Coexistence of Superconductivity and Antiferromagnetism in Topological Magnet MnBi2Te4 Films
The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsi...
Saved in:
Published in | Nano letters Vol. 24; no. 26; pp. 7962 - 7971 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
03.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBi2Te4 and an antiferromagnetic iron chalcogenide FeTe. Our electrical transport measurements reveal interface-induced superconductivity in these heterostructures. By performing scanning tunneling microscopy and spectroscopy measurements, we observe a proximity-induced superconducting gap on the top surface of the MnBi2Te4 layer, confirming the coexistence of superconductivity and antiferromagnetism in the MnBi2Te4 layer. Our findings will advance the fundamental inquiries into the topological superconducting phase in hybrid devices and provide a promising platform for the exploration of chiral Majorana physics in MnBi2Te4-based heterostructures. |
---|---|
AbstractList | The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBi2Te4 and an antiferromagnetic iron chalcogenide FeTe. Our electrical transport measurements reveal interface-induced superconductivity in these heterostructures. By performing scanning tunneling microscopy and spectroscopy measurements, we observe a proximity-induced superconducting gap on the top surface of the MnBi2Te4 layer, confirming the coexistence of superconductivity and antiferromagnetism in the MnBi2Te4 layer. Our findings will advance the fundamental inquiries into the topological superconducting phase in hybrid devices and provide a promising platform for the exploration of chiral Majorana physics in MnBi2Te4-based heterostructures. The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBi2Te4 and an antiferromagnetic iron chalcogenide FeTe. Our electrical transport measurements reveal interface-induced superconductivity in these heterostructures. By performing scanning tunneling microscopy and spectroscopy measurements, we observe a proximity-induced superconducting gap on the top surface of the MnBi2Te4 layer, confirming the coexistence of superconductivity and antiferromagnetism in the MnBi2Te4 layer. Our findings will advance the fundamental inquiries into the topological superconducting phase in hybrid devices and provide a promising platform for the exploration of chiral Majorana physics in MnBi2Te4-based heterostructures.The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular beam epitaxy to grow a series of heterostructures formed by stacking together two nonsuperconducting antiferromagnetic materials, an intrinsic antiferromagnetic topological insulator MnBi2Te4 and an antiferromagnetic iron chalcogenide FeTe. Our electrical transport measurements reveal interface-induced superconductivity in these heterostructures. By performing scanning tunneling microscopy and spectroscopy measurements, we observe a proximity-induced superconducting gap on the top surface of the MnBi2Te4 layer, confirming the coexistence of superconductivity and antiferromagnetism in the MnBi2Te4 layer. Our findings will advance the fundamental inquiries into the topological superconducting phase in hybrid devices and provide a promising platform for the exploration of chiral Majorana physics in MnBi2Te4-based heterostructures. |
Author | Chan, Moses H. W. Prokscha, Thomas Wang, Ke Yan, Zi-Jie Suter, Andreas Zhou, Lingjie Singleton, John Wang, Zihao Wang, Annie G. Balakrishnan, Purnima P. Zhao, Yi-Fan Winter, Laurel E. Paolini, Stephen Grutter, Alexander J. Salman, Zaher Yi, Hemian Yuan, Wei Chang, Cui-Zu |
AuthorAffiliation | Laboratory for Muon Spectroscopy NIST Center for Neutron Research The Pennsylvania State University Paul Scherrer Institute Materials Research Institute National High Magnetic Field Laboratory Department of Physics |
