator Left Residuated Posets -- 4 Operator Left Residuated Posets from a Dedekind-MacNeille Completion -- 5 Conclusions and Future Work -- References -- Adapting Fuzzy Rough Setspg for Classification with Missing Values -- 1 Introduction -- 2 Interval-Valued Fuzzy Rough Sets -- 3 FRNN with Interval-Valued Approximations -- 4 Conclusion -- References -- Areas of Applications -- Spark Accelerated Implementation of Parallel Attribute Reduction from Incomplete Data -- 1 Introduction -- 2 Preliminaries -- 2.1 Apache Spark Computing Model -- 3 Spark Parallelization of Attribute Reduction from Incomplete Data -- 4 Experimental Evaluation -- 4.1 Selection of the Number of Data Partitions -- 4.2 Evaluation of the Parallelism Metrics -- 5 Conclusions -- References -- Attention Enhanced Hierarchical Feature Representation for Three-Way Decision Boundary Processing -- 1 Introduction -- 2 Proposed Method -- 3 Performance Evaluation -- 4 Conclusion -- References 2.1 Seismic Noise Reduction Methods -- 2.2 Noise Modeling Based Denoising Methods -- 2.3 AutoEncoder Based Denoising Methods -- 3 DDAE-GAN Based Blind Denoiser -- 3.1 Paried Data Constructing -- 3.2 Pre-training -- 3.3 Transfer Learning -- 4 Examples -- 4.1 Synthetic Examples -- 4.2 Field Examples -- 5 Conclusions -- References -- Classification of Multi-class Imbalanced Data: Data Difficulty Factors and Selected Methods for Improving Classifiers -- 1 Introduction -- 2 Related Works on Classification of Multi-class Imbalanced Data -- 3 Difficulty Factors in Imbalanced Data -- 3.1 Earlier Studies on Binary Imbalanced Classes -- 3.2 Multi-class Difficulties -- 4 Identifying Types of Examples in Multi-class Imbalanced Data -- 5 Discovering Split of Classes into Sub-concepts and Rare Examples -- 6 Multi-class Hybrid Resampling Algorithm SOUP -- 7 Multi-class Variant of BRACID Algorithm -- 7.1 Rule Induction from Binary Imbalanced Data with BRACID -- 7.2 Generalizing BRACID for Multiple Imbalanced Classes -- 8 Multi-class Extension of Bagging Ensemble -- 9 Software Implementations of Specialized Algorithms for Multi-class Imbalanced Data -- 10 Future Research Directions and Conclusions -- References -- Core Rough Set Models and Methods -- General Rough Modeling of Cluster Analysis -- 1 Introduction -- 1.1 Background -- 2 New Rough Semantic Approaches -- References -- Possible Coverings in Incomplete Information Tables with Similarity of Values -- 1 Introduction -- 2 Rough Sets from Coverings in Complete Information Tables -- 3 Rough Sets from Possible Coverings in Incomplete Information Tables -- 4 Conclusions -- References -- Attribute Reduction Using Functional Dependency Relations in Rough Set Theory -- 1 Introduction -- 2 Preliminaries -- 2.1 Rough Sets -- 2.2 Reducts for Information Systems -- 2.3 Functional Dependency Relations Intro -- Preface -- Organization -- Contents -- Invited Papers -- Mining Incomplete Data Using Global and Saturated Probabilistic Approximations Based on Characteristic Sets and Maximal Consistent Blocks -- 1 Introduction -- 2 Incomplete Data -- 3 Probabilistic Approximations -- 3.1 Global Probabilistic Approximations Based on Characteristic Sets -- 3.2 Saturated Probabilistic Approximations Based on Characteristic Sets -- 3.3 Global Probabilistic Approximations Based on Maximal Consistent Blocks -- 3.4 Saturated Probabilistic Approximations Based on Maximal Consistent Blocks -- 3.5 Rule Induction -- 4 Experiments -- 5 Conclusions -- References -- Determining Tanimoto Similarity Neighborhoods of Real-Valued Vectors by Means of the Triangle Inequality and Bounds on Lengths -- 1 Introduction -- 2 Basic Notions and Properties -- 2.1 The Euclidean Distance, the Cosine Similarity and the Tanimoto Similarity -- 2.2 ε-Neighborhoods and k Nearest Neighbors -- 3 Using the Triangle Inequality Property to Calculate Euclidean and Cosine ε-Neighborhoods -- 3.1 Using the Triangle Inequality to Calculate Euclidean ε-Neighborhoods -- 3.2 Calculating Cosine ε-Neighborhoods by Means of the Triangle Inequality -- 4 Using Bounds on Vector Lengths to Calculate Tanimoto Similarity ε-Neighborhoods -- 5 Calculating Tanimoto ε-Neighborhoods by Means of the Triangle Inequality -- 6 Calculating Tanimoto ε-Neighborhoods by Means of the Triangle Inequality and Lengths of Vectors -- 7 Summary -- References -- Rough-Fuzzy Segmentation of Brain MR Volumes: Applications in Tumor Detection and Malignancy Assessment -- 1 Introduction -- 2 Segmentation of Brain MR Images -- 3 Brain Tumor Detection and Gradation -- References -- DDAE-GAN: Seismic Data Denoising by Integrating Autoencoder and Generative Adversarial Network -- 1 Introduction -- 2 Related Work |
Title | Rough Sets |
URI | http://digital.casalini.it/9783030873349 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=6729582 http://link.springer.com/10.1007/978-3-030-87334-9 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783030873349 |
Volume | 12872 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71cWkvQCli6UMR4oCEgvyKszn0QKtFVdVWCErVm2U7zqXVVmoCB349YztOdld7KBw2WiW7ntifPZ7xeD4DfKBNKdELELkmTufCOpobIWxuK6lrT1FGA6nP1bU8_yku7oq7kV4gZJd05rP9szav5H9QxXuIq8-S_Qdkh0LxBn5HfPGKCON1xfhdO898Dyfs_HCRjCmIdO3JZR8VuH7swmarT-nghjSOFx19Rlcc_bTQt7JUOK5WLXmGPFD9cb60eMhR-6H_EBWKiwpPehpDHmlDB42IbhRbq18Xt1RgcbkXIfJqnEyGLX441kXBN2GznKK-3P4yu7i8HRa_GFpNZTXyfHkWwxjuiS_ok3BSBWikSRorlGLTPT3w0ovswq5u73F6wKmja72toVvtU0yXHIiVmHcwJW5ewv6YZJl9G2B9BRtuvgcvElhZD9Zr2AkwZx7mfbj9Ors5O8_7Eyxy7Ulu0DGvG4m93QlDrTbaEjPltqKsxsfO1HXhLCNak6bUUlBmmdDllHDXSMMNkzV_A1vzx7l7C5lpCmvKWmrtmDC8Mo0VnJCGk5o0-JnA-4Wqq98PIdreqoW2E9UEDlKLKBwMkRW9VYVgFA3JCWSpkVT4d79BWM1OzyR6YcWUTeBjajwVy0-81yhHcYWSVBClqnfP_-kB7Iw9_hC2uqdf7giNvc4c913nL_CzRkI |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Rough+Sets&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2021-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030873332&rft.issn=0302-9743&rft.eissn=1611-3349&rft.volume=12872&rft_id=info:doi/10.1007%2F978-3-030-87334-9&rft.externalDocID=510453 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830308%2F9783030873349.jpg |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-030-87334-9 |