Modification of a Thermoplastic Polyurethane Surface for Creating a Soft Robotic Gripper Using a Four-Dimensional Printing Method
One of the avenues for the development of functional gradient additive manufacturing is the creation of four-dimensional (4D) printed structures for soft robotic gripping, achieved by combining fused deposition modeling 3D printing with soft hydrogel actuators. This work proposes a conceptual approa...
Saved in:
Published in | ACS applied engineering materials Vol. 3; no. 7; pp. 2190 - 2198 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
25.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2771-9545 2771-9545 |
DOI | 10.1021/acsaenm.5c00347 |
Cover
Loading…
Abstract | One of the avenues for the development of functional gradient additive manufacturing is the creation of four-dimensional (4D) printed structures for soft robotic gripping, achieved by combining fused deposition modeling 3D printing with soft hydrogel actuators. This work proposes a conceptual approach to creating an energy-independent soft robotic gripper, consisting of a modified 3D printed holder substrate made from thermoplastic polyurethane (TPU) and an actuator based on a gelatin hydrogel, allowing programmed hygroscopic deformation without using complex mechanical constructions. The use of a 20% gelatin-based hydrogel imparts soft robotic biomimetic functionality to the structure and is responsible for the intelligent stimulus-responsive mechanical functionality of the printed object by responding to swelling processes in liquid environments. The targeted surface functionalization of thermoplastic polyurethane in an argon–oxygen environment for 90 s, at a power of 100 W and a pressure of 26.7 Pa, facilitates changes in its microrelief, thus improving the adhesion and stability of the swollen gelatin on its surface. In this work, the morphological (scanning electron microscopy and atomic force microscopy), colloidal, chemical (FTIR), physicochemical (swelling), biological (cell biocompatibility), and performance evaluations of the TPU/gelatin gripper were studied. The realized concept of creating 4D printed biocompatible comb structures for macroscopic underwater soft robotic gripping can provide noninvasive local gripping, transport small objects, and release bioactive substances upon swelling in water. The resulting product can therefore be used as a self-powered biomimetic actuator, an encapsulation system, or soft robotics. |
---|---|
AbstractList | One of the avenues for the development of functional gradient additive manufacturing is the creation of four-dimensional (4D) printed structures for soft robotic gripping, achieved by combining fused deposition modeling 3D printing with soft hydrogel actuators. This work proposes a conceptual approach to creating an energy-independent soft robotic gripper, consisting of a modified 3D printed holder substrate made from thermoplastic polyurethane (TPU) and an actuator based on a gelatin hydrogel, allowing programmed hygroscopic deformation without using complex mechanical constructions. The use of a 