A food venue recommender system based on multilingual geo-tagged Tweet analysis

This paper proposes a novel system which utilizes information from a social network services to suggest food venues to users based on crowd preferences. To recommend an appropriate food venue for each crowd preference, the system ranks food venues in each region by using an improved collaborative fi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining pp. 686 - 689
Main Authors Siriaraya, Panote, Nakaoka, Yusuke, Wang, Yuanyuan, Kawai, Yukiko
Format Conference Proceeding
LanguageEnglish
Published Piscataway, NJ, USA IEEE Press 28.08.2018
SeriesACM Conferences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a novel system which utilizes information from a social network services to suggest food venues to users based on crowd preferences. To recommend an appropriate food venue for each crowd preference, the system ranks food venues in each region by using an improved collaborative filtering method based on the differences between locations and languages in geo-tagged tweets. A key feature of the proposed system is the ability to suggest food venues in regions where very few geo-tagged tweets are available in a specific language by using the weighted similarity by others' preferences. To implement the system, more than 26 million tweets from European countries were collected and analyzed based on 6 languages and 7 regions. Afterwards, we provide an evaluation of the ranked venues proposed by the system based on 89 French speakers in 7 European countries.
AbstractList This paper proposes a novel system which utilizes information from a social network services to suggest food venues to users based on crowd preferences. To recommend an appropriate food venue for each crowd preference, the system ranks food venues in each region by using an improved collaborative filtering method based on the differences between locations and languages in geo-tagged tweets. A key feature of the proposed system is the ability to suggest food venues in regions where very few geo-tagged tweets are available in a specific language by using the weighted similarity by others' preferences. To implement the system, more than 26 million tweets from European countries were collected and analyzed based on 6 languages and 7 regions. Afterwards, we provide an evaluation of the ranked venues proposed by the system based on 89 French speakers in 7 European countries.
Author Wang, Yuanyuan
Siriaraya, Panote
Nakaoka, Yusuke
Kawai, Yukiko
Author_xml – sequence: 1
  givenname: Panote
  surname: Siriaraya
  fullname: Siriaraya, Panote
  email: k6180@cc.kyoto-su.ac.jp
  organization: Kyoto Sangyo University, Japan
– sequence: 2
  givenname: Yusuke
  surname: Nakaoka
  fullname: Nakaoka, Yusuke
  email: g1444936@cc.kyoto-su.ac.jp
  organization: Kyoto Sangyo University, Japan
– sequence: 3
  givenname: Yuanyuan
  surname: Wang
  fullname: Wang, Yuanyuan
  email: y.wang@yamaguchi-u.ac.jp
  organization: Yamaguchi University, Japan
– sequence: 4
  givenname: Yukiko
  surname: Kawai
  fullname: Kawai, Yukiko
  email: kawai@cc.kyoto-su.ac.jp
  organization: Kyoto Sangyo Univ., Osaka Univ., Japan
BookMark eNqNkDtPwzAUhS0BErR0ZvXIkuBHfBOPVcVLqtSlzNF1chMFEluKE1D_PanoD-AsZzifzvCt2LUPnhh7kCI1S560LpRSJj23zrMrtpJGFwDCSHXLNjF-CiEUFAaUumOHLW9CqPk3-Zn4SFUYBvI1jTye4kQDdxip5sHzYe6nru98O2PPWwrJhG27TMcfoomjx_4Uu3jPbhrsI20uvWYfL8_H3VuyP7y-77b7BKXJp8TaooFG1TliJiC3JAptpbHGZNZpgAwhcxpB2MZVALlSrq5trsFpKY1BvWaPf79YDaUL4SuWUpRnAeVFQHkRsKDpP9HSjR01-heGBF1u
ContentType Conference Proceeding
DOI 10.5555/3382225.3382374
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Editor Brandes, Ulrik
Tagarelli, Andrea
Reddy, Chandan
Editor_xml – sequence: 1
  givenname: Ulrik
  surname: Brandes
  fullname: Brandes, Ulrik
  organization: ETH Zurich, Switzerland
– sequence: 2
  givenname: Chandan
  surname: Reddy
  fullname: Reddy, Chandan
  organization: Virginia Tech
– sequence: 3
  givenname: Andrea
  surname: Tagarelli
  fullname: Tagarelli, Andrea
  organization: University of Calabria, Italy
EndPage 689
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
IEGSK
OCL
RIB
RIC
RIE
RIL
ID FETCH-LOGICAL-a157t-998f6f2d7aa40679e08391595549b3664a64b3a609fbc66722bdd9736b31155a3
ISBN 1538660512
9781538660515
IngestDate Wed Jan 31 06:45:11 EST 2024
IsPeerReviewed false
IsScholarly false
Keywords geo-tagged Tweets
multilingual analysis
venue recommendation
Language English
LinkModel OpenURL
MeetingName ASONAM '18: International Conference on Advances in Social Networks Analysis and Mining
MergedId FETCHMERGED-LOGICAL-a157t-998f6f2d7aa40679e08391595549b3664a64b3a609fbc66722bdd9736b31155a3
PageCount 4
ParticipantIDs acm_books_10_5555_3382225_3382374_brief
acm_books_10_5555_3382225_3382374
PublicationCentury 2000
PublicationDate 20180828
PublicationDateYYYYMMDD 2018-08-28
PublicationDate_xml – month: 08
  year: 2018
  text: 20180828
  day: 28
PublicationDecade 2010
PublicationPlace Piscataway, NJ, USA
PublicationPlace_xml – name: Piscataway, NJ, USA
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
PublicationYear 2018
Publisher IEEE Press
Publisher_xml – name: IEEE Press
SSID ssj0002685622
Score 1.7207208
Snippet This paper proposes a novel system which utilizes information from a social network services to suggest food venues to users based on crowd preferences. To...
SourceID acm
SourceType Publisher
StartPage 686
Title A food venue recommender system based on multilingual geo-tagged Tweet analysis
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBdpT7utrGPduqJBYYfgto5tqT7sEMpK2Wi2QwrNyUi2FIqpDbVNWf-Q_b17T5ItNwS6LQcn_kDC7_fy9J7eFyHHuVAyjbUKEqHTIAbjC9u8oLtQ6kQrVugQE4WvF-zqJv52m9xOJr9HUUtdK0_yp615Jf-DKlwDXDFL9h-QHQaFC_Ab8IUjIAzHDeV36zrzc7jY9K5-WGjPp2jAYZ2Ei-uNDT-f3oc-grl1_5uAWJelu7BB4Y2vVWLiMEwTiTFzzacaqyGDoOyw7Qq8271pSecKQ09xbSxwDhOviBnvmKWyVnXQivUabi0f0Rcu3CzDNs8dEO1B_BJWt63qdmC7hShFXZobq67pSu9Schveqw7EWud5_bt4tJ22V115V9ZWemJV5-YLEsaT4tnGR4iFtPtE8t4YfhanIq34ZmCguchsK5NZX2vbnaXbVo4EPoAMGOxoAJ_gd8TjHbID8stmBQ47dzN2Dkojmvh-Olc8rD9PbBEpHPR0Y0jUgvL7kQ6zfE32_TtTzzp7ZKKqN-THnCKk1EBKR5BSCyk1kNK6omNIqYeUGkhpD-k-ubn8ury4ClyzjUCECW8DMLs107OCCxHj5qIC3TwFXRfUzVRGjMWCxTIS7CzVMmeMz2ayKFIeMYn1mhIRvSW7VV2pd4RyrtGQCLmSUSyiQqZRrkJ-lmsGAj9RB-QTkCDDP1KTgRGKZMocmTJHpgPy-cVnMglMo9__xWgfyCvPQYdkt33o1EdQJlt5ZLD9AzXob2w
link.rule.ids 310,311,783,787,792,793,27938
linkProvider IEEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+2018+IEEE%2FACM+International+Conference+on+Advances+in+Social+Networks+Analysis+and+Mining&rft.atitle=A+food+venue+recommender+system+based+on+multilingual+geo-tagged+Tweet+analysis&rft.au=Siriaraya%2C+Panote&rft.au=Nakaoka%2C+Yusuke&rft.au=Wang%2C+Yuanyuan&rft.au=Kawai%2C+Yukiko&rft.series=ACM+Conferences&rft.date=2018-08-28&rft.pub=IEEE+Press&rft.isbn=1538660512&rft.spage=686&rft.epage=689&rft_id=info:doi/10.5555%2F3382225.3382374
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538660515/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538660515/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781538660515/sc.gif&client=summon&freeimage=true