Modification of a Thermoplastic Polyurethane Surface for Creating a Soft Robotic Gripper Using a Four-Dimensional Printing Method

One of the avenues for the development of functional gradient additive manufacturing is the creation of four-dimensional (4D) printed structures for soft robotic gripping, achieved by combining fused deposition modeling 3D printing with soft hydrogel actuators. This work proposes a conceptual approa...

Full description

Saved in:
Bibliographic Details
Published inACS applied engineering materials Vol. 3; no. 7; pp. 2190 - 2198
Main Authors Zakharova, Vasilina A., Mikailov, Raul G., Saryglar, Roza Yu, Lagunov, Vladislav S., Baranov, Oleg V., Kovaleva, Polina A., Peshkina, Elizaveta A., Ivantsova, Ekatherina A., Permyakova, Elizaveta S., Koudan, Elizaveta V., Senatov, Fedor F.
Format Journal Article
LanguageEnglish
Published American Chemical Society 25.07.2025
Subjects
Online AccessGet full text
ISSN2771-9545
2771-9545
DOI10.1021/acsaenm.5c00347

Cover

Loading…
Abstract One of the avenues for the development of functional gradient additive manufacturing is the creation of four-dimensional (4D) printed structures for soft robotic gripping, achieved by combining fused deposition modeling 3D printing with soft hydrogel actuators. This work proposes a conceptual approach to creating an energy-independent soft robotic gripper, consisting of a modified 3D printed holder substrate made from thermoplastic polyurethane (TPU) and an actuator based on a gelatin hydrogel, allowing programmed hygroscopic deformation without using complex mechanical constructions. The use of a 20% gelatin-based hydrogel imparts soft robotic biomimetic functionality to the structure and is responsible for the intelligent stimulus-responsive mechanical functionality of the printed object by responding to swelling processes in liquid environments. The targeted surface functionalization of thermoplastic polyurethane in an argon–oxygen environment for 90 s, at a power of 100 W and a pressure of 26.7 Pa, facilitates changes in its microrelief, thus improving the adhesion and stability of the swollen gelatin on its surface. In this work, the morphological (scanning electron microscopy and atomic force microscopy), colloidal, chemical (FTIR), physicochemical (swelling), biological (cell biocompatibility), and performance evaluations of the TPU/gelatin gripper were studied. The realized concept of creating 4D printed biocompatible comb structures for macroscopic underwater soft robotic gripping can provide noninvasive local gripping, transport small objects, and release bioactive substances upon swelling in water. The resulting product can therefore be used as a self-powered biomimetic actuator, an encapsulation system, or soft robotics.
AbstractList One of the avenues for the development of functional gradient additive manufacturing is the creation of four-dimensional (4D) printed structures for soft robotic gripping, achieved by combining fused deposition modeling 3D printing with soft hydrogel actuators. This work proposes a conceptual approach to creating an energy-independent soft robotic gripper, consisting of a modified 3D printed holder substrate made from thermoplastic polyurethane (TPU) and an actuator based on a gelatin hydrogel, allowing programmed hygroscopic deformation without using complex mechanical constructions. The use of a 20% gelatin-based hydrogel imparts soft robotic biomimetic functionality to the structure and is responsible for the intelligent stimulus-responsive mechanical functionality of the printed object by responding to swelling processes in liquid environments. The targeted surface functionalization of thermoplastic polyurethane in an argon–oxygen environment for 90 s, at a power of 100 W and a pressure of 26.7 Pa, facilitates changes in its microrelief, thus improving the adhesion and stability of the swollen gelatin on its surface. In this work, the morphological (scanning electron microscopy and atomic force microscopy), colloidal, chemical (FTIR), physicochemical (swelling), biological (cell biocompatibility), and performance evaluations of the TPU/gelatin gripper were studied. The realized concept of creating 4D printed biocompatible comb structures for macroscopic underwater soft robotic gripping can provide noninvasive local gripping, transport small objects, and release bioactive substances upon swelling in water. The resulting product can therefore be used as a self-powered biomimetic actuator, an encapsulation system, or soft robotics.
Author Peshkina, Elizaveta A.
Senatov, Fedor F.
Baranov, Oleg V.
Saryglar, Roza Yu
Koudan, Elizaveta V.
Kovaleva, Polina A.
