Tags as bridges between domains improving recommendation with tag-induced cross-domain collaborative filtering

Recommender systems generally face the challenge of making predictions using only the relatively few user ratings available for a given domain. Cross-domain collaborative filtering (CF) aims to alleviate the effects of this data sparseness by transferring knowledge from other domains. We propose a n...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 19th international conference on User modeling, adaption, and personalization pp. 305 - 316
Main Authors Shi, Yue, Larson, Martha, Hanjalic, Alan
Format Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer-Verlag 11.07.2011
SeriesACM Conferences
Subjects
Online AccessGet full text
ISBN3642223613
9783642223617
DOI10.5555/2021855.2021882

Cover

Abstract Recommender systems generally face the challenge of making predictions using only the relatively few user ratings available for a given domain. Cross-domain collaborative filtering (CF) aims to alleviate the effects of this data sparseness by transferring knowledge from other domains. We propose a novel algorithm, Tag-induced Cross-Domain Collaborative Filtering (TagCDCF), which exploits user-contributed tags that are common to multiple domains in order to establish the cross-domain links necessary for successful cross-domain CF. TagCDCF extends the state-of-the-art matrix factorization by introducing a constraint involving tag-based similarities between pairs of users and pairs of items across domains. The method requires no common users or items across domains. Using two publicly available CF data sets as different domains, we experimentally demonstrate that TagCDCF substantially outperforms other state-of-the-art single domain CF and cross-domain CF approaches. Additional experiments show that TagCDCF addresses data sparseness and illustrate the influence of the number of tags used by users in both domains.
AbstractList Recommender systems generally face the challenge of making predictions using only the relatively few user ratings available for a given domain. Cross-domain collaborative filtering (CF) aims to alleviate the effects of this data sparseness by transferring knowledge from other domains. We propose a novel algorithm, Tag-induced Cross-Domain Collaborative Filtering (TagCDCF), which exploits user-contributed tags that are common to multiple domains in order to establish the cross-domain links necessary for successful cross-domain CF. TagCDCF extends the state-of-the-art matrix factorization by introducing a constraint involving tag-based similarities between pairs of users and pairs of items across domains. The method requires no common users or items across domains. Using two publicly available CF data sets as different domains, we experimentally demonstrate that TagCDCF substantially outperforms other state-of-the-art single domain CF and cross-domain CF approaches. Additional experiments show that TagCDCF addresses data sparseness and illustrate the influence of the number of tags used by users in both domains.
Author Larson, Martha
Hanjalic, Alan
Shi, Yue
Author_xml – sequence: 1
  givenname: Yue
  surname: Shi
  fullname: Shi, Yue
  email: y.shi@tudelft.nl
  organization: Multimedia Information Retrieval Lab, Delft University of Technology, Delft, Netherlands
– sequence: 2
  givenname: Martha
  surname: Larson
  fullname: Larson, Martha
  email: m.a.larson@tudelft.nl
  organization: Multimedia Information Retrieval Lab, Delft University of Technology, Delft, Netherlands
– sequence: 3
  givenname: Alan
  surname: Hanjalic
  fullname: Hanjalic, Alan
  email: a.hanjalic@tudelft.nl
  organization: Multimedia Information Retrieval Lab, Delft University of Technology, Delft, Netherlands
BookMark eNqNj7tOAzEQRS0FpDxrSrak2WXsWT8oUQQBKRJNUlvj9TgKkF0JR8rvY2A_gNvcYo6u5szFVT_0LMSNhEaX3CtQ0mnd_LZTEzFH0yql0EicilXO71CiEazWM3G7o0OuKFfh6xgPXJrPF-a-isOJjn1eiutEn5lXYy_E_vlpt36pt2-b1_Xjtiap7bm2kRGAorTYatAxOOgsGkpM_BCCDGRtOZHEDji1xgRnExlXPi2IkrgQd3-71J18GIaP7CX4HyE_CvlRqKDNP1FfpDjhN96CTFE
ContentType Conference Proceeding
DOI 10.5555/2021855.2021882