20% gelatin-based hydrogel imparts soft robotic biomimetic functionality to the structure and is responsible for the intelligent stimulus-responsive mechanical functionality of the printed object by responding to swelling processes in liquid environments. The targeted surface functionalization of thermoplastic polyurethane in an argon–oxygen environment for 90 s, at a power of 100 W and a pressure of 26.7 Pa, facilitates changes in its microrelief, thus improving the adhesion and stability of the swollen gelatin on its surface. In this work, the morphological (scanning electron microscopy and atomic force microscopy), colloidal, chemical (FTIR), physicochemical (swelling), biological (cell biocompatibility), and performance evaluations of the TPU/gelatin gripper were studied. The realized concept of creating 4D printed biocompatible comb structures for macroscopic underwater soft robotic gripping can provide noninvasive local gripping, transport small objects, and release bioactive substances upon swelling in water. The resulting product can therefore be used as a self-powered biomimetic actuator, an encapsulation system, or soft robotics. |
Author | Peshkina, Elizaveta A. Senatov, Fedor F. Baranov, Oleg V. Saryglar, Roza Yu Koudan, Elizaveta V. Kovaleva, Polina A. Zakharova, Vasilina A. Mikailov, Raul G. Permyakova, Elizaveta S. Ivantsova, Ekatherina A. Lagunov, Vladislav S. |
AuthorAffiliation | N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Institute of Biomedical Chemistry |
AuthorAffiliation_xml | – name: Institute of Biomedical Chemistry – name: N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences |
Author_xml | – sequence: 1 givenname: Vasilina A. orcidid: 0000-0002-5324-1700 surname: Zakharova fullname: Zakharova, Vasilina A. email: vasilinaqss@gmail.com organization: N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences – sequence: 2 givenname: Raul G. orcidid: 0009-0000-0042-3773 surname: Mikailov fullname: Mikailov, Raul G. – sequence: 3 givenname: Roza Yu orcidid: 0000-0002-2004-1390 surname: Saryglar fullname: Saryglar, Roza Yu organization: Institute of Biomedical Chemistry – sequence: 4 givenname: Vladislav S. orcidid: 0009-0009-0823-5158 surname: Lagunov fullname: Lagunov, Vladislav S. – sequence: 5 givenname: Oleg V. orcidid: 0000-0002-9683-2228 surname: Baranov fullname: Baranov, Oleg V. organization: N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences – sequence: 6 givenname: Polina A. orcidid: 0000-0002-7046-173X surname: Kovaleva fullname: Kovaleva, Polina A. – sequence: 7 givenname: Elizaveta A. orcidid: 0009-0001-8113-4494 surname: Peshkina fullname: Peshkina, Elizaveta A. – sequence: 8 givenname: Ekatherina A. orcidid: 0009-0005-1601-2473 surname: Ivantsova fullname: Ivantsova, Ekatherina A. – sequence: 9 givenname: Elizaveta S. orcidid: 0000-0003-2581-0803 surname: Permyakova fullname: Permyakova, Elizaveta S. – sequence: 10 givenname: Elizaveta V. orcidid: 0000-0001-9377-8118 surname: Koudan fullname: Koudan, Elizaveta V. – sequence: 11 givenname: Fedor F. surname: Senatov fullname: Senatov, Fedor F. |