AuthorAffiliation_xml | – name: Laboratory for Muon Spectroscopy – name: National High Magnetic Field Laboratory – name: The Pennsylvania State University – name: Department of Physics – name: Materials Research Institute – name: Paul Scherrer Institute – name: NIST Center for Neutron Research |
Author_xml | – sequence: 1 givenname: Wei surname: Yuan fullname: Yuan, Wei organization: Department of Physics – sequence: 2 givenname: Zi-Jie orcidid: 0000-0001-6176-319X surname: Yan fullname: Yan, Zi-Jie organization: Department of Physics – sequence: 3 givenname: Hemian surname: Yi fullname: Yi, Hemian organization: Department of Physics – sequence: 4 givenname: Zihao orcidid: 0009-0005-9734-8816 surname: Wang fullname: Wang, Zihao organization: Department of Physics – sequence: 5 givenname: Stephen surname: Paolini fullname: Paolini, Stephen organization: Department of Physics – sequence: 6 givenname: Yi-Fan surname: Zhao fullname: Zhao, Yi-Fan organization: Department of Physics – sequence: 7 givenname: Lingjie surname: Zhou fullname: Zhou, Lingjie organization: Department of Physics – sequence: 8 givenname: Annie G. surname: Wang fullname: Wang, Annie G. organization: Department of Physics – sequence: 9 givenname: Ke surname: Wang fullname: Wang, Ke organization: The Pennsylvania State University – sequence: 10 givenname: Thomas surname: Prokscha fullname: Prokscha, Thomas organization: Paul Scherrer Institute – sequence: 11 givenname: Zaher surname: Salman fullname: Salman, Zaher organization: Paul Scherrer Institute – sequence: 12 givenname: Andreas surname: Suter fullname: Suter, Andreas organization: Paul Scherrer Institute – sequence: 13 givenname: Purnima P. orcidid: 0000-0002-1426-669X surname: Balakrishnan fullname: Balakrishnan, Purnima P. organization: NIST Center for Neutron Research – sequence: 14 givenname: Alexander J. orcidid: 0000-0002-6876-7625 surname: Grutter fullname: Grutter, Alexander J. organization: NIST Center for Neutron Research – sequence: 15 givenname: Laurel E. surname: Winter fullname: Winter, Laurel E. organization: National High Magnetic Field Laboratory – sequence: 16 givenname: John orcidid: 0000-0001-6109-6905 surname: Singleton fullname: Singleton, John organization: National High Magnetic Field Laboratory – sequence: 17 givenname: Moses H. W. surname: Chan fullname: Chan, Moses H. W. organization: Department of Physics – sequence: 18 givenname: Cui-Zu orcidid: 0000-0003-3515-2955 surname: Chang fullname: Chang, Cui-Zu email: cxc955@psu.edu organization: Department of Physics |
BookMark | eNo9kE1PAjEQhhuDiYD-Aw89elmcfm13j0hETSAexJvJpltmScnS4rZr9N8Lop7eyTtPJpNnRAY-eCTkmsGEAWe3xsaJNz60mNJEWmAS9BkZMiUgy8uSD_7nQl6QUYxbACiFgiF5mwX8dDGht0hDQ1_6PXY2-HVvk_tw6Ysav6ZTn1yDXRd2ZuMxubijztNV2Ic2bJw1LV3-LOjS3zm-Qknnrt3FS3LemDbi1W-Oyev8fjV7zBbPD0-z6SIzTJUpy2sQhYRaG1VbW0ttgNXMsoYryaTSxkgOrBSca2VRY2PWBRdloY3gZW5QjMnN6e6-C-89xlTtXLTYtsZj6GMlQIMuucrVAYUTenBWbUPf-cNjFYPqKLI6ln8iq1-R4hvjNGxq |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society |
Copyright_xml | – notice: 2024 American Chemical Society |
DBID | 7X8 |
DOI | 10.1021/acs.nanolett.4c01407 |
DatabaseName | MEDLINE - Academic |
DatabaseTitle | MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 7971 |
ExternalDocumentID | c243622420 |
GroupedDBID | --- -~X .K2 123 4.4 55A 5VS 6P2 7~N AABXI AAHBH ABFRP ABJNI ABMVS ABQRX ABUCX ACBEA ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ DU5 EBS ED~ F5P GGK GNL IH9 IHE JG~ RNS ROL TN5 UI2 VF5 VG9 W1F 7X8 |