Zakharova, Vasilina A.
Mikailov, Raul G.
Permyakova, Elizaveta S.
Ivantsova, Ekatherina A.
Lagunov, Vladislav S.
AuthorAffiliation N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
Institute of Biomedical Chemistry
AuthorAffiliation_xml – name: Institute of Biomedical Chemistry
– name: N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
Author_xml – sequence: 1
  givenname: Vasilina A.
  orcidid: 0000-0002-5324-1700
  surname: Zakharova
  fullname: Zakharova, Vasilina A.
  email: vasilinaqss@gmail.com
  organization: N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
– sequence: 2
  givenname: Raul G.
  orcidid: 0009-0000-0042-3773
  surname: Mikailov
  fullname: Mikailov, Raul G.
– sequence: 3
  givenname: Roza Yu
  orcidid: 0000-0002-2004-1390
  surname: Saryglar
  fullname: Saryglar, Roza Yu
  organization: Institute of Biomedical Chemistry
– sequence: 4
  givenname: Vladislav S.
  orcidid: 0009-0009-0823-5158
  surname: Lagunov
  fullname: Lagunov, Vladislav S.
– sequence: 5
  givenname: Oleg V.
  orcidid: 0000-0002-9683-2228
  surname: Baranov
  fullname: Baranov, Oleg V.
  organization: N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
– sequence: 6
  givenname: Polina A.
  orcidid: 0000-0002-7046-173X
  surname: Kovaleva
  fullname: Kovaleva, Polina A.
– sequence: 7
  givenname: Elizaveta A.
  orcidid: 0009-0001-8113-4494
  surname: Peshkina
  fullname: Peshkina, Elizaveta A.
– sequence: 8
  givenname: Ekatherina A.
  orcidid: 0009-0005-1601-2473
  surname: Ivantsova
  fullname: Ivantsova, Ekatherina A.
– sequence: 9
  givenname: Elizaveta S.
  orcidid: 0000-0003-2581-0803
  surname: Permyakova
  fullname: Permyakova, Elizaveta S.
– sequence: 10
  givenname: Elizaveta V.
  orcidid: 0000-0001-9377-8118
  surname: Koudan
  fullname: Koudan, Elizaveta V.
– sequence: 11
  givenname: Fedor F.
  surname: Senatov
  fullname: Senatov, Fedor F.
BookMark eNp1kDFvwjAQha2KSqWUuav3KmAnOInHihZaCVRUYI7OzqUEJTayw8DYf15TGLp0upPufe_u3j3pGWuQkEfORpzFfAzaA5p2JDRjySS7If04y3gkxUT0_vR3ZOj9ngVNzLlMsz75XtqyrmoNXW0NtRUFutmha-2hAd_Vmq5sczo67HZgkK6PrgKNtLKOTh0GyHwFYm2rjn5aZc_A3NWHAzq69ZfhzB5d9FK3aHxYAQ1dudr8gsvgassHcltB43F4rQOynb1upm_R4mP-Pn1eRMBT3kU6lyzXWoHAjAtEBKUkk2UMQmlWap7INC8Zqhg0VyIRIgUlINeykhOQmAzI-OKrnfXeYVUcXN2COxWcFecQi2uIxTXEQDxdiDAo9uGNcL3_V_0DMw96Jg
Cites_doi 10.1002/pc.27464
10.1016/j.mtbio.2023.100657
10.1016/j.jmbbm.2021.104336
10.3390/polym13183101
10.1016/j.jmapro.2022.07.035
10.1126/science.aat8414
10.1002/adfm.201909540
10.1016/j.polymer.2023.126189
10.1002/adma.202108427
10.1089/soro.2016.0059
10.3390/polym10121304
10.1109/TRO.2021.3084466
10.1016/j.nantod.2023.101764
10.3390/polym12122877
10.3390/machines11010103
10.3390/act9010003
10.1002/adfm.202207435
10.1007/s12206-017-0244-8
10.1002/aisy.202070060
10.1007/s11998-019-00300-8
10.1016/B978-0-12-816805-9.00004-1
10.1002/anie.201813402
10.1016/S0001-8686(98)00087-6
10.1016/j.compositesb.2021.109116
10.1016/j.foodhyd.2021.106608
10.1088/2631-7990/ad1574
10.2147/IJN.S167637
10.1146/annurev-control-061022-012035
10.1007/s10856-008-3538-7
10.1016/j.ceramint.2022.07.117
10.1016/j.jconrel.2020.12.008
10.1021/acs.iecr.1c00362
10.1002/adhm.202201891
10.1177/1687814020933409
10.3390/act12020063
10.1201/9781003387374-7
10.1016/j.surfcoat.2005.07.056
10.1109/TRO.2022.3231360
10.1021/acs.langmuir.9b03773
10.3390/ma16247664
10.1016/j.bioactmat.2020.10.002
10.1109/LRA.2021.3067277
10.1002/adma.202002640
10.1038/s41563-020-0699-3
10.1109/TMECH.2020.2997743
10.1016/j.matlet.2023.133977
10.36922/msam.2672
10.1002/pat.6487
10.1088/1361-665X/ac6e15
10.1016/j.mattod.2024.06.004
10.1134/S1061933X14020021
ContentType Journal Article
Copyright 2025 American Chemical Society
Copyright_xml – notice: 2025 American Chemical Society
DBID AAYXX
CITATION
DOI 10.1021/acsaenm.5c00347
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2771-9545
EndPage 2198
ExternalDocumentID 10_1021_acsaenm_5c00347
a770706592
GroupedDBID ABBLG
ABJNI
ABLBI
ABQRX
ACS
ALMA_UNASSIGNED_HOLDINGS
BAANH
CUPRZ
GGK
VF5
VG9
AAYXX
CITATION
ID FETCH-LOGICAL-a161t-c8908ccba5e715eeeabb909d2a5bc0dc13968d0eb2ac1b53556ab5a8c9f94a9e3
IEDL.DBID ACS
ISSN 2771-9545
IngestDate Thu Jul 31 00:24:05 EDT 2025
Mon Jul 28 03:10:17 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Keywords thermoplastic polyurethane
4D printing
soft robotic gripper
gelatin
surface functionalization
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a161t-c8908ccba5e715eeeabb909d2a5bc0dc13968d0eb2ac1b53556ab5a8c9f94a9e3
ORCID 0000-0001-9377-8118
0009-0001-8113-4494
0000-0002-5324-1700
0009-0009-0823-5158
0000-0003-2581-0803
0009-0000-0042-3773
0000-0002-9683-2228
0000-0002-2004-1390
0000-0002-7046-173X
0009-0005-1601-2473
PageCount 9
ParticipantIDs crossref_primary_10_1021_acsaenm_5c00347
acs_journals_10_1021_acsaenm_5c00347
PublicationCentury 2000
PublicationDate 20250725
2025-07-25
PublicationDateYYYYMMDD 2025-07-25
PublicationDate_xml – month: 07
  year: 2025
  text: 20250725
  day: 25
PublicationDecade 2020
PublicationTitle ACS applied engineering materials
PublicationTitleAlternate ACS Appl. Eng. Mater
PublicationYear 2025
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
Ji Q. (ref11/cit11) 2022
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
Wang Z. (ref49/cit49) 2023
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref30/cit30
  doi: 10.1002/pc.27464
– ident: ref25/cit25
  doi: 10.1016/j.mtbio.2023.100657
– ident: ref33/cit33
  doi: 10.1016/j.jmbbm.2021.104336
– ident: ref12/cit12
  doi: 10.3390/polym13183101
– ident: ref14/cit14
  doi: 10.1016/j.jmapro.2022.07.035
– ident: ref3/cit3
  doi: 10.1126/science.aat8414
– ident: ref36/cit36
  doi: 10.1002/adfm.201909540
– ident: ref32/cit32
  doi: 10.1016/j.polymer.2023.126189
– ident: ref6/cit6
  doi: 10.1002/adma.202108427
– ident: ref24/cit24
  doi: 10.1089/soro.2016.0059
– ident: ref48/cit48
  doi: 10.3390/polym10121304
– year: 2022
  ident: ref11/cit11
  publication-title: Precise control of a 3D printed soft actuator with soft position sensors
– ident: ref4/cit4
  doi: 10.1109/TRO.2021.3084466
– ident: ref26/cit26
  doi: 10.1016/j.nantod.2023.101764
– ident: ref37/cit37
  doi: 10.3390/polym12122877
– ident: ref27/cit27
  doi: 10.3390/machines11010103
– ident: ref46/cit46
  doi: 10.3390/act9010003
– ident: ref31/cit31
  doi: 10.1002/adfm.202207435
– ident: ref45/cit45
  doi: 10.1007/s12206-017-0244-8
– ident: ref47/cit47
  doi: 10.1002/aisy.202070060
– ident: ref50/cit50
  doi: 10.1007/s11998-019-00300-8
– ident: ref21/cit21
  doi: 10.1016/B978-0-12-816805-9.00004-1
– ident: ref17/cit17
  doi: 10.1002/anie.201813402
– ident: ref52/cit52
  doi: 10.1016/S0001-8686(98)00087-6
– ident: ref2/cit2
  doi: 10.1016/j.compositesb.2021.109116
– ident: ref19/cit19
  doi: 10.1016/j.foodhyd.2021.106608
– ident: ref8/cit8
  doi: 10.1088/2631-7990/ad1574
– ident: ref51/cit51
  doi: 10.2147/IJN.S167637
– ident: ref10/cit10
  doi: 10.1146/annurev-control-061022-012035
– ident: ref34/cit34
  doi: 10.1007/s10856-008-3538-7
– ident: ref16/cit16
  doi: 10.1016/j.ceramint.2022.07.117
– ident: ref23/cit23
  doi: 10.1016/j.jconrel.2020.12.008
– ident: ref38/cit38
  doi: 10.1021/acs.iecr.1c00362
– ident: ref20/cit20
  doi: 10.1002/adhm.202201891
– ident: ref22/cit22
  doi: 10.1177/1687814020933409
– ident: ref28/cit28
  doi: 10.3390/act12020063
– start-page: 32
  volume-title: Advances in Functional Pavements
  year: 2023
  ident: ref49/cit49
  doi: 10.1201/9781003387374-7
– ident: ref40/cit40
  doi: 10.1016/j.surfcoat.2005.07.056
– ident: ref5/cit5
  doi: 10.1109/TRO.2022.3231360
– ident: ref7/cit7
  doi: 10.1021/acs.langmuir.9b03773
– ident: ref15/cit15
  doi: 10.3390/ma16247664
– ident: ref35/cit35
  doi: 10.1016/j.bioactmat.2020.10.002
– ident: ref42/cit42
  doi: 10.1109/LRA.2021.3067277
– ident: ref9/cit9
  doi: 10.1002/adma.202002640
– ident: ref29/cit29
  doi: 10.1038/s41563-020-0699-3
– ident: ref44/cit44
  doi: 10.1109/TMECH.2020.2997743
– ident: ref13/cit13
  doi: 10.1016/j.matlet.2023.133977
– ident: ref41/cit41
  doi: 10.36922/msam.2672
– ident: ref39/cit39
  doi: 10.1002/pat.6487
– ident: ref1/cit1
  doi: 10.1088/1361-665X/ac6e15
– ident: ref18/cit18
  doi: 10.1016/j.mattod.2024.06.004
– ident: ref43/cit43
  doi: 10.1134/S1061933X14020021
SSID ssj0003211967
Score 2.2983286
Snippet One of the avenues for the development of functional gradient additive manufacturing is the creation of four-dimensional (4D) printed structures for soft...