BookMark | eNp1kDFvwjAQha2KSqWUuav3KmAnOInHihZaCVRUYI7OzqUEJTayw8DYf15TGLp0upPufe_u3j3pGWuQkEfORpzFfAzaA5p2JDRjySS7If04y3gkxUT0_vR3ZOj9ngVNzLlMsz75XtqyrmoNXW0NtRUFutmha-2hAd_Vmq5sczo67HZgkK6PrgKNtLKOTh0GyHwFYm2rjn5aZc_A3NWHAzq69ZfhzB5d9FK3aHxYAQ1dudr8gsvgassHcltB43F4rQOynb1upm_R4mP-Pn1eRMBT3kU6lyzXWoHAjAtEBKUkk2UMQmlWap7INC8Zqhg0VyIRIgUlINeykhOQmAzI-OKrnfXeYVUcXN2COxWcFecQi2uIxTXEQDxdiDAo9uGNcL3_V_0DMw96Jg |
Cites_doi | 10.1002/pc.27464 10.1016/j.mtbio.2023.100657 10.1016/j.jmbbm.2021.104336 10.3390/polym13183101 10.1016/j.jmapro.2022.07.035 10.1126/science.aat8414 10.1002/adfm.201909540 10.1016/j.polymer.2023.126189 10.1002/adma.202108427 10.1089/soro.2016.0059 10.3390/polym10121304 10.1109/TRO.2021.3084466 10.1016/j.nantod.2023.101764 10.3390/polym12122877 10.3390/machines11010103 10.3390/act9010003 10.1002/adfm.202207435 10.1007/s12206-017-0244-8 10.1002/aisy.202070060 10.1007/s11998-019-00300-8 10.1016/B978-0-12-816805-9.00004-1 10.1002/anie.201813402 10.1016/S0001-8686(98)00087-6 10.1016/j.compositesb.2021.109116 10.1016/j.foodhyd.2021.106608 10.1088/2631-7990/ad1574 10.2147/IJN.S167637 10.1146/annurev-control-061022-012035 10.1007/s10856-008-3538-7 10.1016/j.ceramint.2022.07.117 10.1016/j.jconrel.2020.12.008 10.1021/acs.iecr.1c00362 10.1002/adhm.202201891 10.1177/1687814020933409 10.3390/act12020063 10.1201/9781003387374-7 10.1016/j.surfcoat.2005.07.056 10.1109/TRO.2022.3231360 10.1021/acs.langmuir.9b03773 10.3390/ma16247664 10.1016/j.bioactmat.2020.10.002 10.1109/LRA.2021.3067277 10.1002/adma.202002640 10.1038/s41563-020-0699-3 10.1109/TMECH.2020.2997743 10.1016/j.matlet.2023.133977 10.36922/msam.2672 10.1002/pat.6487 10.1088/1361-665X/ac6e15 10.1016/j.mattod.2024.06.004 10.1134/S1061933X14020021 |
ContentType | Journal Article |
Copyright | 2025 American Chemical Society |
Copyright_xml | – notice: 2025 American Chemical Society |
DBID | AAYXX CITATION |
DOI | 10.1021/acsaenm.5c00347 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2771-9545 |
EndPage | 2198 |
ExternalDocumentID | 10_1021_acsaenm_5c00347 a770706592 |
GroupedDBID | ABBLG ABJNI ABLBI ABQRX ACS ALMA_UNASSIGNED_HOLDINGS BAANH CUPRZ GGK VF5 VG9 AAYXX CITATION |
ID | FETCH-LOGICAL-a161t-c8908ccba5e715eeeabb909d2a5bc0dc13968d0eb2ac1b53556ab5a8c9f94a9e3 |
IEDL.DBID | ACS |
ISSN | 2771-9545 |
IngestDate | Thu Jul 31 00:24:05 EDT 2025 Mon Jul 28 03:10:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 7 |
Keywords | thermoplastic polyurethane 4D printing soft robotic gripper gelatin surface functionalization |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a161t-c8908ccba5e715eeeabb909d2a5bc0dc13968d0eb2ac1b53556ab5a8c9f94a9e3 |
ORCID | 0000-0001-9377-8118 0009-0001-8113-4494 0000-0002-5324-1700 0009-0009-0823-5158 0000-0003-2581-0803 0009-0000-0042-3773 0000-0002-9683-2228 0000-0002-2004-1390 0000-0002-7046-173X 0009-0005-1601-2473 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1021_acsaenm_5c00347 acs_journals_10_1021_acsaenm_5c00347 |
PublicationCentury | 2000 |
PublicationDate | 20250725 2025-07-25 |
PublicationDateYYYYMMDD | 2025-07-25 |
