Tags as bridges between domains improving recommendation with tag-induced cross-domain collaborative filtering
Recommender systems generally face the challenge of making predictions using only the relatively few user ratings available for a given domain. Cross-domain collaborative filtering (CF) aims to alleviate the effects of this data sparseness by transferring knowledge from other domains. We propose a n...
Saved in:
Published in | Proceedings of the 19th international conference on User modeling, adaption, and personalization pp. 305 - 316 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer-Verlag
11.07.2011
|
Series | ACM Conferences |
Subjects | |
Online Access | Get full text |
ISBN | 3642223613 9783642223617 |
DOI | 10.5555/2021855.2021882 |
Cover
Abstract | Recommender systems generally face the challenge of making predictions using only the relatively few user ratings available for a given domain. Cross-domain collaborative filtering (CF) aims to alleviate the effects of this data sparseness by transferring knowledge from other domains. We propose a novel algorithm, Tag-induced Cross-Domain Collaborative Filtering (TagCDCF), which exploits user-contributed tags that are common to multiple domains in order to establish the cross-domain links necessary for successful cross-domain CF. TagCDCF extends the state-of-the-art matrix factorization by introducing a constraint involving tag-based similarities between pairs of users and pairs of items across domains. The method requires no common users or items across domains. Using two publicly available CF data sets as different domains, we experimentally demonstrate that TagCDCF substantially outperforms other state-of-the-art single domain CF and cross-domain CF approaches. Additional experiments show that TagCDCF addresses data sparseness and illustrate the influence of the number of tags used by users in both domains. |
---|---|
AbstractList | Recommender systems generally face the challenge of making predictions using only the relatively few user ratings available for a given domain. Cross-domain collaborative filtering (CF) aims to alleviate the effects of this data sparseness by transferring knowledge from other domains. We propose a novel algorithm, Tag-induced Cross-Domain Collaborative Filtering (TagCDCF), which exploits user-contributed tags that are common to multiple domains in order to establish the cross-domain links necessary for successful cross-domain CF. TagCDCF extends the state-of-the-art matrix factorization by introducing a constraint involving tag-based similarities between pairs of users and pairs of items across domains. The method requires no common users or items across domains. Using two publicly available CF data sets as different domains, we experimentally demonstrate that TagCDCF substantially outperforms other state-of-the-art single domain CF and cross-domain CF approaches. Additional experiments show that TagCDCF addresses data sparseness and illustrate the influence of the number of tags used by users in both domains. |
Author | Larson, Martha Hanjalic, Alan Shi, Yue |
Author_xml | – sequence: 1 givenname: Yue surname: Shi fullname: Shi, Yue email: y.shi@tudelft.nl organization: Multimedia Information Retrieval Lab, Delft University of Technology, Delft, Netherlands – sequence: 2 givenname: Martha surname: Larson fullname: Larson, Martha email: m.a.larson@tudelft.nl organization: Multimedia Information Retrieval Lab, Delft University of Technology, Delft, Netherlands – sequence: 3 givenname: Alan surname: Hanjalic fullname: Hanjalic, Alan email: a.hanjalic@tudelft.nl organization: Multimedia Information Retrieval Lab, Delft University of Technology, Delft, Netherlands |
BookMark | eNqNj7tOAzEQRS0FpDxrSrak2WXsWT8oUQQBKRJNUlvj9TgKkF0JR8rvY2A_gNvcYo6u5szFVT_0LMSNhEaX3CtQ0mnd_LZTEzFH0yql0EicilXO71CiEazWM3G7o0OuKFfh6xgPXJrPF-a-isOJjn1eiutEn5lXYy_E_vlpt36pt2-b1_Xjtiap7bm2kRGAorTYatAxOOgsGkpM_BCCDGRtOZHEDji1xgRnExlXPi2IkrgQd3-71J18GIaP7CX4HyE_CvlRqKDNP1FfpDjhN96CTFE |
ContentType | Conference Proceeding |
DOI | 10.5555/2021855.2021882 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
