Computational techniques for multiphase flows
The use of Computational Fluid Dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries.
Saved in:
Main Authors | , |
---|---|
Format | eBook Book |
Language | English |
Published |
Oxford
Butterworth-Heinemann
2019
Elsevier Science & Technology |
Edition | 2 |
Subjects | |
Online Access | Get full text |
ISBN | 9780081024539 0081024533 |
Cover
Abstract | The use of Computational Fluid Dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries. |
---|---|
AbstractList | The use of Computational Fluid Dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries. |
Author | Tu, Jiyuan Yeoh, Guan Heng |
Author_xml | – sequence: 1 fullname: Yeoh, Guan Heng – sequence: 2 fullname: Tu, Jiyuan |
BackLink | https://cir.nii.ac.jp/crid/1130282272887466368$$DView record in CiNii |
BookMark | eNpVj01LAzEYhCN-oK39D3sQxMNC9s33UZf6AQUv4nV5d5PQtemmNln7922tl15mGHgYZibkYoiDOyMzozSluqLABZfnJ5mZKzKpqDYChKTmmsxS-qKUghDCKHpDyjquN2PG3McBQ5Fdtxz679GlwsdtsR5D7jdLTK7wIe7SLbn0GJKb_fuUfD7PP-rXcvH-8lY_LkqsBGemdNYaq1VnLKLitnMSOVrOAB164Ep66g2AtKK12mntFEhmmW-BScVaxqbk4ViMaeV2aRlDTs1PcG2Mq9ScHN6z90d2s42H5bn5wzo35C2GZv5UCwWV3A-bkrsjOfR90_UHrSpGQQMo0FpxKZnU7BeNQ2Al |
ContentType | eBook Book |
DBID | RYH |
DEWEY | 620.1064 |
DatabaseName | CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | IChemE : advancing chemical engineering worldwide |
EISBN | 9780081024546 0081024541 |
Edition | 2 2nd edition. |
ExternalDocumentID | 9780081024546 EBC5721654 BB28075142 |
GroupedDBID | 38. AAAAS AABBV AAJFB AAKZG AALRI AAWMN AAXUO AAZNM ABGWT ABJDO ABLXK ABMAC ABNVE ABQQC ACDGK ACKCA ADCEY AEIUV AEYWH AFANW ALMA_UNASSIGNED_HOLDINGS AUEHQ AZZ BBABE CZZ HGY RYH SDK SRW ADVEM ALBLE GEOUK |
ID | FETCH-LOGICAL-a15439-edd9d87c9daa74dce6a4ad432aeaf2476f0f9226d5bd8e88e7263d3fb23673b33 |
ISBN | 9780081024539 0081024533 |
IngestDate | Fri Nov 08 05:00:17 EST 2024 Fri May 30 22:19:20 EDT 2025 Thu Jun 26 23:10:12 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCallNum_Ident | TA357.5.M84 .Y464 2019 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a15439-edd9d87c9daa74dce6a4ad432aeaf2476f0f9226d5bd8e88e7263d3fb23673b33 |
Notes | Includes bibliographical references and index "Butterworth-Heinemann is an imprint of Elsevier"--T.p. verso |
OCLC | 1089525609 |
PQID | EBC5721654 |
PageCount | 642 |
ParticipantIDs | askewsholts_vlebooks_9780081024546 proquest_ebookcentral_EBC5721654 nii_cinii_1130282272887466368 |
PublicationCentury | 2000 |
PublicationDate | c2019 2019 2019-02-28 |
PublicationDateYYYYMMDD | 2019-01-01 2019-02-28 |
PublicationDate_xml | – year: 2019 text: c2019 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: Chantilly |
PublicationYear | 2019 |
Publisher | Butterworth-Heinemann Elsevier Science & Technology |
Publisher_xml | – name: Butterworth-Heinemann – name: Elsevier Science & Technology |
SSID | ssj0002555970 ssib028732131 |
Score | 2.099713 |
Snippet | The use of Computational Fluid Dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely... |
SourceID | askewsholts proquest nii |
SourceType | Aggregation Database Publisher |
SubjectTerms | Multiphase flow Multiphase flow -- Data processing |
TableOfContents | Front Cover -- COMPUTATIONAL TECHNIQUES FOR MULTIPHASE FLOWS -- COMPUTATIONAL TECHNIQUES FOR MULTIPHASE FLOWS -- Copyright -- Contents -- Preface to the Second Edition -- Preface to the First Edition -- 1 - Introduction -- 1.1 CLASSIFICATION AND PHENOMENOLOGICAL DISCUSSION -- 1.2 TYPICAL PRACTICAL PROBLEMS INVOLVING MULTIPHASE FLOWS -- 1.3 COMPUTATIONAL FLUID DYNAMICS AS A RESEARCH TOOL FOR MULTIPHASE FLOWS -- 1.4 COMPUTATIONAL FLUID DYNAMICS AS A DESIGN TOOL FOR MULTIPHASE FLOWS -- 1.5 IMPACT OF MULITIPHASE FLOW STUDY ON COMPUTATIONAL FLUID DYNAMICS -- 1.6 SCOPE OF THE BOOK -- 2 - Governing Equations and Boundary Conditions -- 2.1 BASIC CONCEPTS OF FLUID MECHANICS -- 2.2 BACKGROUND OF DIFFERENT APPROACHES -- 2.3 AVERAGING PROCEDURE FOR MULTIPHASE FLOW -- 2.4 EQUATIONS OF MOTION FOR CONTINUOUS PHASE -- 2.4.1 Conservation of Mass -- 2.4.2 Conservation of Momentum -- 2.4.3 Conservation of Energy -- 2.4.4 Interfacial Transport -- 2.4.5 Effective Conservation Equations -- 2.5 COMMENTS AND OBSERVATIONS ON THE GOVERNING EQUATIONS FOR THE TWO-FLUIDLING APPROACH -- 2.6 EQUATIONS OF MOTION FOR DISPERSE PHASE -- 2.7 TURBULENCE IN TRANSPORT PHENOMENA -- 2.7.1 Reynolds-Averaged Equations -- 2.7.1.1 Mixture Model -- 2.7.1.2 Two-Fluid Model -- 2.7.2 Reynolds-Averaged Closure -- 2.7.3 Some Comments on the k-ε Model and Implications of Other Turbulence Models -- 2.7.3.1 Shear Stress Transport (SST) Model -- 2.7.3.2 Reynolds Stress Model -- 2.7.3.3 Near-Wall Treatment -- 2.7.4 Some Comments on Turbulence Modelling of the Disperse Phase -- 2.8 DIFFERENTIAL AND INTEGRAL FORM OF THE TRANSPORT EQUATIONS -- 2.8.1 Mixture Model -- 2.8.2 Two-Fluid Model -- 2.8.3 A Comment on Multifluid Model -- 2.9 BOUNDARY CONDITIONS AND THEIR PHYSICAL INTREPRETATION -- 2.9.1 Comments on Some Wall Boundary Conditions for Multiphase Problems -- 2.10 SUMMARY 3.5.2 Particle-Particle Interaction (Four-Way Coupling Concept-Collisions and Turbulent Dispersion of Particles) -- 3.5.2.1 Hard-Sphere Model -- 3.5.2.2 Soft-Sphere Model -- 3.5.3 Basic Numerical Techniques -- 3.5.4 Comments on Sampling Particles for Turbulent Dispersion -- 3.5.5 Some Comments on Attaining Proper Statistical Realisations -- 3.5.5.1 Evaluation of Source Terms for the Continuous Phase -- INTERFACE TRACKING/CAPTURING ALGORITHMS -- 3.6 BASIC CONSIDERATIONS OF INTERFACE TRACKING/CAPTURING METHODS -- 3.6.1 Algorithms Based on Surface Methods: With Comments -- 3.6.1.1 Surface Marker Approaches -- 3.6.1.2 Front Tracking Method -- 3.6.1.3 Intersection Marker Method -- 3.6.2 Algorithms Based on Volume Methods: With Comments -- 3.6.2.1 Markers in Fluid (MAC Formulation) -- 3.6.2.2 Volume of Fluid (VOF) -- 3.6.2.2.1 DONOR-ACCEPTOR FORMULATION -- 3.6.2.2.2 LINE TECHNIQUES (GEOMETRIC RECONSTRUCTION) -- 3.6.2.3 Level Set Method -- 3.6.2.4 Hybrid Methods -- 3.6.3 Computing Surface Tension and Wall Adhesion -- 3.7 SUMMARY -- 4 - Gas-Particle and Liquid-Particle Flows -- 4.1 INTRODUCTION -- 4.1.1 Background -- 4.1.1.1 Gas-Particle Flows -- Liquid-Particle Flows -- 4.1.2 Classification of Gas-Particle Flows -- 4.1.3 Particle Loading and Stokes Number -- 4.1.4 Particle Dispersion due to Turbulence -- 4.1.5 Some Physical Characteristics of Flow in Sedimentation Tank -- 4.1.6 Some Physical Characteristics of Slurry Transport -- 4.2 MULTIPHASE MODELS FOR GAS-PARTICLE FLOWS -- 4.2.1 Eulerian-Lagrangian Framework -- 4.2.2 Eulerian-Eulerian Framework -- 4.2.3 Turbulence Modelling -- Gas Phase -- Particle Phase in Lagrangian Reference Frame -- Particle Phase in Eulerian Reference Frame -- 4.2.4 Particle-Wall Collision Model -- Lagrangian Reference Frame -- Eulerian Reference Frame -- 4.3 MULTIPHASE MODELS FOR LIQUID-PARTICLE FLOWS -- 4.3.1 Mixture Model 8.2.3 Other Boundary Conditions 3 - Solution Methods for Multiphase Flows -- 3.1 INTRODUCTION -- MESH SYSTEMS -- 3.2 CONSIDERATION FOR A RANGE OF MULTIPHASE FLOW PROBLEMS -- 3.2.1 Application of Structured Mesh -- 3.2.2 Application of Body-Fitted Mesh -- 3.2.3 Application of Unstructured Mesh -- 3.2.4 Some Comments on Grid Generation -- EULERIAN-EULERIAN FRAMEWORK -- 3.3 NUMERICAL ALGORITHMS -- 3.3.1 Basic Aspects of Discretisation - Finite Difference Method -- 3.3.2 Basic Aspects of Discretisation - Finite Volume Method -- 3.3.3 Basic Approximation of the Diffusion Term Based Upon the Finite Volume Method -- 3.3.4 Basic Approximation of the Advection Term Based Upon the Finite Volume Method -- 3.3.5 Some Comments on the Need for TVD Schemes -- 3.3.6 Explicit and Implicit Approaches -- 3.3.7 Assembly of Discretised Equations -- 3.3.8 Comments on the Linearisation of Source Terms -- 3.4 SOLUTION ALGORITHMS -- 3.4.1 The Philosophy Behind the Pressure Correction Techniques for Multiphase Problems -- 3.4.1.1 SIMPLE Algorithm for Mixture or Homogeneous Flows -- 3.4.1.2 A Comment on Other Pressure Correction Methods -- 3.4.1.3 Evaluation of the Face Velocity in Different Mesh Systems -- 3.4.1.4 Iterative Procedure Based on the SIMPLE Algorithm -- 3.4.1.5 Inter-Phase Slip Algorithm (IPSA) for Multiphase