PublicationDate_xml | – month: 07 year: 2025 text: 20250725 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | ACS applied engineering materials |
PublicationTitleAlternate | ACS Appl. Eng. Mater |
PublicationYear | 2025 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 Ji Q. (ref11/cit11) 2022 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 Wang Z. (ref49/cit49) 2023 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref30/cit30 doi: 10.1002/pc.27464 – ident: ref25/cit25 doi: 10.1016/j.mtbio.2023.100657 – ident: ref33/cit33 doi: 10.1016/j.jmbbm.2021.104336 – ident: ref12/cit12 doi: 10.3390/polym13183101 – ident: ref14/cit14 doi: 10.1016/j.jmapro.2022.07.035 – ident: ref3/cit3 doi: 10.1126/science.aat8414 – ident: ref36/cit36 doi: 10.1002/adfm.201909540 – ident: ref32/cit32 doi: 10.1016/j.polymer.2023.126189 – ident: ref6/cit6 doi: 10.1002/adma.202108427 – ident: ref24/cit24 doi: 10.1089/soro.2016.0059 – ident: ref48/cit48 doi: 10.3390/polym10121304 – year: 2022 ident: ref11/cit11 publication-title: Precise control of a 3D printed soft actuator with soft position sensors – ident: ref4/cit4 doi: 10.1109/TRO.2021.3084466 – ident: ref26/cit26 doi: 10.1016/j.nantod.2023.101764 – ident: ref37/cit37 doi: 10.3390/polym12122877 – ident: ref27/cit27 doi: 10.3390/machines11010103 – ident: ref46/cit46 doi: 10.3390/act9010003 – ident: ref31/cit31 doi: 10.1002/adfm.202207435 – ident: ref45/cit45 doi: 10.1007/s12206-017-0244-8 – ident: ref47/cit47 doi: 10.1002/aisy.202070060 – ident: ref50/cit50 doi: 10.1007/s11998-019-00300-8 – ident: ref21/cit21 doi: 10.1016/B978-0-12-816805-9.00004-1 – ident: ref17/cit17 doi: 10.1002/anie.201813402 – ident: ref52/cit52 doi: 10.1016/S0001-8686(98)00087-6 – ident: ref2/cit2 doi: 10.1016/j.compositesb.2021.109116 – ident: ref19/cit19 doi: 10.1016/j.foodhyd.2021.106608 – ident: ref8/cit8 doi: 10.1088/2631-7990/ad1574 – ident: ref51/cit51 doi: 10.2147/IJN.S167637 – ident: ref10/cit10 doi: 10.1146/annurev-control-061022-012035 – ident: ref34/cit34 doi: 10.1007/s10856-008-3538-7 – ident: ref16/cit16 doi: 10.1016/j.ceramint.2022.07.117 – ident: ref23/cit23 doi: 10.1016/j.jconrel.2020.12.008 – ident: ref38/cit38 doi: 10.1021/acs.iecr.1c00362 – ident: ref20/cit20 doi: 10.1002/adhm.202201891 – ident: ref22/cit22 doi: 10.1177/1687814020933409 – ident: ref28/cit28 doi: 10.3390/act12020063 – start-page: 32 volume-title: Advances in Functional Pavements year: 2023 ident: ref49/cit49 doi: 10.1201/9781003387374-7 – ident: ref40/cit40 doi: 10.1016/j.surfcoat.2005.07.056 – ident: ref5/cit5 doi: 10.1109/TRO.2022.3231360 – ident: ref7/cit7 doi: 10.1021/acs.langmuir.9b03773 – ident: ref15/cit15 doi: 10.3390/ma16247664 – ident: ref35/cit35 doi: 10.1016/j.bioactmat.2020.10.002 – ident: ref42/cit42 doi: 10.1109/LRA.2021.3067277 – ident: ref9/cit9 doi: 10.1002/adma.202002640 – ident: ref29/cit29 doi: 10.1038/s41563-020-0699-3 – ident: ref44/cit44 doi: 10.1109/TMECH.2020.2997743 – ident: ref13/cit13 doi: 10.1016/j.matlet.2023.133977 – ident: ref41/cit41 doi: 10.36922/msam.2672 – ident: ref39/cit39 doi: 10.1002/pat.6487 – ident: ref1/cit1 doi: 10.1088/1361-665X/ac6e15 – ident: ref18/cit18 doi: 10.1016/j.mattod.2024.06.004 – ident: ref43/cit43 doi: 10.1134/S1061933X14020021 |
