Engineering Flexible, Self-Supported Si@CNF Nanofiber Membrane for High-Performance Li-Ion Battery Anode
Silicon-based materials are promising alternatives to graphite anodes in lithium-ion batteries (LIBs) due to their ultrahigh theoretical capacity (4200 mAh g– 1). However, severe volume expansion and particle detachment during cycling hinder their practical application. Herein, a flexible, self-supp...
Saved in:
Published in | Industrial & engineering chemistry research Vol. 64; no. 29; pp. 14329 - 14336 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
23.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silicon-based materials are promising alternatives to graphite anodes in lithium-ion batteries (LIBs) due to their ultrahigh theoretical capacity (4200 mAh g– 1). However, severe volume expansion and particle detachment during cycling hinder their practical application. Herein, a flexible, self-supported core–shell Si@CNF nanofiber membrane is engineered via a scalable electrospinning-carbonization strategy. The unique architecture features silicon nanoparticles encapsulated within a conductive carbon nanofiber network, effectively buffering volume changes and enhancing structural integrity. Electrochemical evaluations reveal that the optimized Si@CNF-2 anode delivers a high initial discharge capacity of 1460.2 mAh g– 1 at 0.2 A g– 1, with 86.4% capacity retention after 500 cycles. Remarkable rate capability is demonstrated with capacities of 1052.7 and 814.4 mAh g– 1 at 0.5 and 1 A g– 1, respectively. The superior performance is attributed to the synergistic effects of the 3D carbon scaffold, the binder-free design, and pseudocapacitive contributions (91% at 0.9 mV s– 1). This work provides a scalable approach to fabricating high-energy-density anodes for next-generation flexible LIBs. The flexible self-supported core–shell Si@CNF nanofiber membrane, engineered via a scalable electrospinning-carbonization strategy, serves as a promising anode material for lithium-ion batteries. |
---|---|
AbstractList | Silicon-based materials are promising alternatives to graphite anodes in lithium-ion batteries (LIBs) due to their ultrahigh theoretical capacity (4200 mAh g– 1). However, severe volume expansion and particle detachment during cycling hinder their practical application. Herein, a flexible, self-supported core–shell Si@CNF nanofiber membrane is engineered via a scalable electrospinning-carbonization strategy. The unique architecture features silicon nanoparticles encapsulated within a conductive carbon nanofiber network, effectively buffering volume changes and enhancing structural integrity. Electrochemical evaluations reveal that the optimized Si@CNF-2 anode delivers a high initial discharge capacity of 1460.2 mAh g– 1 at 0.2 A g– 1, with 86.4% capacity retention after 500 cycles. Remarkable rate capability is demonstrated with capacities of 1052.7 and 814.4 mAh g– 1 at 0.5 and 1 A g– 