Computational techniques for multiphase flows

The use of Computational Fluid Dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries.

Saved in:
Bibliographic Details
Main Authors Yeoh, Guan Heng, Tu, Jiyuan
Format eBook Book
LanguageEnglish
Published Oxford Butterworth-Heinemann 2019
Elsevier Science & Technology
Edition2
Subjects
Online AccessGet full text
ISBN9780081024539
0081024533

Cover

Abstract The use of Computational Fluid Dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries.
AbstractList The use of Computational Fluid Dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries.
Author Tu, Jiyuan
Yeoh, Guan Heng
Author_xml – sequence: 1
  fullname: Yeoh, Guan Heng
– sequence: 2
  fullname: Tu, Jiyuan
BackLink https://cir.nii.ac.jp/crid/1130282272887466368$$DView record in CiNii
BookMark eNpVj01LAzEYhCN-oK39D3sQxMNC9s33UZf6AQUv4nV5d5PQtemmNln7922tl15mGHgYZibkYoiDOyMzozSluqLABZfnJ5mZKzKpqDYChKTmmsxS-qKUghDCKHpDyjquN2PG3McBQ5Fdtxz679GlwsdtsR5D7jdLTK7wIe7SLbn0GJKb_fuUfD7PP-rXcvH-8lY_LkqsBGemdNYaq1VnLKLitnMSOVrOAB164Ep66g2AtKK12mntFEhmmW-BScVaxqbk4ViMaeV2aRlDTs1PcG2Mq9ScHN6z90d2s42H5bn5wzo35C2GZv5UCwWV3A-bkrsjOfR90_UHrSpGQQMo0FpxKZnU7BeNQ2Al
ContentType eBook
Book
DBID RYH
DEWEY 620.1064
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate IChemE : advancing chemical engineering worldwide
EISBN 9780081024546
0081024541
Edition 2
2nd edition.
ExternalDocumentID 9780081024546
EBC5721654
BB28075142
GroupedDBID 38.
AAAAS
AABBV
AAJFB
AAKZG
AALRI
AAWMN
AAXUO
AAZNM
ABGWT
ABJDO
ABLXK
ABMAC
ABNVE
ABQQC
ACDGK
ACKCA
ADCEY
AEIUV
AEYWH
AFANW
ALMA_UNASSIGNED_HOLDINGS
AUEHQ
AZZ
BBABE
CZZ
HGY
RYH
SDK
SRW
ADVEM
ALBLE
GEOUK
ID FETCH-LOGICAL-a15439-edd9d87c9daa74dce6a4ad432aeaf2476f0f9226d5bd8e88e7263d3fb23673b33
ISBN 9780081024539
0081024533
IngestDate Fri Nov 08 05:00:17 EST 2024
Fri May 30 22:19:20 EDT 2025
Thu Jun 26 23:10:12 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident TA357.5.M84 .Y464 2019
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a15439-edd9d87c9daa74dce6a4ad432aeaf2476f0f9226d5bd8e88e7263d3fb23673b33
Notes Includes bibliographical references and index
"Butterworth-Heinemann is an imprint of Elsevier"--T.p. verso
OCLC 1089525609
PQID EBC5721654
PageCount 642
ParticipantIDs askewsholts_vlebooks_9780081024546
proquest_ebookcentral_EBC5721654
nii_cinii_1130282272887466368
PublicationCentury 2000
PublicationDate c2019
2019
2019-02-28
PublicationDateYYYYMMDD 2019-01-01
2019-02-28
PublicationDate_xml – year: 2019
  text: c2019
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: Chantilly
PublicationYear 2019
Publisher Butterworth-Heinemann
Elsevier Science & Technology
Publisher_xml – name: Butterworth-Heinemann
– name: Elsevier Science & Technology
SSID ssj0002555970
ssib028732131
Score 2.099713
Snippet The use of Computational Fluid Dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely...
SourceID askewsholts
proquest
nii
SourceType Aggregation Database
Publisher
SubjectTerms Multiphase flow
Multiphase flow -- Data processing
TableOfContents Front Cover -- COMPUTATIONAL TECHNIQUES FOR MULTIPHASE FLOWS -- COMPUTATIONAL TECHNIQUES FOR MULTIPHASE FLOWS -- Copyright -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- 1 - Introduction -- 1.1 CLASSIFICATION AND PHENOMENOLOGICAL DISCUSSION -- 1.2 TYPICAL PRACTICAL PROBLEMS INVOLVING MULTIPHASE FLOWS -- 1.3 COMPUTATIONAL FLUID DYNAMICS AS A RESEARCH TOOL FOR MULTIPHASE FLOWS -- 1.4 COMPUTATIONAL FLUID DYNAMICS AS A DESIGN TOOL FOR MULTIPHASE FLOWS -- 1.5 IMPACT OF MULITIPHASE FLOW STUDY ON COMPUTATIONAL FLUID DYNAMICS -- 1.6 SCOPE OF THE BOOK -- 2 - Governing Equations and Boundary Conditions -- 2.1 BASIC CONCEPTS OF FLUID MECHANICS -- 2.2 BACKGROUND OF DIFFERENT APPROACHES -- 2.3 AVERAGING PROCEDURE FOR MULTIPHASE FLOW -- 2.4 EQUATIONS OF MOTION FOR CONTINUOUS PHASE -- 2.4.1 Conservation of Mass -- 2.4.2 Conservation of Momentum -- 2.4.3 Conservation of Energy -- 2.4.4 Interfacial Transport -- 2.4.5 Effective Conservation Equations -- 2.5 COMMENTS AND OBSERVATIONS ON THE GOVERNING EQUATIONS FOR THE TWO-FLUIDLING APPROACH -- 2.6 EQUATIONS OF MOTION FOR DISPERSE PHASE -- 2.7 TURBULENCE IN TRANSPORT PHENOMENA -- 2.7.1 Reynolds-Averaged Equations -- 2.7.1.1 Mixture Model -- 2.7.1.2 Two-Fluid Model -- 2.7.2 Reynolds-Averaged Closure -- 2.7.3 Some Comments on the k-ε Model and Implications of Other Turbulence Models -- 2.7.3.1 Shear Stress Transport (SST) Model -- 2.7.3.2 Reynolds Stress Model -- 2.7.3.3 Near-Wall Treatment -- 2.7.4 Some Comments on Turbulence Modelling of the Disperse Phase -- 2.8 DIFFERENTIAL AND INTEGRAL FORM OF THE TRANSPORT EQUATIONS -- 2.8.1 Mixture Model -- 2.8.2 Two-Fluid Model -- 2.8.3 A Comment on Multifluid Model -- 2.9 BOUNDARY CONDITIONS AND THEIR PHYSICAL INTREPRETATION -- 2.9.1 Comments on Some Wall Boundary Conditions for Multiphase Problems -- 2.10 SUMMARY
3.5.2 Particle-Particle Interaction (Four-Way Coupling Concept-Collisions and Turbulent Dispersion of Particles) -- 3.5.2.1 Hard-Sphere Model -- 3.5.2.2 Soft-Sphere Model -- 3.5.3 Basic Numerical Techniques -- 3.5.4 Comments on Sampling Particles for Turbulent Dispersion -- 3.5.5 Some Comments on Attaining Proper Statistical Realisations -- 3.5.5.1 Evaluation of Source Terms for the Continuous Phase -- INTERFACE TRACKING/CAPTURING ALGORITHMS -- 3.6 BASIC CONSIDERATIONS OF INTERFACE TRACKING/CAPTURING METHODS -- 3.6.1 Algorithms Based on Surface Methods: With Comments -- 3.6.1.1 Surface Marker Approaches -- 3.6.1.2 Front Tracking Method -- 3.6.1.3 Intersection Marker Method -- 3.6.2 Algorithms Based on Volume Methods: With Comments -- 3.6.2.1 Markers in Fluid (MAC Formulation) -- 3.6.2.2 Volume of Fluid (VOF) -- 3.6.2.2.1 DONOR-ACCEPTOR FORMULATION -- 3.6.2.2.2 LINE TECHNIQUES (GEOMETRIC RECONSTRUCTION) -- 3.6.2.3 Level Set Method -- 3.6.2.4 Hybrid Methods -- 3.6.3 Computing Surface Tension and Wall Adhesion -- 3.7 SUMMARY -- 4 - Gas-Particle and Liquid-Particle Flows -- 4.1 INTRODUCTION -- 4.1.1 Background -- 4.1.1.1 Gas-Particle Flows -- Liquid-Particle Flows -- 4.1.2 Classification of Gas-Particle Flows -- 4.1.3 Particle Loading and Stokes Number -- 4.1.4 Particle Dispersion due to Turbulence -- 4.1.5 Some Physical Characteristics of Flow in Sedimentation Tank -- 4.1.6 Some Physical Characteristics of Slurry Transport -- 4.2 MULTIPHASE MODELS FOR GAS-PARTICLE FLOWS -- 4.2.1 Eulerian-Lagrangian Framework -- 4.2.2 Eulerian-Eulerian Framework -- 4.2.3 Turbulence Modelling -- Gas Phase -- Particle Phase in Lagrangian Reference Frame -- Particle Phase in Eulerian Reference Frame -- 4.2.4 Particle-Wall Collision Model -- Lagrangian Reference Frame -- Eulerian Reference Frame -- 4.3 MULTIPHASE MODELS FOR LIQUID-PARTICLE FLOWS -- 4.3.1 Mixture Model
8.2.3 Other Boundary Conditions
3 - Solution Methods for Multiphase Flows -- 3.1 INTRODUCTION -- MESH SYSTEMS -- 3.2 CONSIDERATION FOR A RANGE OF MULTIPHASE FLOW PROBLEMS -- 3.2.1 Application of Structured Mesh -- 3.2.2 Application of Body-Fitted Mesh -- 3.2.3 Application of Unstructured Mesh -- 3.2.4 Some Comments on Grid Generation -- EULERIAN-EULERIAN FRAMEWORK -- 3.3 NUMERICAL ALGORITHMS -- 3.3.1 Basic Aspects of Discretisation - Finite Difference Method -- 3.3.2 Basic Aspects of Discretisation - Finite Volume Method -- 3.3.3 Basic Approximation of the Diffusion Term Based Upon the Finite Volume Method -- 3.3.4 Basic Approximation of the Advection Term Based Upon the Finite Volume Method -- 3.3.5 Some Comments on the Need for TVD Schemes -- 3.3.6 Explicit and Implicit Approaches -- 3.3.7 Assembly of Discretised Equations -- 3.3.8 Comments on the Linearisation of Source Terms -- 3.4 SOLUTION ALGORITHMS -- 3.4.1 The Philosophy Behind the Pressure Correction Techniques for Multiphase Problems -- 3.4.1.1 SIMPLE Algorithm for Mixture or Homogeneous Flows -- 3.4.1.2 A Comment on Other Pressure Correction Methods -- 3.4.1.3 Evaluation of the Face Velocity in Different Mesh Systems -- 3.4.1.4 Iterative Procedure Based on the SIMPLE Algorithm -- 3.4.1.5 Inter-Phase Slip Algorithm (IPSA) for Multiphase Flows -- 3.4.1.6 Inter-phase Slip Algorithm-Coupled (IPSA-C) for Multiphase Flows -- 3.4.1.7 Comments on the Need for Improved Interpolation Methods of Evaluating the Face Velocity in Multiphase Problems -- 3.4.2 Matrix Solvers for the Segregated Approach in Different Mesh Systems -- 3.4.3 Coupled Equation System -- EULERIAN-LAGRANGIAN FRAMEWORK -- 3.5 NUMERICAL AND SOLUTION ALGORITHMS -- 3.5.1 Fluid-Particle Interaction (Forces Related to Fluid Acting on Particle - One-Way, Two-Way Coupling)
4.3.1.1 Modelling Source or Sink Terms for Flow in Sedimentation Tank -- BUOYANCY DUE TO DENSITY DIFFERENCE -- SETTLING VELOCITY OF PARTICLE PHASE -- FLOCCULATION MODELLING -- RHEOLOGY OF THE MIXTURE -- 4.3.1.2 Modelling Source or Sink Terms for Flow in Slurry Transportation -- 4.3.2 Turbulence Modelling -- 4.4 WORKED EXAMPLES -- 4.4.1 Dilute Gas-Particle Flow over a Two-Dimensional Backward Facing Step -- 4.4.2 Dilute Gas-Particle Flow in a Three-Dimensional 90° Bend -- 4.4.3 Dilute Gas-Particle Flow over an Inline Tube Bank -- 4.4.4 Liquid-Particle Flows in Sedimentation Tank -- 4.4.5 Sand-Water Slurry Flow in a Horizontal Straight Pipe -- 4.5 SUMMARY -- 5 - Gas-Liquid Flows -- 5.1 INTRODUCTION -- 5.1.1 Background -- 5.1.2 Categorisation of Different Flow Regimes -- 5.1.3 Some Physical Characteristics of Boiling Flow -- 5.2 MULTIPHASE MODELS FOR GAS-LIQUID FLOWS -- 5.2.1 Multif luid Model -- 5.2.1.1 Inter-Phase Mass Transfer -- 5.2.1.2 Inter-Phase Momentum Transfer -- 5.2.1.3 Interphase Heat Transfer -- 5.2.2 Turbulence Modelling -- 5.3 POPULATION BALANCE APPROACH -- 5.3.1 Need for Population Balance in Gas-Liquid Flows -- 5.3.2 Population Balance Equation (PBE) -- 5.3.3 Method of Moments (MOM) -- 5.3.3.1 Quadrature Method of Moments (QMOM) -- 5.3.3.2 Direct Quadrature Method of Moments (DQMOM) -- 5.3.4 Class Methods (CM) -- 5.3.4.1 Average Quantities Approach -- 5.3.4.2 Multiple Size Group Model -- 5.4 BUBBLE INTERACTION MECHANISMS -- 5.4.1 Single Average Scalar Approach for Bubbly Flows -- 5.4.1.1 Wu et al. (1998) Model -- 5.4.1.2 Hibiki and Ishii (2002) Model -- 5.4.1.3 Yao and Morel (2004) Model -- 5.4.2 Multiple Bubble Size Approach for Bubbly Flows -- 5.4.2.1 DQMOM Model -- 5.4.2.2 MUSIG Model -- 5.4.3 Comments of Other Coalescence and Break-Up Kernels -- 5.4.4 Modeling Beyond Bubbly Flows-A Phenomenological Consideration
5.5 MODELING SUBCOOLED BOILING FLOWS -- 5.5.1 Review of Current Model Applications -- 5.5.2 Phenomenological Description -- 5.5.3 Nucleation of Bubbles at Heated Walls -- 5.5.4 Condensation of Bubbles in Subcooled Liquid -- 5.6 WORKED EXAMPLES -- 5.6.1 Dispersed Bubbly Flow in a Rectangular Column -- 5.6.2 Bubbly Flow in a Vertical Pipe -- 5.6.2.1 Experimental Data of Liu and Bankoff (1993a,b) -- 5.6.2.2 Experimental Data of