SSID | ssj0003211967 |
Score | 2.2983286 |
Snippet | One of the avenues for the development of functional gradient additive manufacturing is the creation of four-dimensional (4D) printed structures for soft... |
SourceID | crossref acs |
SourceType | Index Database Publisher |
StartPage | 2190 |
Title | Modification of a Thermoplastic Polyurethane Surface for Creating a Soft Robotic Gripper Using a Four-Dimensional Printing Method |
URI | http://dx.doi.org/10.1021/acsaenm.5c00347 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwRpSXPDCwuCRpXh6rQqmQiipKpW6RnwzQpMpjgI1_ztkNpaJCMCfnWP7Ovi--03cIXTKfQ9TmLmGR9IkfSUYYVT7hFIKFBsoeMJPRHTyE_bF_Pwkm32LRPzP4nnvNRMFUOm0FwmipROtowwvjyMjkd7qjxXVK2yiV2X6xXhS5hAIxWAj5rIxhIpEoliLRUkjp7cyLsQqrRGgqSV5aVclb4n1Vp_Hv2e6i7ZpY4s7cE_bQmkr30daS3OAB-hhk0lQGWTBwpjHD4CX5NJsBhQYzPMxe36pcmdt0hUdVrplQGFgt7lpqmT6DxQjObfyY8cwY3MGRM1M5toUH8LAHsyA3pmHAXOwDD-HL1nBgO1UfonHv9qnbJ3ULBsKACpZExNSJheAsUJEbKKUY59Sh0mMBF44UwB_DWDrwe86EywMgLyHjAK-gmvoAevsINdIsVccIU8p1mwFOsdK-ALSk40gnolpq7SrqNsFxRJHUW6hIbHbcc5N6RZN6RZvo6gu1ZDYX5Pjt1ZP_jXiKNj3T1NcxkhVnqFHmlToHplHyC-tjn0JX0Uk |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DMDAG1GeHhhYXJw0aeoRFUp5FBXaSmyRnwzQpEraATb-OWc3LRUICdYk55x8F98X3_k7hE54ICBqC4_wSAUkiBQnnOmACAbBwgBkD7nN6Lbuq81ecPMUPs0hOjkLA0rkMFLukvhf7ALeGVzjOumXQ2kpVaJ5tAhQxLds-ef1znRXpWIJy1zbWD-KPMIAH0z5fH6MYQOSzGcC0kxkaayhh6lOrqDkpTwairJ8_0bX-B-l19FqATPx-dgvNtCcTjbRygz54Bb6aKXK1gk50-DUYI7BZ7J-OgBADWK4nb6-jTJt99Y17owyw6XGgHFx3QHN5BkkOrCK48dUpFbgChaggc6wK0OAmw3QglzY9gFj6g_chjc7wZbrW72Neo3Lbr1JioYMhAMwHBJZY7QmpeChjrxQa82FYJQpn4dCUiUBTVZrisLPOpeeCAHKVLkAY0tmWAAuUNlBC0ma6F2EGROmwsFcNW0CCUZTlCoaMaOM8TTzSuBGMo-LDyqPXa7c9-JiRuNiRkvodGK8eDCm5_jt0b2_jXiMlprd1l18d31_u4-Wfdvul1oyiwO0MMxG-hAwyFAcObf7BOLC2ao |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgG3ojy9MDA4pKkSROPVUt4tqoolbpFfjJAkyppB9j455zdUFUgJFjjnHPynX1ffPZ3CJ0zn0PU5i5hofSJH0pGGFU-4RSChQbIHjCT0e10GzcD_24YDMtLYeYuDChRQE-FTeKbWT2WumQYcC_hOVPpqBYIQ6sSLqMVk7QzjPnNVn--s1I3pGW2dKwXhi6hgBHmnD4_-jBBSRQLQWkhusSbaDDXyx4qealNJ7wm3r9RNv5X8S20UcJN3Jz5xzZaUukOWl8gIdxFH51MmvNC1kQ405hh8J18lI0BWIMY7mWvb9NcmT12hfvTXDOhMGBd3LKAM30GiT6s5vgx45kRuIaFaKxybI8jQGMMWpC2KSMwowDBPfiyFezY-tV7aBBfPbVuSFmYgTAAiBMiIupEQnAWqNANlFKMc-pQ6bGAC0cKQJWNSDrw086EywOANA3GweiCauqDK9T3USXNUnWAMKVc1xmYLFLaF2A46TjSCamWWruKulVwJ1Ek5cQqEpsz99ykHNGkHNEquvgyYDKe0XT89urh33o8Q6u9dpw83Hbvj9CaZ6r-OobT4hhVJvlUnQAUmfBT63mf8vXcLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+a+Thermoplastic+Polyurethane+Surface+for+Creating+a+Soft+Robotic+Gripper+Using+a+Four-Dimensional+Printing+Method&rft.jtitle=ACS+applied+engineering+materials&rft.au=Zakharova%2C+Vasilina+A.&rft.au=Mikailov%2C+Raul+G.&rft.au=Saryglar%2C+Roza+Yu&rft.au=Lagunov%2C+Vladislav+S.&rft.date=2025-07-25&rft.issn=2771-9545&rft.eissn=2771-9545&rft.volume=3&rft.issue=7&rft.spage=2190&rft.epage=2198&rft_id=info:doi/10.1021%2Facsaenm.5c00347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaenm_5c00347 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9545&client=summon |