Flows -- 3.4.1.6 Inter-phase Slip Algorithm-Coupled (IPSA-C) for Multiphase Flows -- 3.4.1.7 Comments on the Need for Improved Interpolation Methods of Evaluating the Face Velocity in Multiphase Problems -- 3.4.2 Matrix Solvers for the Segregated Approach in Different Mesh Systems -- 3.4.3 Coupled Equation System -- EULERIAN-LAGRANGIAN FRAMEWORK -- 3.5 NUMERICAL AND SOLUTION ALGORITHMS -- 3.5.1 Fluid-Particle Interaction (Forces Related to Fluid Acting on Particle - One-Way, Two-Way Coupling) 4.3.1.1 Modelling Source or Sink Terms for Flow in Sedimentation Tank -- BUOYANCY DUE TO DENSITY DIFFERENCE -- SETTLING VELOCITY OF PARTICLE PHASE -- FLOCCULATION MODELLING -- RHEOLOGY OF THE MIXTURE -- 4.3.1.2 Modelling Source or Sink Terms for Flow in Slurry Transportation -- 4.3.2 Turbulence Modelling -- 4.4 WORKED EXAMPLES -- 4.4.1 Dilute Gas-Particle Flow over a Two-Dimensional Backward Facing Step -- 4.4.2 Dilute Gas-Particle Flow in a Three-Dimensional 90° Bend -- 4.4.3 Dilute Gas-Particle Flow over an Inline Tube Bank -- 4.4.4 Liquid-Particle Flows in Sedimentation Tank -- 4.4.5 Sand-Water Slurry Flow in a Horizontal Straight Pipe -- 4.5 SUMMARY -- 5 - Gas-Liquid Flows -- 5.1 INTRODUCTION -- 5.1.1 Background -- 5.1.2 Categorisation of Different Flow Regimes -- 5.1.3 Some Physical Characteristics of Boiling Flow -- 5.2 MULTIPHASE MODELS FOR GAS-LIQUID FLOWS -- 5.2.1 Multif luid Model -- 5.2.1.1 Inter-Phase Mass Transfer -- 5.2.1.2 Inter-Phase Momentum Transfer -- 5.2.1.3 Interphase Heat Transfer -- 5.2.2 Turbulence Modelling -- 5.3 POPULATION BALANCE APPROACH -- 5.3.1 Need for Population Balance in Gas-Liquid Flows -- 5.3.2 Population Balance Equation (PBE) -- 5.3.3 Method of Moments (MOM) -- 5.3.3.1 Quadrature Method of Moments (QMOM) -- 5.3.3.2 Direct Quadrature Method of Moments (DQMOM) -- 5.3.4 Class Methods (CM) -- 5.3.4.1 Average Quantities Approach -- 5.3.4.2 Multiple Size Group Model -- 5.4 BUBBLE INTERACTION MECHANISMS -- 5.4.1 Single Average Scalar Approach for Bubbly Flows -- 5.4.1.1 Wu et al. (1998) Model -- 5.4.1.2 Hibiki and Ishii (2002) Model -- 5.4.1.3 Yao and Morel (2004) Model -- 5.4.2 Multiple Bubble Size Approach for Bubbly Flows -- 5.4.2.1 DQMOM Model -- 5.4.2.2 MUSIG Model -- 5.4.3 Comments of Other Coalescence and Break-Up Kernels -- 5.4.4 Modeling Beyond Bubbly Flows-A Phenomenological Consideration 5.5 MODELING SUBCOOLED BOILING FLOWS -- 5.5.1 Review of Current Model Applications -- 5.5.2 Phenomenological Description -- 5.5.3 Nucleation of Bubbles at Heated Walls -- 5.5.4 Condensation of Bubbles in Subcooled Liquid -- 5.6 WORKED EXAMPLES -- 5.6.1 Dispersed Bubbly Flow in a Rectangular Column -- 5.6.2 Bubbly Flow in a Vertical Pipe -- 5.6.2.1 Experimental Data of Liu and