Principles and Properties of a MAS Learning Algorithm: A Comparison with Standard Learning Algorithms Applied to Implicit Feedback Assessment

The purpose of this paper is to present a new learning algorithm based on an adaptive multi-agent system and to compare it with classical learning algorithms such as the Multi-Layer Perceptron (MLP), the Support Vector Machine (SVM), and the Decision Tree (DT). This comparison is made using data ext...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology Vol. 2; pp. 228 - 235
Main Authors Lemouzy, S., Camps, V., Glize, P.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of this paper is to present a new learning algorithm based on an adaptive multi-agent system and to compare it with classical learning algorithms such as the Multi-Layer Perceptron (MLP), the Support Vector Machine (SVM), and the Decision Tree (DT). This comparison is made using data extracted from logs of a local citizen information search engine, called iSAC. It is based on the learning and the inference of the assessment of a real user with regard to the documents provided by iSAC in response to his request. The experimental evaluations show that our algorithm provides results at least as good as those achieved with classical learning approaches, in addition to its capability to function in dynamic and time constrained environments.
AbstractList The purpose of this paper is to present a new learning algorithm based on an adaptive multi-agent system and to compare it with classical learning algorithms such as the Multi-Layer Perceptron (MLP), the Support Vector Machine (SVM), and the Decision Tree (DT). This comparison is made using data extracted from logs of a local citizen information search engine, called iSAC. It is based on the learning and the inference of the assessment of a real user with regard to the documents provided by iSAC in response to his request. The experimental evaluations show that our algorithm provides results at least as good as those achieved with classical learning approaches, in addition to its capability to function in dynamic and time constrained environments.
Author Camps, V.
Lemouzy, S.
Glize, P.
Author_xml – sequence: 1
  givenname: S.
  surname: Lemouzy
  fullname: Lemouzy, S.
  email: lemouzy@irit.fr
  organization: IRIT, Univ. Paul Sabatier, Toulouse, France
– sequence: 2
  givenname: V.
  surname: Camps
  fullname: Camps, V.
  email: camps@irit.fr
  organization: IRIT, Univ. Paul Sabatier, Toulouse, France
– sequence: 3
  givenname: P.
  surname: Glize
  fullname: Glize, P.
  email: glize@irit.fr
  organization: IRIT, Univ. Paul Sabatier, Toulouse, France
BookMark eNptTE9LwzAcjaigzp09ePl9gc6kTZPGWxhOCxMHG3gcafPrjLZpSQrih9h3tqhH3-X94b13Rc5875GQG0YXjFF191ompd4tUsrYgil6QuZKFlQKlfOcZfz0xzOeS8kymYkLMo_xnU4QQinFLslxE5yv3dBiBOMtbEI_YBjdZPsGDDzrLazRBO_8AXR76IMb37p70LDsu8EEF3sPn1MG23Ham2D_qUfQw9A6tDD2UHaTrN0IK0RbmfoDdIwYY4d-vCbnjWkjzv94Rnarh93yKVm_PJZLvU4ME-mY1GlqqqKqaS1SgUxyk0taVTnlqrCqyQvZWENRSlpYWXHR0IZbtIpzlhW2ymbk9vfWIeJ-CK4z4WsvKKeySLNvRjtoKw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WI-IAT.2011.190
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9780769545134
0769545130
EndPage 235
ExternalDocumentID 6040782
Genre orig-research
GroupedDBID 6IE
6IL
ACM
ADPZR
ALMA_UNASSIGNED_HOLDINGS
APO
CBEJK
GUFHI
LHSKQ
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a162t-c22ab8bc0c626e174a570bb50498d9f587fda0e7708d7b46f0f4ded944138db3
IEDL.DBID RIE
ISBN 9781457713736
145771373X
IngestDate Wed Jun 26 19:27:34 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a162t-c22ab8bc0c626e174a570bb50498d9f587fda0e7708d7b46f0f4ded944138db3
PageCount 8
ParticipantIDs ieee_primary_6040782
PublicationCentury 2000
PublicationDate 2011-Aug.
PublicationDateYYYYMMDD 2011-08-01
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-Aug.
