Discovery science : 25th International Conference, DS 2022, Montpellier, France, October 10-12, 2022 : proceedings

This book constitutes the proceedings of the 25th International Conference on Discovery Science, DS 2022, which took place virtually during October 10-12, 2022.The 27 full papers and 12 short papers presented in this volume were carefully reviewed and selected from 59 submissions.  

Saved in:
Bibliographic Details
Published inLecture Notes in Computer Science Vol. 13601
Main Authors International Conference on Discovery Science, Pascal, Poncelet, Ienco, Dino
Format eBook Book Conference Proceeding
LanguageEnglish
Published Cham Springer 2022
Springer Nature Switzerland
Edition1
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This book constitutes the proceedings of the 25th International Conference on Discovery Science, DS 2022, which took place virtually during October 10-12, 2022.The 27 full papers and 12 short papers presented in this volume were carefully reviewed and selected from 59 submissions.  
AbstractList The Discovery Science conference presents a unique combination of latest advances in the development and analysis of methods for discovering scientific knowledge, coming from machine learning, data mining, and intelligent data analysis, with their application in various scientific domains. The 25th International Conference on Discovery Science (DS 2022) was held in Montpellier, France, during October 10–12, 2022. This was the second time the conference was organized as a stand-alone physical event.For its first 20 editions, DS was co-located with the International Conference on Algorithmic Learning Theory (ALT). In 2018 it was co-located with the 24th Interna- tional Symposium on Methodologies for Intelligent Systems (ISMIS 2018). DS 2019 was a stand-alone event, whereas DS 2020 and DS 2021 were online-only events.DS 2022 received 56 international submissions. Each submission was reviewed by at least two Program Committee (PC) members in a single-blind manner. The PC decided to accept 27 regular papers and 12 short papers. This resulted in an acceptance rate of 48% for regular papers.The conference included three keynote talks. Leman Akoglu (Carnegie Mellon Uni- versity) contributed a talk titled “Unsupervised Model Selection in Outlier Detection: The Elephant in the Room”; Luca Maria Aiello (IT University of Copenhagen) gave a presentation titled “Coloring Social Relationships”; and Stefan Kramer (University of Mainz) contributed a talk titled “35 Years of ‘Scientific Discovery: Computational Explorations of the Creative Processes’ – From the Early Days to the State of the Art”. Abstracts of the invited talks are included in the front matter of these proceedings. Besides the presentation of regular and short papers in the main program, the conference offered a session titled “Late Breaking Contributions” featuring poster and spotlight presentations of very recent research results on topics related to discovery science.We are grateful to Springer for their continued long-term support. Springer publishes the conference proceedings, as well as a regular special issue of the Machine Learning journal on discovery science. The latter offers authors a chance to publish significantly extended and reworked versions of their DS conference papers in this prestigious journal, while being open to all submissions on DS conference topics.This year, Springer (LNCS) supported the best student paper award. For DS 2022, the awardees are Annunziata D’Aversa, Stefano Polimena, Gianvito Pio, and Michelangelo Ceci (for the paper “Leveraging spatio-temporal autocorrelation phenomena to improve the forecasting of the energy consumption in smart grids”). We would like to thank Roberto Interdonato who joined the Program Chairs of the conference for the selection of the best student paper.On the program side, we would like to thank all the authors of submitted papers and the PC members for their efforts in evaluating the submitted papers, as well as the keynote speakers. On the organization side, we would like to thank all the members of the Organizing Committee, in particular Virginie Feche and Elena Demchenko, for the smooth preparation and organization of all conference associated activities. We are also grateful to the people behind EasyChair for developing the conference organization system that proved to be an essential tool in the paper submission and evaluation process, as well as in the preparation of the Springer proceedings.The DS 2022 conference was organized under the auspices of several universities and research institutes in Montpellier: the University of Montpellier, the University of Paul Valery, INRAE, Inria, and CIRAD. Significant support, especially through human resources, was also provided by the University of Montpellier and INRAE. Finally, we are indebted to all conference participants, who contributed to making this exciting event a worthwhile endeavor for all involved.
This book constitutes the proceedings of the 25th International Conference on Discovery Science, DS 2022, which took place virtually during October 10-12, 2022.The 27 full papers and 12 short papers presented in this volume were carefully reviewed and selected from 59 submissions.  
Author Ienco, Dino
Pascal, Poncelet
International Conference on Discovery Science
Author_xml – sequence: 1
  fullname: International Conference on Discovery Science
– sequence: 2
  fullname: Pascal, Poncelet
– sequence: 3
  fullname: Ienco, Dino
BackLink https://cir.nii.ac.jp/crid/1130860675962727726$$DView record in CiNii
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04206262$$DView record in HAL
BookMark eNpFkc1u1DAUhQ0UxEyZB2CXBRJCTOi9duIfdmXa0kqDugCxtZzE6Zim9mCHQX17nEklNraOzneOfK-X5MQHbwl5i_AJAcSZErJkJTAsUcoKyuoZWbIsj4o9JwvkiCVjlXpBVhl-8piSJ2QBDGipRMVekSWyGoRiwOE1WaX0CwCoYFhxXJB44VIbDjY-Fql11re2-FzQetwVN3600ZvRBW-GYhN8b-Pkr4uL7wUFStfFt-DHvR0GZ-O6uIrm6N62Y2hsLBBKzMxE5sp9DK21nfN36Q152Zsh2dXTfUp-Xl3-2FyX29uvN5vzbWmQs1qV0iiFXPQITcWbDpS00CoUHa1tZyhK0zS0rluWp-zBiKqTTPSq642gMkt2Sj7OxTsz6H10DyY-6mCcvj7f6sHFhwcNFQVOOT1gpj_MtEn39m_ahWFM-jDYJoT7pP_vt4Kp-WxmU671dzbqmULQ09dNtGY68_oY0FPi_ZzIi_j9x6ZRH4tb68eYX3f5ZSOQ0TxdJt_NpHdOt246ERlIDlzUilNBhaCc_QN28ZfO
ContentType eBook
Book
Conference Proceeding
Copyright The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID RYH
1XC
DEWEY 501
DOI 10.1007/978-3-031-18840-4
DatabaseName CiNii Complete
Hyper Article en Ligne (HAL)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Sciences (General)
EISBN 3031188403
9783031188404
EISSN 1611-3349
Edition 1
Editor Ienco, Dino
Pascal, Poncelet
Editor_xml – sequence: 1
  givenname: Poncelet
  orcidid: 0000-0002-8277-3490
  surname: Pascal
  fullname: Pascal, Poncelet
  email: Pascal.Poncelet@lirmm.fr
– sequence: 2
  givenname: Dino
  orcidid: 0000-0002-8736-3132
  surname: Ienco
  fullname: Ienco, Dino
  email: dino.ienco@inrae.fr
ExternalDocumentID oai_HAL_lirmm_04206262v1
9783031188404
540156
EBC7132917
BD04095456
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
IEZ
RYH
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
1XC
ID FETCH-LOGICAL-a16359-8a99167f10b46bd098e0c917d25eda218abb255c3743f0a74d837f9dfa728a743
ISBN 9783031188398
303118839X
3031188403
9783031188404
ISSN 0302-9743
IngestDate Fri May 09 12:17:23 EDT 2025
Wed Apr 23 04:06:47 EDT 2025
Wed Oct 30 02:39:00 EDT 2024
Mon Jan 06 23:54:07 EST 2025
Thu Jun 26 22:07:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Computer vision
Network protocols
Image processing
Artificial Intelligence
Data Mining and Knowledge Discovery
Pattern Recognition and Graphics
Information retrieval
Computers and Education
Pattern recognition
Data mining
Computer systems
Image analysis
Correlation analysis
Neural networks
Vision
Clustering algorithms
Machine learning
Linguistics
Signal processing
Computer Imaging
Computer networks
Information Systems Applications
LCCallNum_Ident Q334-342
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MeetingName International Conference on Discovery Science
MergedId FETCHMERGED-LOGICAL-a16359-8a99167f10b46bd098e0c917d25eda218abb255c3743f0a74d837f9dfa728a743
Notes "LNCS sublibrary: SL7 - Artificial intelligence"--T.p. verso
Includes bibliographical references and index
OCLC 1350793060
ORCID 0000-0002-8277-3490
0000-0002-8736-3132
PQID EBC7132917
PageCount 576
ParticipantIDs hal_primary_oai_HAL_lirmm_04206262v1
askewsholts_vlebooks_9783031188404
springer_books_10_1007_978_3_031_18840_4
proquest_ebookcentral_EBC7132917
nii_cinii_1130860675962727726
PublicationCentury 2000
PublicationDate c2022
2022
2022-11-05
PublicationDateYYYYMMDD 2022-01-01
2022-11-05
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationTitle Lecture Notes in Computer Science
PublicationYear 2022
Publisher Springer
Springer Nature Switzerland
Publisher_xml – name: Springer
– name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002731461
ssj0002792
Score 2.5883408
Snippet This book constitutes the proceedings of the 25th International Conference on Discovery Science, DS 2022, which took place virtually during October 10-12,...
The Discovery Science conference presents a unique combination of latest advances in the development and analysis of methods for discovering scientific...
SourceID hal
askewsholts
springer
proquest
nii
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Artificial Intelligence
Computer Appl. in Social and Behavioral Sciences
Computer Imaging, Vision, Pattern Recognition and Graphics
Computer Science
Computers and Education
Data Mining and Knowledge Discovery
Discoveries in science
Discoveries in science -- Congresses
Information Systems Applications (incl. Internet)
Research -- Data processing -- Congresses
Science
Science -- Philosophy -- Congresses
TableOfContents Multi-attribute Transformers for Sequence Prediction in Business Process Management -- 1 Introduction -- 2 Definitions and Problem Statement -- 3 Related Work -- 4 Proposed Architectures -- 4.1 Encoder Architectures -- 4.2 Simplified Decoder Architectures -- 5 Experiments and Discussion -- 6 Conclusions and Final Remarks -- References -- Social Media Analysis -- Data-Driven Prediction of Athletes' Performance Based on Their Social Media Presence -- 1 Introduction -- 2 Related Work -- 2.1 Social Media as a Mood and Behaviour Detection Proxy -- 2.2 Social Media as a Distraction Factor -- 3 Methodology -- 3.1 Data Selection -- 3.2 Data Preparation -- 3.3 Predictive Significance Analysis -- 3.4 Implementation Details -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Link Prediction with Text in Online Social Networks: The Role of Textual Content on High-Resolution Temporal Data -- 1 Introduction -- 2 Background -- 3 Methodology -- 3.1 Graph Construction and Sequence-Based Framework -- 3.2 Learning Algorithms for Link Prediction in Temporal OSNs -- 3.3 Features for Link Prediction -- 4 Dataset -- 5 Results -- 5.1 Results for Traditional Models -- 5.2 Results for Graph Neural Networks -- 6 Discussion -- References -- Weakly Supervised Named Entity Recognition for Carbon Storage Using Deep Neural Networks -- 1 Introduction -- 2 Overview -- 2.1 Contributions -- 3 Background -- 4 Methodology -- 4.1 Noisy Data Set Creation -- 4.2 Overcoming Noisy Labels Effect -- 5 Evaluation -- 6 Related Work -- 7 Conclusion -- References -- Predicting User Dropout from Their Online Learning Behavior -- 1 Introduction -- 2 Background -- 3 Methodology -- 3.1 Data Set -- 3.2 Features -- 3.3 Pre-processing -- 3.4 Predictive Model -- 3.5 Evaluation -- 4 Results -- 4.1 Predictive Model -- 4.2 Evaluation -- 5 Discussion -- 6 Conclusions -- References
3 Training a Neural Network by Imitation Learning -- 3.1 Imitation Learning -- 3.2 Neural Network Input and Output Encoding -- 3.3 Pre-selection -- 4 Evaluation -- 4.1 Experiment Details -- 4.2 Comparison with Other Active Learning Strategies -- 5 Conclusion -- References -- Incremental/Continual Learning -- Predicting Potential Real-Time Donations in YouTube Live Streaming Services via Continuous-Time Dynamic Graph -- 1 Introduction -- 2 Related Work -- 2.1 Online Live Streaming Service -- 2.2 Dynamic Graph Learning -- 3 Methodology -- 3.1 Dataset -- 3.2 Dynamic Graph Generation -- 3.3 Temporal Graph Neural Network -- 3.4 Strategies for Data Imbalance -- 4 Experiments -- 4.1 Dataset Description -- 4.2 Experiment Setup -- 4.3 Baselines -- 4.4 Evaluation -- 4.5 Case Study -- 5 Conclusion -- References -- Semi-supervised Change Point Detection Using Active Learning -- 1 Introduction -- 2 AL-CPD -- 2.1 Algorithm Outline -- 2.2 Selecting Candidate Change Points -- 2.3 Finding New Candidate Change Points -- 3 Experiments -- 3.1 Datasets -- 3.2 Methodology -- 3.3 Q1: Comparison to Existing Change Point Detection Algorithms -- 3.4 Q2: Labelling Effort of AL-CPD -- 3.5 Q3: Contribution of Each Component of AL-CPD -- 3.6 Q4: Sensitivity Analysis -- 4 Conclusion -- References -- Adaptive Neural Networks for Online Domain Incremental Continual Learning -- 1 Introduction -- 2 Related Work -- 3 Online Domain Incremental Networks -- 4 Experiments -- 5 Conclusion -- References -- Incremental Update of Locally Optimal Classification Rules -- 1 Introduction -- 2 The Lord Algorithm -- 3 Incremental Lord -- 3.1 Incremental Updates -- 3.2 Overall Algorithm -- 4 Experiments -- 4.1 Comparison to HoeffdingTree and VFDR -- 4.2 Sensitivity to Parameter Settings -- 5 Conclusion -- References -- Policy Evaluation with Delayed, Aggregated Anonymous Feedback -- 1 Introduction
2 Related Work -- 3 Preliminaries -- 4 Policy Evaluation with DAAF -- 5 Methodology -- 6 Results -- 7 Discussion and Future Work -- 8 Summary and Conclusions -- References -- Spatial and Temporal Analysis -- Spatial Cross-Validation for Globally Distributed Data -- 1 Introduction -- 2 Related Work -- 3 Spatial k-Fold Cross-Validation -- 4 Evaluation of Performance -- 4.1 Data Sets -- 4.2 Experimental Design -- 4.3 Analysis of Performance -- 5 Conclusions -- References -- .26em plus .1em minus .1emLeveraging Spatio-Temporal Autocorrelation to Improve the Forecasting of the Energy Consumption in Smart Grids -- 1 Introduction -- 2 Related Work -- 3 The Proposed Method -- 3.1 Modeling the Temporal Autocorrelation -- 3.2 Modeling the Spatial Autocorrelation -- 4 Experiments -- 4.1 Experimental Setting -- 4.2 Results and Discussion -- 5 Conclusion -- References -- Elastic Product Quantization for Time Series -- 1 Introduction -- 2 Background -- 2.1 Dynamic Time Warping -- 2.2 Product Quantization -- 3 Approximate Dynamic Time Warping with Product Quantization -- 3.1 Training Phase -- 3.2 Encoding Time Series -- 3.3 Computing Distances Between Time Series -- 3.4 Memory Cost -- 3.5 Pre-alignment of Subspaces -- 4 Data Mining Applications -- 4.1 NN Search with PQ Approximates -- 4.2 Clustering with PQ Approximates -- 5 Experimental Settings -- 6 Experimental Results -- 6.1 Empirical Time Complexity -- 6.2 1NN Classification -- 6.3 Hierarchical Clustering -- 7 Conclusions -- References -- Stress Detection from Wearable Sensor Data Using Gramian Angular Fields and CNN -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 Preprocessing -- 2.3 Sample Construction -- 2.4 Convolutional Neural Network -- 3 Results -- 3.1 Implementation -- 3.2 Experiments -- 4 Conclusions and Future Work -- References
Efficient Multivariate Data Fusion for Misinformation Detection During High Impact Events -- 1 Introduction -- 2 Materials and Methods -- 2.1 Dataset -- 2.2 High-Level Feature Extraction -- 2.3 Multi-modal Data Fusion Framework Based on Independent Vector Analysis -- 2.4 Effective Density Model for Capturing Multi-modal Associations -- 2.5 Classification Procedure -- 3 Results and Discussion -- 3.1 Classification Performance -- 3.2 Explainability -- 4 Conclusion -- References -- Fairness and Outlier Detection -- MQ-OFL: Multi-sensitive Queue-based Online Fair Learning -- 1 Introduction -- 2 Background -- 2.1 Related Work -- 2.2 Fairness Definitions -- 2.3 Gerrymandering -- 2.4 Imbalanced and Drifted Data Stream -- 3 MQ-OFL Framework -- 3.1 Balanced and Fairness-Aware Pre-processing -- 3.2 Classifier Pool -- 3.3 Decision Boundary Adjustment -- 4 Experimental Evaluation -- 4.1 Datasets -- 4.2 Evaluation Metrics -- 4.3 Experimental Results -- 5 Conclusion -- References -- Multi-fairness Under Class-Imbalance -- 1 Introduction -- 2 Related Work -- 3 Basics and Multi-Max Mistreatment (MMM) Fairness -- 3.1 Multi-Max Mistreatment(MMM) Measure -- 4 Multi-Fairness-Aware Learning -- 4.1 Multi-discrimination-Free Learning Under Class-Imbalance -- 4.2 The MMM-Fair Boosting Post Pareto (MFBPP) Algorithm -- 5 Experiments -- 5.1 Experimental Settings -- 5.2 Evaluation Results -- 5.3 Internal Analysis -- 5.4 Flexibility of MFBPP -- 6 Conclusions and Outlook -- References -- When Correlation Clustering Meets Fairness Constraints -- 1 Introduction -- 2 Related Work -- 3 Fairness Constraints in Correlation Clustering -- 3.1 Background on Correlation Clustering -- 3.2 Problem Statement -- 4 Algorithm -- 5 Fairness Evaluation -- 6 Experimental Methodology -- 6.1 Competing Methods -- 6.2 Data -- 6.3 Evaluation Goals -- 6.4 Hyper-parameters and Configurations -- 7 Results
8 Conclusions
Intro -- Preface -- Organization -- Keynote Talks -- Unsupervised Model Selection in Outlier Detection: The Elephant in the Room -- Coloring Social Relationships -- 35 Years of 'Scientific Discovery: Computational Explorations of the Creative Processes' - From the Early Days to the State of the Art -- Contents -- Regression and Limited Data -- Model Optimization in Imbalanced Regression -- 1 Introduction -- 2 Related Work -- 3 Imbalanced Regression -- 3.1 Relevance Function -- 3.2 Squared Error Relevance Area (SERA) -- 4 Optimization Loss Function for Imbalanced Regression -- 5 Experimental Study -- 5.1 