1, respectively. The superior performance is attributed to the synergistic effects of the 3D carbon scaffold, the binder-free design, and pseudocapacitive contributions (91% at 0.9 mV s– 1). This work provides a scalable approach to fabricating high-energy-density anodes for next-generation flexible LIBs. The flexible self-supported core–shell Si@CNF nanofiber membrane, engineered via a scalable electrospinning-carbonization strategy, serves as a promising anode material for lithium-ion batteries. |
Author | Li, Ruolan Liu, Yi Chen, Limiao Huang, Tieqi Wang, Wendan Wu, Weiying Yang, Zhihao Liu, Hongtao |
AuthorAffiliation | Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering |
Author_xml | – sequence: 1 givenname: Wendan surname: Wang fullname: Wang, Wendan – sequence: 2 givenname: Yi surname: Liu fullname: Liu, Yi – sequence: 3 givenname: Ruolan surname: Li fullname: Li, Ruolan – sequence: 4 givenname: Weiying surname: Wu fullname: Wu, Weiying – sequence: 5 givenname: Zhihao surname: Yang fullname: Yang, Zhihao – sequence: 6 givenname: Tieqi orcidid: 0000-0002-9755-7635 surname: Huang fullname: Huang, Tieqi – sequence: 7 givenname: Limiao surname: Chen fullname: Chen, Limiao email: chenlimiao@csu.edu.cn – sequence: 8 givenname: Hongtao orcidid: 0000-0002-1459-778X surname: Liu fullname: Liu, Hongtao email: liuht@csu.edu.cn |
BookMark | eNp1kMFuwjAQRK2KSgXae4_-AELXTuwkt1IEBYnSSrTnyE7WYAQ2coJU_r6J4NrTrDQzq903ID3nHRLyzGDMgLMXVdZji2UYixIYT_kd6TPBIRKQiB7pQ5Zlkcgy8UAGdb0HACGSpE92M7e1DjFYt6XzA_5afcAR3eDBRJvz6eRDgxXd2Nfpek7XynljNQb6gUcdlENqfKALu91FXxja-ahciXRlo6V39E01DYYLnThf4SO5N-pQ49NNh-RnPvueLqLV5_tyOllFism4iQxPqjhnTAIXJpe5BK0hMSWkAlWqc5mlWsqUM9AGjK6q3GSVimWlNe9-iocErnvL4Os6oClOwR5VuBQMio5U0ZIqOlLFjVRbGV0rnbP35-DaA_-P_wFZK254 |
Cites_doi | 10.1039/C4TA02348J 10.1016/j.jpowsour.2010.01.088 10.1002/aenm.201701083 10.1016/j.cej.2018.09.027 10.1002/smll.201702737 10.1021/acsnano.7b04523 10.1039/C7TA10093K 10.1002/smll.201800635 10.1016/j.scib.2019.01.015 10.1002/aenm.201601481 10.1016/j.jallcom.2019.152884 10.1002/asia.201600067 10.1002/aenm.201400753 10.1016/j.nanoen.2016.11.013 10.1038/s41467-023-37989-6 10.1016/j.nanoen.2016.04.014 10.1039/C3NR06418B 10.1016/j.electacta.2004.11.042 10.1016/j.ensm.2017.02.003 10.1021/nl201470j 10.1021/acsami.6b13153 10.1016/j.jechem.2020.06.022 10.1016/j.mee.2011.03.142 10.1039/D0TA06647H 10.1002/anie.201902085 10.1016/j.nanoen.2016.07.023 10.1016/j.apsusc.2017.12.068 10.1021/acsami.5b11628 10.1039/C9EE02615K 10.1021/acs.nanolett.9b04395 10.1021/acsami.8b12071 10.1016/j.ssi.2019.04.017 10.1039/C9EE03545A 10.1016/j.nanoen.2016.04.043 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acs.iecr.5c01272 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-5045 |
EndPage | 14336 |
ExternalDocumentID | 10_1021_acs_iecr_5c01272 a615930713 |
GroupedDBID | -~X .DC .K2 4.4 55A 5GY 5VS 6TJ 7~N AABXI ABBLG ABLBI ABMVS ABQRX ABUCX ACGFO ACJ ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 JG~ LG6 P2P ROL TAE TN5 UI2 VF5 VG9 W1F WH7 ~02 AAYXX CITATION |