Hibiki et al. (2001) -- 5.6.3 Subcooled Boiling Flow in a Vertical Annulus -- 5.6.3.1 Application of MUSIG Boiling Model -- 5.6.3.2 Application of Improved Wall Heat Partition Model -- 5.7 SUMMARY -- 6 - Free Surface Flows -- 6.1 INTRODUCTION -- 6.2 MULTIPHASE MODELS FOR FREE SURFACE FLOWS -- 6.3 RELEVANT WORKED EXAMPLES -- 6.3.1 Bubble Rising in a Viscous Liquid -- 6.3.2 Single Taylor Bubble -- 6.3.3 Collapse of a Liquid Column (Breaking Dam Problem) -- 6.3.4 Sloshing of Liquid -- 6.3.5 Slug Bubbles in Microchannel Flow -- 6.4 SUMMARY -- 7 - Granular Flows -- 7.1 INTRODUCTION -- 7.2 MULTIPHASE MODELS FOR GRANULAR FLOWS -- 7.3 PARTICLE-PARTICLE INTERACTION WITHOUT ADHESION -- 7.3.1 Normal Force Due to Continuous Potential -- 7.3.2 Normal Force Due to Linear Viscoelastic -- 7.3.3 Normal Force Due to Nonlinear Viscoelastic -- 7.3.4 Normal Force Due to Hysteretic -- 7.3.5 Tangential Force -- 7.3.6 Sliding, Twisting and Rolling Resistance -- 7.4 PARTICLE-PARTICLE INTERACTION WITH ADHESION -- 7.4.1 DVLO, JKR and DMT Theories -- 7.4.2 Liquid Bridging -- 7.4.3 Interfacial Attractive -- 7.4.4 Other Types of Field-Particle Interaction -- 7.5 WORKED EXAMPLES -- 7.5.1 Abrasive Jet Particles -- 7.5.2 Magnetic Nanoparticles in Fluids -- 7.5.3 Fluidised Bed -- 7.6 SUMMARY -- 8 - Freezing/Solidification -- 8.1 INTRODUCTION -- 8.2 MATHEMATICAL FORMULATION -- 8.2.1 Governing Equations -- 8.2.2 Solid-Liquid Interface
Title Computational techniques for multiphase flows
URI https://cir.nii.ac.jp/crid/1130282272887466368
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5721654
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780081024546&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA66J_fkT5w6KeKbRLY2TdrXjekQ9GnK9lTS5oLD2YHrBP3rvWRZu01B9CW0pT3oXch9d7n7Qshluw1RCBBSngqgLOYZldpnlGmpWyBCAcw0J98_8P4juxuGw-p8U9tdUqTX2eePfSX_sSo-Q7uaLtk_WLYUig_wGu2LI1oYxw3wW946TgF7FsMyj1fysFpuBVcj-Izu6UpPphVoHsHU5lBwVhh-K-eybG2FteX4Y-6missCmMajtSzA4lRrW1VI-4D49FXm-VqoaHy_2WZdUAdtcEx3OoYUB7ETOrNtIUxpXP92VOaqMOzAuKNlg1onJXDkRaXUOqnL2QsuzLhoFzP01Pl4_M2_Wac92CU108ixR7Yg3yf1FeLFA0LXFOhVCvRQgV6lQM8q8JA83fQG3T51B0dQiYgwiCkoFatIZLGSUjCVAZdMKhb4EsxMFFy3dIzAU4WpiiCKQPg8UIFODZ9dkAbBEanl0xyOicdbmVahj29gKB0pXLB4rHUbpUexLwU0yMXKfyfvE7vJPUtWlMN4gzRRHUk2NmPb7BUjLhM-LvAMER-PGsRbKiqx37vK3KTX6YaGXilkJ7-IOCU71bw4I7XibQ5NxEtFem6N-QUS2hKb
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Computational+techniques+for+multiphase+flows&rft.au=Yeoh%2C+Guan+Heng&rft.au=Tu%2C+Jiyuan&rft.date=2019-01-01&rft.pub=Butterworth-Heinemann&rft.isbn=9780081024539&rft.externalDocID=BB28075142
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97800810%2F9780081024546.jpg