Bankoff (1993a,b) -- 5.6.2.2 Experimental Data of Hibiki et al. (2001) -- 5.6.3 Subcooled Boiling Flow in a Vertical Annulus -- 5.6.3.1 Application of MUSIG Boiling Model -- 5.6.3.2 Application of Improved Wall Heat Partition Model -- 5.7 SUMMARY -- 6 - Free Surface Flows -- 6.1 INTRODUCTION -- 6.2 MULTIPHASE MODELS FOR FREE SURFACE FLOWS -- 6.3 RELEVANT WORKED EXAMPLES -- 6.3.1 Bubble Rising in a Viscous Liquid -- 6.3.2 Single Taylor Bubble -- 6.3.3 Collapse of a Liquid Column (Breaking Dam Problem) -- 6.3.4 Sloshing of Liquid -- 6.3.5 Slug Bubbles in Microchannel Flow -- 6.4 SUMMARY -- 7 - Granular Flows -- 7.1 INTRODUCTION -- 7.2 MULTIPHASE MODELS FOR GRANULAR FLOWS -- 7.3 PARTICLE-PARTICLE INTERACTION WITHOUT ADHESION -- 7.3.1 Normal Force Due to Continuous Potential -- 7.3.2 Normal Force Due to Linear Viscoelastic -- 7.3.3 Normal Force Due to Nonlinear Viscoelastic -- 7.3.4 Normal Force Due to Hysteretic -- 7.3.5 Tangential Force -- 7.3.6 Sliding, Twisting and Rolling Resistance -- 7.4 PARTICLE-PARTICLE INTERACTION WITH ADHESION -- 7.4.1 DVLO, JKR and DMT Theories -- 7.4.2 Liquid Bridging -- 7.4.3 Interfacial Attractive -- 7.4.4 Other Types of Field-Particle Interaction -- 7.5 WORKED EXAMPLES -- 7.5.1 Abrasive Jet Particles -- 7.5.2 Magnetic Nanoparticles in Fluids -- 7.5.3 Fluidised Bed -- 7.6 SUMMARY -- 8 - Freezing/Solidification -- 8.1 INTRODUCTION -- 8.2 MATHEMATICAL FORMULATION -- 8.2.1 Governing Equations -- 8.2.2 Solid-Liquid Interface |
Title | Computational techniques for multiphase flows |
URI | https://cir.nii.ac.jp/crid/1130282272887466368 https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=5721654 https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9780081024546&uid=none |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwEA66J_fkT5w6KeKbRLY2TdrXjekQ9GnK9lTS5oLD2YHrBP3rvWRZu01B9CW0pT3oXch9d7n7Qshluw1RCBBSngqgLOYZldpnlGmpWyBCAcw0J98_8P4juxuGw-p8U9tdUqTX2eePfSX_sSo-Q7uaLtk_WLYUig_wGu2LI1oYxw3wW946TgF7FsMyj1fysFpuBVcj-Izu6UpPphVoHsHU5lBwVhh-K-eybG2FteX4Y-6missCmMajtSzA4lRrW1VI-4D49FXm-VqoaHy_2WZdUAdtcEx3OoYUB7ETOrNtIUxpXP92VOaqMOzAuKNlg1onJXDkRaXUOqnL2QsuzLhoFzP01Pl4_M2_Wac92CU108ixR7Yg3yf1FeLFA0LXFOhVCvRQgV6lQM8q8JA83fQG3T51B0dQiYgwiCkoFatIZLGSUjCVAZdMKhb4EsxMFFy3dIzAU4WpiiCKQPg8UIFODZ9dkAbBEanl0xyOicdbmVahj29gKB0pXLB4rHUbpUexLwU0yMXKfyfvE7vJPUtWlMN4gzRRHUk2NmPb7BUjLhM-LvAMER-PGsRbKiqx37vK3KTX6YaGXilkJ7-IOCU71bw4I7XibQ5NxEtFem6N-QUS2hKb |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Computational+techniques+for+multiphase+flows&rft.au=Yeoh%2C+Guan+Heng&rft.au=Tu%2C+Jiyuan&rft.date=2019-01-01&rft.pub=Butterworth-Heinemann&rft.isbn=9780081024539&rft.externalDocID=BB28075142 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97800810%2F9780081024546.jpg |