ID | FETCH-LOGICAL-a163t-f24d39116025f96960bb04fc075ea7b9687b667210bf0fbdd9f8da36dbb200553 |
IEDL.DBID | ACS |
ISSN | 0888-5885 |
IngestDate | Thu Jul 31 00:54:04 EDT 2025 Fri Jul 25 03:23:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a163t-f24d39116025f96960bb04fc075ea7b9687b667210bf0fbdd9f8da36dbb200553 |
ORCID | 0000-0002-9755-7635 0000-0002-1459-778X |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1021_acs_iecr_5c01272 acs_journals_10_1021_acs_iecr_5c01272 |
PublicationCentury | 2000 |
PublicationDate | 20250723 2025-07-23 |
PublicationDateYYYYMMDD | 2025-07-23 |
PublicationDate_xml | – month: 07 year: 2025 text: 20250723 day: 23 |
PublicationDecade | 2020 |
PublicationTitle | Industrial & engineering chemistry research |
PublicationTitleAlternate | Ind. Eng. Chem. Res |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref7/cit7 |
References_xml | – ident: ref4/cit4 doi: 10.1039/C4TA02348J – ident: ref8/cit8 doi: 10.1016/j.jpowsour.2010.01.088 – ident: ref13/cit13 doi: 10.1002/aenm.201701083 – ident: ref15/cit15 doi: 10.1016/j.cej.2018.09.027 – ident: ref36/cit36 doi: 10.1002/smll.201702737 – ident: ref19/cit19 doi: 10.1021/acsnano.7b04523 – ident: ref24/cit24 doi: 10.1039/C7TA10093K – ident: ref23/cit23 doi: 10.1002/smll.201800635 – ident: ref30/cit30 doi: 10.1016/j.scib.2019.01.015 – ident: ref11/cit11 doi: 10.1002/aenm.201601481 – ident: ref20/cit20 doi: 10.1016/j.jallcom.2019.152884 – ident: ref29/cit29 doi: 10.1002/asia.201600067 – ident: ref1/cit1 doi: 10.1002/aenm.201400753 – ident: ref32/cit32 doi: 10.1016/j.nanoen.2016.11.013 – ident: ref34/cit34 doi: 10.1038/s41467-023-37989-6 – ident: ref10/cit10 doi: 10.1016/j.nanoen.2016.04.014 – ident: ref6/cit6 doi: 10.1039/C3NR06418B – ident: ref31/cit31 doi: 10.1002/smll.201702737 – ident: ref33/cit33 doi: 10.1016/j.electacta.2004.11.042 – ident: ref3/cit3 doi: 10.1016/j.ensm.2017.02.003 – ident: ref2/cit2 doi: 10.1021/nl201470j – ident: ref7/cit7 doi: 10.1021/acsami.6b13153 – ident: ref27/cit27 doi: 10.1016/j.jechem.2020.06.022 – ident: ref5/cit5 doi: 10.1016/j.mee.2011.03.142 – ident: ref22/cit22 doi: 10.1039/D0TA06647H – ident: ref25/cit25 doi: 10.1002/anie.201902085 – ident: ref12/cit12 doi: 10.1016/j.nanoen.2016.07.023 – ident: ref35/cit35 doi: 10.1002/aenm.201701083 – ident: ref14/cit14 doi: 10.1016/j.apsusc.2017.12.068 – ident: ref18/cit18 doi: 10.1021/acsami.5b11628 – ident: ref16/cit16 doi: 10.1039/C9EE02615K – ident: ref28/cit28 doi: 10.1021/acs.nanolett.9b04395 – ident: ref17/cit17 doi: 10.1021/acsami.8b12071 – ident: ref21/cit21 doi: 10.1016/j.ssi.2019.04.017 – ident: ref26/cit26 doi: 10.1039/C9EE03545A – ident: ref9/cit9 doi: 10.1016/j.nanoen.2016.04.043 |
SSID | ssj0005544 |
Score | 2.4771786 |
Snippet | Silicon-based materials are promising alternatives to graphite anodes in lithium-ion batteries (LIBs) due to their ultrahigh theoretical capacity (4200 mAh... |