ID | FETCH-LOGICAL-a159t-6b03840b7a5bccb47a01b1c1f2541457aa4201932275ce7efad823987a3296ae3 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Sat Oct 26 04:48:39 EDT 2024 Wed Aug 07 03:10:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Keywords | molecular beam epitaxy growth antiferromagnetism scanning tunneling microscopy/spectroscopy interface-induced superconductivity intrinsic magnetic topological insulator |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a159t-6b03840b7a5bccb47a01b1c1f2541457aa4201932275ce7efad823987a3296ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6876-7625 0000-0001-6176-319X 0000-0003-3515-2955 0000-0002-1426-669X 0009-0005-9734-8816 0000-0001-6109-6905 |
PQID | 3070792565 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_3070792565 acs_journals_10_1021_acs_nanolett_4c01407 |
PublicationCentury | 2000 |
PublicationDate | 20240703 |
PublicationDateYYYYMMDD | 2024-07-03 |
PublicationDate_xml | – month: 07 year: 2024 text: 20240703 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
SSID | ssj0009350 |
Score | 2.503139 |
Snippet | The interface of two materials can harbor unexpected emergent phenomena. One example is interface-induced superconductivity. In this work, we employ molecular... |
SourceID | proquest acs |
SourceType | Aggregation Database Publisher |
StartPage | 7962 |
Title | Coexistence of Superconductivity and Antiferromagnetism in Topological Magnet MnBi2Te4 Films |
URI | http://dx.doi.org/10.1021/acs.nanolett.4c01407 https://www.proquest.com/docview/3070792565 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA86L3rwW5xfRPDiobNN06Q9zuEYwvSwDXYQSpKmMnSptN3Fv96XbGPiEPTawiN9H83vkZffD6EbnkQ5pyzzmK-oR0meeIIp5YW-UlLlLKROvq3_xHoj-jiOxqtG8ecJPgnuhKpaRpgCPqNuUWU7Ar6Jtgj3EyvV0O4MViS7oVNkhSKGliiJ6fKq3C9W7IakqrWfsNtZunvoeXk_Zz5Q8taa1bKlPtfpGv-46H20uwCZuD3PigO0oc0h2vlGPXiEXjqFJcF0iBkXOR7MPnQJvbGlf3V6EliYDLftKJEuy2IqXo2uJ9UUTwwezoUVbHhx373AfXM_IUNNcXfyPq2O0aj7MOz0vIXSgicAztQek34InZ7kIpIQI8qFH8hABTmxKuERF4ICUACoR3ikNNe5yGJLHMhFSBImdHiCGqYw-hRhkQEkkSziGViUSscKKjzmisV5JGmmm-gWnJMuKqVK3SE4CVL7cOmxdOGxJrpehiaFrLdHGcLoYlaloWP2A7gWnf3D3jnaJoBJ3LRteIEadTnTl4ApannlEukLaqPJ0w |
link.rule.ids | 315,783,787,27090,27938,27939,57072,57122 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6VcgAOvJYVhQWMtBcOKXn4kR67FVWBtpe2qIeVIttxVhXUQU164dczdpMt2hWHXh1pNBl77G809vcBXIoBKwTlecBDTQMaF4NAcq2DJNRa6YIn1Mu3zeZ8sqLf1mzdAda-hUEnKrRU-Sb-kV0g-uzGrLQl_k3dp9oVBuIBPGQiFE64YDhaHLl2Ey_MirmMldEgpe2Luf9YceeSru7txf6AGT-DH7eu-XslP_v7WvX1nzusjSf7_hyeNpCTDA9r5AV0jH0JT_4hIjyD61HpKDE9fiZlQRb732aHlbIjg_XqEkTanAzdxSKz25VbeWNNvam2ZGPJ8iCz4CabzPwHMrNXm3hpKBlvfm2rV7Aaf1mOJkGjuxBIBDd1wFWYYN2nhGQKZ4wKGUYq0lERO81wJqSkCBsQ-MWCaSNMIfPU0QgKmcQDLk1yDl1bWvMaiMwRoCjORI4WlTapxnxPheZpwRTNTQ8-YXCyJm-qzLfE4yhzg23EsiZiPfjYzlCGOeAaG9Kacl9lief5Q_DG3pxg7wM8mixn02z6df79LTyOEa34e7jJBXTr3d68Q7RRq_d-bf0FUpzSPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58gOjBt1ifK3jxkNok-0iPtVp8VYS2UEQIu5uNFO1GmvTir3d2TbUoHvS6gWEys5P9hp18H0LHvE5TTljisZoiHgnSuieYUl5YU0qqlIXEybe179hlj1z3aX9K6gucyMFS7i7xbVW_JmnJMOCf2nUjTAZvVFSJss0Bn0XzlPuBFS9oNDtffLuhE2eFeobuqB6RyV9zv1ixZ5PKf3yP3SHTWkEPn-652ZLn6riQVfX2jbnxX_6vouUSeuLGx15ZQzParKOlKULCDfTYzCw1psPROEtxZ_yqR9AxW1JYpzKBhUlwww4Y6dEoG4ono4tBPsQDg7sfcgs26bjtHuC2ORsEXU1wa_AyzDdRr3XRbV56pf6CJwDkFB6TtRD6P8kFlZA5wkXNl77y08Bqh1MuBAH4AAAw4FRprlORRJZOkIswqDOhwy00ZzKjtxEWCQAVyShPwKJUOlJQ9xFXLEqpJImuoBMITlzWTx67q_HAj-3iJGJxGbEKOppkKYZasBccwuhsnMeh4_sDEEd3_mDvEC3cn7fi26u7m120GABoceO44R6aK0ZjvQ-go5AHbnu9AxnM1LY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coexistence+of+Superconductivity+and+Antiferromagnetism+in+Topological+Magnet+MnBi2Te4+Films&rft.jtitle=Nano+letters&rft.au=Yuan%2C+Wei&rft.au=Yan%2C+Zi-Jie&rft.au=Yi%2C+Hemian&rft.au=Wang%2C+Zihao&rft.date=2024-07-03&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=24&rft.issue=26&rft.spage=7962&rft.epage=7971&rft_id=info:doi/10.1021%2Facs.nanolett.4c01407&rft.externalDocID=c243622420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |