Principles and Properties of a MAS Learning Algorithm: A Comparison with Standard Learning Algorithms Applied to Implicit Feedback Assessment
The purpose of this paper is to present a new learning algorithm based on an adaptive multi-agent system and to compare it with classical learning algorithms such as the Multi-Layer Perceptron (MLP), the Support Vector Machine (SVM), and the Decision Tree (DT). This comparison is made using data ext...
Saved in:
Published in | 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Vol. 2; pp. 228 - 235 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The purpose of this paper is to present a new learning algorithm based on an adaptive multi-agent system and to compare it with classical learning algorithms such as the Multi-Layer Perceptron (MLP), the Support Vector Machine (SVM), and the Decision Tree (DT). This comparison is made using data extracted from logs of a local citizen information search engine, called iSAC. It is based on the learning and the inference of the assessment of a real user with regard to the documents provided by iSAC in response to his request. The experimental evaluations show that our algorithm provides results at least as good as those achieved with classical learning approaches, in addition to its capability to function in dynamic and time constrained environments. |
---|---|
AbstractList | The purpose of this paper is to present a new learning algorithm based on an adaptive multi-agent system and to compare it with classical learning algorithms such as the Multi-Layer Perceptron (MLP), the Support Vector Machine (SVM), and the Decision Tree (DT). This comparison is made using data extracted from logs of a local citizen information search engine, called iSAC. It is based on the learning and the inference of the assessment of a real user with regard to the documents provided by iSAC in response to his request. The experimental evaluations show that our algorithm provides results at least as good as those achieved with classical learning approaches, in addition to its capability to function in dynamic and time constrained environments. |
Author | Camps, V. Lemouzy, S. Glize, P. |
Author_xml | – sequence: 1 givenname: S. surname: Lemouzy fullname: Lemouzy, S. email: lemouzy@irit.fr organization: IRIT, Univ. Paul Sabatier, Toulouse, France – sequence: 2 givenname: V. surname: Camps fullname: Camps, V. email: camps@irit.fr organization: IRIT, Univ. Paul Sabatier, Toulouse, France – sequence: 3 givenname: P. surname: Glize fullname: Glize, P. email: glize@irit.fr organization: IRIT, Univ. Paul Sabatier, Toulouse, France |
BookMark | eNptTE9LwzAcjaigzp09ePl9gc6kTZPGWxhOCxMHG3gcafPrjLZpSQrih9h3tqhH3-X94b13Rc5875GQG0YXjFF191ompd4tUsrYgil6QuZKFlQKlfOcZfz0xzOeS8kymYkLMo_xnU4QQinFLslxE5yv3dBiBOMtbEI_YBjdZPsGDDzrLazRBO_8AXR76IMb37p70LDsu8EEF3sPn1MG23Ham2D_qUfQw9A6tDD2UHaTrN0IK0RbmfoDdIwYY4d-vCbnjWkjzv94Rnarh93yKVm_PJZLvU4ME-mY1GlqqqKqaS1SgUxyk0taVTnlqrCqyQvZWENRSlpYWXHR0IZbtIpzlhW2ymbk9vfWIeJ-CK4z4WsvKKeySLNvRjtoKw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/WI-IAT.2011.190 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9780769545134 0769545130 |
EndPage | 235 |
ExternalDocumentID | 6040782 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ACM ADPZR ALMA_UNASSIGNED_HOLDINGS APO CBEJK GUFHI LHSKQ RIB RIC RIE RIL |
ID | FETCH-LOGICAL-a162t-c22ab8bc0c626e174a570bb50498d9f587fda0e7708d7b46f0f4ded944138db3 |
IEDL.DBID | RIE |
ISBN | 9781457713736 145771373X |
IngestDate | Wed Jun 26 19:27:34 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a162t-c22ab8bc0c626e174a570bb50498d9f587fda0e7708d7b46f0f4ded944138db3 |
PageCount | 8 |
ParticipantIDs | ieee_primary_6040782 |
PublicationCentury | 2000 |
PublicationDate | 2011-Aug. |
PublicationDateYYYYMMDD | 2011-08-01 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-Aug. |
PublicationDecade | 2010 |
PublicationTitle | 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology |
PublicationTitleAbbrev | wi-iat |
PublicationYear | 2011 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000669991 ssj0001120470 |
Score | 1.586041 |
Snippet | The purpose of this paper is to present a new learning algorithm based on an adaptive multi-agent system and to compare it with classical learning algorithms... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 228 |
SubjectTerms | Algorithm design and analysis Artificial neural networks Data mining Decision trees Heuristic algorithms Implicit assessment of user's feedback Multi-agent learning Personalization Real time systems Self-adaptive systems Self-organization Support vector machines |
Title | Principles and Properties of a MAS Learning Algorithm: A Comparison with Standard Learning Algorithms Applied to Implicit Feedback Assessment |
URI | https://ieeexplore.ieee.org/document/6040782 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ0-oYHxnDh4tbNttd-utIRIwwZCAkRvZV5GolEC5-B_8z-6WtiSGg7du0za7m-k8vp35BqF7GZGIBMJ1mBsIh2jtOxwT7SRK-dSKiJd3iRi-hP1X8jwNpjX0UNXCaK3z5DPdtpf5Wb5K5dZCZZ0Q21Mno3CPaBTtarUqPMWYTuvr7PEV18OE4ryWK6AmFKP-tKR4KsZhQfXj4qjzNnAG8WRH6enmCnrfayU3Nb0GGpaT3GWYfLS3mWjL7z_8jf9dxQlq7Yv6YFSZq1NU08sz1Ci7OkDxkzfRz6jE3zfAl8q-s7LJ12aYJsBhGI-hYGWdQ_w5T9eL7P3rEWLoVj0NwcK7MC5gigOPb6BwfyFLYZBntS8y6Jm5CS4_IK74Qlto0nuadPtO0bTB4W7oZY70PC6YkFiaUEmbeIcHFAsRmEiEqSgJGE0Ux5pSzBQVJExwQpRWkXHLfKaEf47qy3SpLxBoox4E40Z0aEhYwKNEuqH5MlMkkVz5l6hpN3e22tFyzIp9vTp8-xodl3Awdm9QPVtv9a3xJzJxlwvSL2xXxvg |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDiURBvbmAkrZM4scMWVVQtUFSpRXSr_EqpgARBuvAf-M_YaZJKqANbHCWRbV3u8fnuO4SuZEQiEgjXYW4gHKK173BMtJMo5VMrIl7RJWLwGPaeyN0kmGyg67oWRmtdJJ_plr0szvJVJhcWKmuH2J46GYW7afxqFi6rtWpExRhP6-2sEBbXw4TioporoCYYo_6kInkqx2FJ9uPiqP3cd_rxeEnq6RYqetVtpTA23R00qKa5zDF5bS1y0ZLffxgc_7uOXXSwKuuDYW2w9tCGTvfRTtXXAcrfvIl-hhUC_wU8VfadD5t-bYZZAhwG8QhKXtYZxG-z7HOev7zfQAyduqshWIAXRiVQsebxLygdYMgz6Bd57fMcumZugstXiGvG0AM07t6OOz2nbNvgcDf0ckd6HhdMSCxNsKRNxMMDioUITCzCVJQEjCaKY00pZooKEiY4IUqryDhmPlPCP0SNNEv1EQJtFIRg3AgPDQkLeJRINzRfZookkiv_GDXt5k4_lsQc03JfT9bfvkRbvfHgYfrQf7w_RdsVOIzdM9TIPxf63HgXubgohOoX_v_KQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE%2FWIC%2FACM+International+Conferences+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Principles+and+Properties+of+a+MAS+Learning+Algorithm%3A+A+Comparison+with+Standard+Learning+Algorithms+Applied+to+Implicit+Feedback+Assessment&rft.au=Lemouzy%2C+S.&rft.au=Camps%2C+V.&rft.au=Glize%2C+P.&rft.date=2011-08-01&rft.pub=IEEE&rft.isbn=9781457713736&rft.volume=2&rft.spage=228&rft.epage=235&rft_id=info:doi/10.1109%2FWI-IAT.2011.190&rft.externalDocID=6040782 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/sc.gif&client=summon&freeimage=true |