SourceID | crossref acs |
SourceType | Index Database Publisher |
StartPage | 14329 |
SubjectTerms | Applied Chemistry |
Title | Engineering Flexible, Self-Supported Si@CNF Nanofiber Membrane for High-Performance Li-Ion Battery Anode |
URI | http://dx.doi.org/10.1021/acs.iecr.5c01272 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kXvTgW6wv9qAHwa3J5n2zFEMVW4Ra6C3sYxaLNZUmPeivd6eNtPiAHhPCECazM99kZr4h5CL2ReQKVzDpq5j5AIoliocs0TqIXBVC4uPscKcbtvv-wyAYLGhyflbwuXsjVNEYWgjVCBSWSa27XedhHGGi1Wz1Fu0cwWxxqz00OEkUB1VJ8i8JGIhUsRSIliJKuj1fTVTMiAixkeS1MS1lQ33-pmlc4WV3yFYFLGlzbgm7ZA3yPbK5RDe4T16WrmiKTJhyBNe0ByPDcLsn9t1q2hvetroptW7X2p2ECe3Am02pc6AW31LsC2FPi2kD-jhk9-Ocznk6P2gzH2s4IP307rnVZtWmBSYsHiuZ4b72rNsLLQIyyJfjSOn4Rlk8ASKSidW3DEObLDrSOEZqnZhYCy_UUuJfqcA7JLV8nMMRoVp7PgfgEolgjFIoTasghsQIYzTUyaVVUladlCKbFcG5m-FN1FxWaa5Orr4_T_Y-J97499njFWWekA2O63udiHHvlNTKyRTOLKYo5fnMmL4ABlrHsw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1La9tAEB5Cemhy6CsNcfraQ30IdB1preehUOPW2PWDgBPITdHuzlLTVA6RQ0n_Tf9Kf1lnZCU2pYFeAj1qEcNqZ3a_Wc3MNwBvkyCP_dzPpQ5MIgNEI1OjIplaG8a-iTANuHZ4PIn6J8Hn0_B0A37e1MLQJEqSVFZB_BW7gH_IYzPypFqh4WipqvMoh3j9nW5p5fvBR1JpU6nep-NuX9aNBGRO7sZCOhXYNu3qiADeMR2Mp7UXOENwiXms0yiJdRTRXcjTznPa2tQlNm9HVmv-6cKNIeiUf0C-j-L7Xac7XWWRhFW_WNqrXMCUhHUk9G8zZvwz5Rr-rQFZ7zH8ul2CKn_la-tqoVvmxx_skP_1Gj2BR7UbLTpLu38KG1g8g-01csUd-LL2JHrM-6nP8Z2Y4rmT3MuUs4ytmM4-dCc9QSBDu0zjpRjjN034jYK8ecFZMPJoVVshRjM5mBdiyUp6LTrF3OJzOLmXT92FzWJe4B4Ia9uBQlSaaW-cMSzNmjDB1OXOWWxAk5SS1edCmVUhf-VnPMiaympNNeDgxiqyiyXNyJ3v7v-jzDfwsH88HmWjwWT4ArYUNy72YqnaL2FzcXmFr8ibWujXlT0LOLtv4_gNLWcpXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1LSxxBEC5EIZiDmhc-oumDHgL2ZqZ3ngfBZc3g-liEjeBtMt1dTZborDgrov8nf8XfZdXsqEtIIBchx2mGpqerqr_qqaqvADaToIj9wi-kDkwiA0QjU6MimVobxr6JMA24dvi4H-2fBgdn4dkM_HqshaFFVDRTVQfx2aovrWsYBvwvPD4kb6oVGo6YqiaX8hBvb-imVu309kisW0plX79192XTTEAW5HKMpVOBbZNlRwTyjilhPK29wBmCTCxinUZJrKOI7kOedp7T1qYusUU7slrzjxduDkEn_RxHCfmO1-kOnjNJwrpnLNkrFzElYRMN_dOKGQNNNYWBU2CWLcL90zbUOSw_W9dj3TJ3vzFE_vf7tAQLjTstOhP9fwMzWL6F11Mki-_gx9STyJj_U5_jthjguZPc05Szja0YDHe7_UwQ2JC1abwSx3ihCcdRkFcvOBtGnjzXWIijoeyNSjFhJ70VnXJk8T2cvsinfoDZclTiMghr24FCVJrpb5wxPJs1YYKpK5yzuAJbJJS8OR-qvA79Kz_nQZZU3khqBT4_akZ-OaEb-eu7q_845yd4dbKX5Ue9_uEazCvuX-zFUrU_wuz46hrXyaka641apQV8f2ndeAApiivi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Flexible%2C+Self-Supported+Si%40CNF+Nanofiber+Membrane+for+High-Performance+Li-Ion+Battery+Anode&rft.jtitle=Industrial+%26+engineering+chemistry+research&rft.au=Wang%2C+Wendan&rft.au=Liu%2C+Yi&rft.au=Li%2C+Ruolan&rft.au=Wu%2C+Weiying&rft.date=2025-07-23&rft.issn=0888-5885&rft.eissn=1520-5045&rft.volume=64&rft.issue=29&rft.spage=14329&rft.epage=14336&rft_id=info:doi/10.1021%2Facs.iecr.5c01272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_iecr_5c01272 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-5885&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-5885&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-5885&client=summon |