Editor | Marzo, José L. Conejo, Ricardo Oliver, Nuria Konstan, Joseph A. |
Editor_xml | – sequence: 1 givenname: Joseph A. surname: Konstan fullname: Konstan, Joseph A. organization: University of Minnesota, Department of Computer Science and Engineering, Minneapolis, MN – sequence: 2 givenname: Ricardo surname: Conejo fullname: Conejo, Ricardo organization: Universidad de Málaga, E.T.S. Ing. Informatica, Malaga, Spain – sequence: 3 givenname: José L. surname: Marzo fullname: Marzo, José L. organization: University of Girona, Girona, Spain – sequence: 4 givenname: Nuria surname: Oliver fullname: Oliver, Nuria organization: Telefonica Research R&D, Barcelona, Catalonia, Spain |
EndPage | 316 |
GroupedDBID | 089 0D6 0DA 2HV 38. A4J AABBV AAINA AAMFE ABBVZ ABFCV ABMNI ACM ADPZR AECAB AECMQ AEDXK AEGQK AEKFX AETDV AEZAY AFNRJ ALMA_UNASSIGNED_HOLDINGS ANXAN APO AZZ BBABE C9S C9V CZZ GUFHI I4C IEZ IX- JJU LDH MA. MW~ NUC SAO SBO TCUKC TPJZQ TSXQS Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z84 Z85 Z87 Z88 |
ID | FETCH-LOGICAL-a157t-7de300ad1734505db80c736afeae9bb1ba77734a13c0ef466b87fa68185fea213 |
ISBN | 3642223613 9783642223617 |
IngestDate | Wed Jan 31 06:47:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | collaborative filtering matrix factorization recommender systems cross domain collaborative filtering tag |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a157t-7de300ad1734505db80c736afeae9bb1ba77734a13c0ef466b87fa68185fea213 |
PageCount | 12 |
ParticipantIDs | acm_books_10_5555_2021855_2021882_brief acm_books_10_5555_2021855_2021882 |
PublicationCentury | 2000 |
PublicationDate | 20110711 |
PublicationDateYYYYMMDD | 2011-07-11 |
PublicationDate_xml | – month: 07 year: 2011 text: 20110711 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg |
PublicationSeriesTitle | ACM Conferences |
PublicationTitle | Proceedings of the 19th international conference on User modeling, adaption, and personalization |
PublicationYear | 2011 |
Publisher | Springer-Verlag |
Publisher_xml | – name: Springer-Verlag |
SSID | ssj0000530755 |
Score | 2.0744255 |
Snippet | Recommender systems generally face the challenge of making predictions using only the relatively few user ratings available for a given domain. Cross-domain... |
SourceID | acm |
SourceType | Publisher |
StartPage | 305 |
SubjectTerms | Information systems Information systems -- Information retrieval Information systems -- Information retrieval -- Retrieval tasks and goals Information systems -- Information retrieval -- Retrieval tasks and goals -- Document filtering Information systems -- Information retrieval -- Retrieval tasks and goals -- Information extraction |
Subtitle | improving recommendation with tag-induced cross-domain collaborative filtering |
Title | Tags as bridges between domains |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT4MwEG_mfPHJ7_gtJiY-GJRaaOFNYzRmUWOiM_pECpRME5kZ7GV_vXdQCi5L_NgD2zpo1_6Oux_X3pWQwwA4Bk-ob6uAxrarMAekB_djcgb2XipGVVqutrjnN3239-K9dDrn7eiSIjqJJzPjSv6DKpQBrhgl-wdkTaVQAJ8BXzgCwnCcIr8z7cyDKczrqX4aFIMyBUTj5YtNTB9ODPThj1Xb3-jNTGQiS61RL-P8rNn5pDVHr0VKQkMyP65TQ9RrvJLhh3zLDDl_LPcJPn4dG5m5lSMd2IVZCwayUXvZO7QUV5E2Wk5x5FQOMnLXCkf85p1Ad6uwaeOdmOWdLB9eGUffE-OUtbQnc7yWIWZVEOa0jvfghWEsSE4876R898EIzwkfFPP8xVXv9tl42UDFACfyMKjHNFilXTLfRZXwCas9naoUGUv80eIbT0tkrem61cC8TDoqWyGL9VYcltbMq2QfsbFkbmlsLI2NpbFZI_3rq6fLG1vvfWFL6onCFolijiMTKpgLJDWJfCcWjMtUSRVEEY2kEPCTpCx2VOpyHvkilRzpF5xyRtk66WbDTG0QC-652BUiTR3QvYIiIwUTyBlc5iifB5vkAHoZolznITwT4kiEeiRCPRKb5OjHc0LooUq3flHbNlloZGWHdIvRWO0CtyuiPQ3gF4FoRUk |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+19th+international+conference+on+User+modeling%2C+adaption%2C+and+personalization&rft.atitle=Tags+as+bridges+between+domains&rft.au=Shi%2C+Yue&rft.au=Larson%2C+Martha&rft.au=Hanjalic%2C+Alan&rft.series=ACM+Conferences&rft.date=2011-07-11&rft.pub=Springer-Verlag&rft.isbn=3642223613&rft.spage=305&rft.epage=316&rft_id=info:doi/10.5555%2F2021855.2021882 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783642223617/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783642223617/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783642223617/sc.gif&client=summon&freeimage=true |