PublicationDecade 2010
PublicationTitle 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology
PublicationTitleAbbrev wi-iat
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000669991
ssj0001120470
Score 1.586041
Snippet The purpose of this paper is to present a new learning algorithm based on an adaptive multi-agent system and to compare it with classical learning algorithms...
SourceID ieee
SourceType Publisher
StartPage 228
SubjectTerms Algorithm design and analysis
Artificial neural networks
Data mining
Decision trees
Heuristic algorithms
Implicit assessment of user's feedback
Multi-agent learning
Personalization
Real time systems
Self-adaptive systems
Self-organization
Support vector machines
Title Principles and Properties of a MAS Learning Algorithm: A Comparison with Standard Learning Algorithms Applied to Implicit Feedback Assessment
URI https://ieeexplore.ieee.org/document/6040782
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJ0-oYHxnDh4tbNttd-utIRIwwZCAkRvZV5GolEC5-B_8z-6WtiSGg7du0za7m-k8vp35BqF7GZGIBMJ1mBsIh2jtOxwT7SRK-dSKiJd3iRi-hP1X8jwNpjX0UNXCaK3z5DPdtpf5Wb5K5dZCZZ0Q21Mno3CPaBTtarUqPMWYTuvr7PEV18OE4ryWK6AmFKP-tKR4KsZhQfXj4qjzNnAG8WRH6enmCnrfayU3Nb0GGpaT3GWYfLS3mWjL7z_8jf9dxQlq7Yv6YFSZq1NU08sz1Ci7OkDxkzfRz6jE3zfAl8q-s7LJ12aYJsBhGI-hYGWdQ_w5T9eL7P3rEWLoVj0NwcK7MC5gigOPb6BwfyFLYZBntS8y6Jm5CS4_IK74Qlto0nuadPtO0bTB4W7oZY70PC6YkFiaUEmbeIcHFAsRmEiEqSgJGE0Ux5pSzBQVJExwQpRWkXHLfKaEf47qy3SpLxBoox4E40Z0aEhYwKNEuqH5MlMkkVz5l6hpN3e22tFyzIp9vTp8-xodl3Awdm9QPVtv9a3xJzJxlwvSL2xXxvg
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZQGWDiURBvbmAkrZM4scMWVVQtUFSpRXSr_EqpgARBuvAf-M_YaZJKqANbHCWRbV3u8fnuO4SuZEQiEgjXYW4gHKK173BMtJMo5VMrIl7RJWLwGPaeyN0kmGyg67oWRmtdJJ_plr0szvJVJhcWKmuH2J46GYW7afxqFi6rtWpExRhP6-2sEBbXw4TioporoCYYo_6kInkqx2FJ9uPiqP3cd_rxeEnq6RYqetVtpTA23R00qKa5zDF5bS1y0ZLffxgc_7uOXXSwKuuDYW2w9tCGTvfRTtXXAcrfvIl-hhUC_wU8VfadD5t-bYZZAhwG8QhKXtYZxG-z7HOev7zfQAyduqshWIAXRiVQsebxLygdYMgz6Bd57fMcumZugstXiGvG0AM07t6OOz2nbNvgcDf0ckd6HhdMSCxNsKRNxMMDioUITCzCVJQEjCaKY00pZooKEiY4IUqryDhmPlPCP0SNNEv1EQJtFIRg3AgPDQkLeJRINzRfZookkiv_GDXt5k4_lsQc03JfT9bfvkRbvfHgYfrQf7w_RdsVOIzdM9TIPxf63HgXubgohOoX_v_KQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2011+IEEE%2FWIC%2FACM+International+Conferences+on+Web+Intelligence+and+Intelligent+Agent+Technology&rft.atitle=Principles+and+Properties+of+a+MAS+Learning+Algorithm%3A+A+Comparison+with+Standard+Learning+Algorithms+Applied+to+Implicit+Feedback+Assessment&rft.au=Lemouzy%2C+S.&rft.au=Camps%2C+V.&rft.au=Glize%2C+P.&rft.date=2011-08-01&rft.pub=IEEE&rft.isbn=9781457713736&rft.volume=2&rft.spage=228&rft.epage=235&rft_id=info:doi/10.1109%2FWI-IAT.2011.190&rft.externalDocID=6040782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781457713736/sc.gif&client=summon&freeimage=true