Experimental Setup -- 5.2 Results on Model Optimization -- 5.3 Results in Out-of-Sample -- 6 Conclusions -- A SERA numerical approximation -- B Tables of Results -- References -- Discovery of Differential Equations Using Probabilistic Grammars -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Algebraic Equations and Numeric Differentiation -- 3.2 Differential Equations and Direct Simulation -- 3.3 Parallel Computation -- 4 Experimental Evaluation -- 4.1 Experimental Setup -- 4.2 Results -- 5 Conclusion -- References -- Hyperparameter Importance of Quantum Neural Networks Across Small Datasets -- 1 Introduction -- 2 Background -- 2.1 Functional ANOVA -- 2.2 Supervised Learning with Parameterized Quantum Circuits -- 3 Methods -- 3.1 Hyperparameters and Configuration Space -- 3.2 Assessing Hyperparameter Importance -- 3.3 Verifying Hyperparameter Importance -- 4 Dataset and Inclusion Criteria -- 5 Results -- 5.1 Performance Distributions per Dataset -- 5.2 Surrogate Verification -- 5.3 Marginal Contributions -- 5.4 Random Search Verification -- 6 Conclusion -- References -- ImitAL: Learned Active Learning Strategy on Synthetic Data -- 1 Introduction -- 2 Simulating AL on Synthetic Training Data
Title Discovery science : 25th International Conference, DS 2022, Montpellier, France, October 10-12, 2022 : proceedings
URI https://cir.nii.ac.jp/crid/1130860675962727726
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=7132917
http://link.springer.com/10.1007/978-3-031-18840-4
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9783031188404
https://hal-lirmm.ccsd.cnrs.fr/lirmm-04206262
Volume 13601
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68rK98DVEGEMW2gNSG5TY-Xwsa6cySpnUMe3Ncr60aFsKSzaJ_fWcHTsfZUgDqbIaN3Ev_p3Pd-c7G6EDDipoBva_GTuZbzoks83ADULTT4gXkJDDRyQnf1168-_O8bl7Phjcd7NLquhjfP9gXsn_oAp1gKvIkv0HZJtGoQK-A75QAsJQbii_D84zC-X_X64rGVY10kc06BHb5YdpXsYiXPNXM5zNEXGriw2fYJsBKKXRakRg-pVe03VRiZWavMZYHsgh7_kWVyI6eyTjL0SFfuKkobnW20WXpOUjqVaOCEI2HBHaEdkzUGGCBAsGjEinI9coCGEwY2hPCFOvbusPkd6N4oDWTNmcygzqbZ89n6zYyfSILT4vv_R_bfbRnk8W7Cq_ub5mIKsssOXIHVjOW6AlDdGTyex4cdb450Ctq48839bXoVqRqokXeUL65Wi9k1P7snr5XO1g3CN8B-3w8hJmMJjdqhJUmgsRgbtV5HnPyNlYl5fqzukztNuyAW5hfI4GafECPdWAYQXYS_Sz4S5dh00suAv3uAu3zY7xdIUFvmPc4awxrvlqjBVXYclVY3Vnh6N20dnR7PRwbqrDPEwOKr_wNXNhiviZbUWOFyVWGKRWHNogFNw04aBp8igC-zam0LmZxX0nCaifhUnGfRLAJX2FhsW6SF8jnJA0dWnqJyFJnNjOuMVpGoc8Au3X9f3IQO87XczurmTgQcl6GBnoAHqe_ag3dWF_Yw8D7QM0LM5FaYPGF3jCyBZnVhGwTD0DYQ0ak3-jgqrZ7NOhb1MCb2igDxpMVhOi9woHghhlQBKTNDHnzeOI2kPb7Qh8i4bVzW26D8pxFb1TfPwbFqCmZg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Lecture+Notes+in+Computer+Science&rft.atitle=Discovery+Science+-+25th+International+Conference%2C+DS+2022%2C+Montpellier%2C+France%2C+October+10-12%2C+2022%2C+Proceedings&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer&rft.isbn=9783031188404&rft.issn=0302-9743&rft.volume=13601&rft_id=info:doi/10.1007%2F978-3-031-18840-4&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_lirmm_04206262v1
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97830311%2F9783031188404.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fmedia.springernature.com%2Fw306%2Fspringer-static%2Fcover-hires%2Fbook%2F978-3-031-18840-4