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Editor Marzo, José L.
Conejo, Ricardo
Oliver, Nuria
Konstan, Joseph A.
Editor_xml – sequence: 1
  givenname: Joseph A.
  surname: Konstan
  fullname: Konstan, Joseph A.
  organization: University of Minnesota, Department of Computer Science and Engineering, Minneapolis, MN
– sequence: 2
  givenname: Ricardo
  surname: Conejo
  fullname: Conejo, Ricardo
  organization: Universidad de Málaga, E.T.S. Ing. Informatica, Malaga, Spain
– sequence: 3
  givenname: José L.
  surname: Marzo
  fullname: Marzo, José L.
  organization: University of Girona, Girona, Spain
– sequence: 4
  givenname: Nuria
  surname: Oliver
  fullname: Oliver, Nuria
  organization: Telefonica Research R&D, Barcelona, Catalonia, Spain
EndPage 316
GroupedDBID 089
0D6
0DA
2HV
38.
A4J
AABBV
AAINA
AAMFE
ABBVZ
ABFCV
ABMNI
ACM
ADPZR
AECAB
AECMQ
AEDXK
AEGQK
AEKFX
AETDV
AEZAY
AFNRJ
ALMA_UNASSIGNED_HOLDINGS
ANXAN
APO
AZZ
BBABE
C9S
C9V
CZZ
GUFHI
I4C
IEZ
IX-
JJU
LDH
MA.
MW~
NUC
SAO
SBO
TCUKC
TPJZQ
TSXQS
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-a157t-7de300ad1734505db80c736afeae9bb1ba77734a13c0ef466b87fa68185fea213
ISBN 3642223613
9783642223617
IngestDate Wed Jan 31 06:47:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords collaborative filtering
matrix factorization
recommender systems
cross domain collaborative filtering
tag
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a157t-7de300ad1734505db80c736afeae9bb1ba77734a13c0ef466b87fa68185fea213
PageCount 12
ParticipantIDs acm_books_10_5555_2021855_2021882_brief
acm_books_10_5555_2021855_2021882
PublicationCentury 2000
PublicationDate 20110711
PublicationDateYYYYMMDD 2011-07-11
PublicationDate_xml – month: 07
  year: 2011
  text: 20110711
  day: 11
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationSeriesTitle ACM Conferences
PublicationTitle Proceedings of the 19th international conference on User modeling, adaption, and personalization
PublicationYear 2011
Publisher Springer-Verlag
Publisher_xml – name: Springer-Verlag
SSID ssj0000530755
Score 2.0744255
Snippet Recommender systems generally face the challenge of making predictions using only the relatively few user ratings available for a given domain. Cross-domain...
SourceID acm
SourceType Publisher
StartPage 305
SubjectTerms Information systems
Information systems -- Information retrieval
Information systems -- Information retrieval -- Retrieval tasks and goals
Information systems -- Information retrieval -- Retrieval tasks and goals -- Document filtering
Information systems -- Information retrieval -- Retrieval tasks and goals -- Information extraction
Subtitle improving recommendation with tag-induced cross-domain collaborative filtering
Title Tags as bridges between domains
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT4MwEG_mfPHJ7_gtJiY-GJRaaOFNYzRmUWOiM_pECpRME5kZ7GV_vXdQCi5L_NgD2zpo1_6Oux_X3pWQwwA4Bk-ob6uAxrarMAekB_djcgb2XipGVVqutrjnN3239-K9dDrn7eiSIjqJJzPjSv6DKpQBrhgl-wdkTaVQAJ8BXzgCwnCcIr8z7cyDKczrqX4aFIMyBUTj5YtNTB9ODPThj1Xb3-jNTGQiS61RL-P8rNn5pDVHr0VKQkMyP65TQ9RrvJLhh3zLDDl_LPcJPn4dG5m5lSMd2IVZCwayUXvZO7QUV5E2Wk5x5FQOMnLXCkf85p1Ad6uwaeOdmOWdLB9eGUffE-OUtbQnc7yWIWZVEOa0jvfghWEsSE4876R898EIzwkfFPP8xVXv9tl42UDFACfyMKjHNFilXTLfRZXwCas9naoUGUv80eIbT0tkrem61cC8TDoqWyGL9VYcltbMq2QfsbFkbmlsLI2NpbFZI_3rq6fLG1vvfWFL6onCFolijiMTKpgLJDWJfCcWjMtUSRVEEY2kEPCTpCx2VOpyHvkilRzpF5xyRtk66WbDTG0QC-652BUiTR3QvYIiIwUTyBlc5iifB5vkAHoZolznITwT4kiEeiRCPRKb5OjHc0LooUq3flHbNlloZGWHdIvRWO0CtyuiPQ3gF4FoRUk
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+19th+international+conference+on+User+modeling%2C+adaption%2C+and+personalization&rft.atitle=Tags+as+bridges+between+domains&rft.au=Shi%2C+Yue&rft.au=Larson%2C+Martha&rft.au=Hanjalic%2C+Alan&rft.series=ACM+Conferences&rft.date=2011-07-11&rft.pub=Springer-Verlag&rft.isbn=3642223613&rft.spage=305&rft.epage=316&rft_id=info:doi/10.5555%2F2021855.2021882
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783642223617/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783642223617/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783642223617/sc.gif&client=summon&freeimage=true