SourceID crossref
acs
SourceType Index Database
Publisher
StartPage 2190
Title Modification of a Thermoplastic Polyurethane Surface for Creating a Soft Robotic Gripper Using a Four-Dimensional Printing Method
URI http://dx.doi.org/10.1021/acsaenm.5c00347
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagLDDwRpSXPDCwuCRpXh6rQqmQiipKpW6RnwzQpMpjgI1_ztkNpaJCMCfnWP7Ovi--03cIXTKfQ9TmLmGR9IkfSUYYVT7hFIKFBsoeMJPRHTyE_bF_Pwkm32LRPzP4nnvNRMFUOm0FwmipROtowwvjyMjkd7qjxXVK2yiV2X6xXhS5hAIxWAj5rIxhIpEoliLRUkjp7cyLsQqrRGgqSV5aVclb4n1Vp_Hv2e6i7ZpY4s7cE_bQmkr30daS3OAB-hhk0lQGWTBwpjHD4CX5NJsBhQYzPMxe36pcmdt0hUdVrplQGFgt7lpqmT6DxQjObfyY8cwY3MGRM1M5toUH8LAHsyA3pmHAXOwDD-HL1nBgO1UfonHv9qnbJ3ULBsKACpZExNSJheAsUJEbKKUY59Sh0mMBF44UwB_DWDrwe86EywMgLyHjAK-gmvoAevsINdIsVccIU8p1mwFOsdK-ALSk40gnolpq7SrqNsFxRJHUW6hIbHbcc5N6RZN6RZvo6gu1ZDYX5Pjt1ZP_jXiKNj3T1NcxkhVnqFHmlToHplHyC-tjn0JX0Uk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4DMDAG1GeHhhYXJw0aeoRFUp5FBXaSmyRnwzQpEraATb-OWc3LRUICdYk55x8F98X3_k7hE54ICBqC4_wSAUkiBQnnOmACAbBwgBkD7nN6Lbuq81ecPMUPs0hOjkLA0rkMFLukvhf7ALeGVzjOumXQ2kpVaJ5tAhQxLds-ef1znRXpWIJy1zbWD-KPMIAH0z5fH6MYQOSzGcC0kxkaayhh6lOrqDkpTwairJ8_0bX-B-l19FqATPx-dgvNtCcTjbRygz54Bb6aKXK1gk50-DUYI7BZ7J-OgBADWK4nb6-jTJt99Y17owyw6XGgHFx3QHN5BkkOrCK48dUpFbgChaggc6wK0OAmw3QglzY9gFj6g_chjc7wZbrW72Neo3Lbr1JioYMhAMwHBJZY7QmpeChjrxQa82FYJQpn4dCUiUBTVZrisLPOpeeCAHKVLkAY0tmWAAuUNlBC0ma6F2EGROmwsFcNW0CCUZTlCoaMaOM8TTzSuBGMo-LDyqPXa7c9-JiRuNiRkvodGK8eDCm5_jt0b2_jXiMlprd1l18d31_u4-Wfdvul1oyiwO0MMxG-hAwyFAcObf7BOLC2ao
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagSAgG3ojy9MDA4pKkSROPVUt4tqoolbpFfjJAkyppB9j455zdUFUgJFjjnHPynX1ffPZ3CJ0zn0PU5i5hofSJH0pGGFU-4RSChQbIHjCT0e10GzcD_24YDMtLYeYuDChRQE-FTeKbWT2WumQYcC_hOVPpqBYIQ6sSLqMVk7QzjPnNVn--s1I3pGW2dKwXhi6hgBHmnD4_-jBBSRQLQWkhusSbaDDXyx4qealNJ7wm3r9RNv5X8S20UcJN3Jz5xzZaUukOWl8gIdxFH51MmvNC1kQ405hh8J18lI0BWIMY7mWvb9NcmT12hfvTXDOhMGBd3LKAM30GiT6s5vgx45kRuIaFaKxybI8jQGMMWpC2KSMwowDBPfiyFezY-tV7aBBfPbVuSFmYgTAAiBMiIupEQnAWqNANlFKMc-pQ6bGAC0cKQJWNSDrw086EywOANA3GweiCauqDK9T3USXNUnWAMKVc1xmYLFLaF2A46TjSCamWWruKulVwJ1Ek5cQqEpsz99ykHNGkHNEquvgyYDKe0XT89urh33o8Q6u9dpw83Hbvj9CaZ6r-OobT4hhVJvlUnQAUmfBT63mf8vXcLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modification+of+a+Thermoplastic+Polyurethane+Surface+for+Creating+a+Soft+Robotic+Gripper+Using+a+Four-Dimensional+Printing+Method&rft.jtitle=ACS+applied+engineering+materials&rft.au=Zakharova%2C+Vasilina+A.&rft.au=Mikailov%2C+Raul+G.&rft.au=Saryglar%2C+Roza+Yu&rft.au=Lagunov%2C+Vladislav+S.&rft.date=2025-07-25&rft.issn=2771-9545&rft.eissn=2771-9545&rft.volume=3&rft.issue=7&rft.spage=2190&rft.epage=2198&rft_id=info:doi/10.1021%2Facsaenm.5c00347&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsaenm_5c00347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2771-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2771-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2771-9545&client=summon